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IntroducƟon 
 
This arƟcle celebrates a classic algorithm [1] of Dijkstra (1930 – 2002) which finds a path of minimal cost 
between any pair of nodes in an undirected graph. His procedure is widely recognized as a fundamental tool 
for examining communicaƟon and transportaƟon networks (eg. Google Maps) and is surprisingly simple. By his 
own admission, he solved this problem in twenty minutues while having coffee with his fiancée Ria [2]. 
 
The presentaƟon below views his minimal path problem as coloring the nodes of a weighted undirected graph, 
in a certain order, to converge on a minimal path, and uses mathemaƟcal inducƟon to ensure its opƟmality. It 
provides a simple theorem that describes the key issue, and from its proof the algorithm follows. An overview 
will first explain this approach using a simple example, and then the algorithm itself is wriƩen as a by-product 
of that proof. Based on this, a simple SQL WHILE loop implements a soluƟon. 

 
Problem 

 
Find a path from A to H with minimal cost 
 
Overview Of The Algorithm  
 
Dijkstra’s algorithm is presented in the context of node coloring, with no reference to computer programming, 
and shows why the algorithm always works.  
 



 
Node coloring, and the computaƟons that accompany it, are a convenient way to document how to find a path 
to source with minimal cost from each node, one node at a Ɵme. Although this seems like overkill, these 
calculaƟons are needed to derive a path from A to H with minimal cost. 
 
The algorithm does this by compuƟng the red values N,C for each node, where “N,C” means “You may find a 
path of minimal cost C to source by first going to node N.” So, for node H, “F,19” means that a path of minimal 
cost 19 from H to A may be found by first going to node F. That node then says that a path of minimal cost 17 
from it to source may be found by first going to node D, and so on. ConƟnuing this way yields the path H -> F -> 
D -> B -> A from H to A with minimal cost 19.  
 
That the computaƟons below always return a path of minimal cost from A to H (or any other node) will 
become evident in the way they’re defined. The order in which they’re calculated is criƟcal. AŌer a 
computaƟon is made for a given node, it will be colored red. Each such node always “knows” a minimal path 
for it using the nodes that have already been colored, which the remaining nodes then use to color 
themselves.  
 
First, color the source red with the values A,0. Then choose a neighbor N of minimal cost C and color it red 
with the values A,C. So, for the above example, choose B with values A,2. Since B has minimal cost among all 
neighbors of A, no other path from B to A can have a lower cost since it must eventually pass through one of 
those neighbors. Note that to make this observaƟon, all costs must be non-negaƟve.  
 
The remaining nodes will be colored in the same way, one at a Ɵme, unƟl all “reachable” nodes are colored. 
When the target node is eventually colored (assuming it can be reached), its values N,C will allow us to walk 
back from target to source along a minimal path. When the algorithm concludes, the colored nodes will be 
those connected to the source by at least one path, along with instrucƟons N,C on how to traverse a minimal 
path from each of them to the source. You could, of course, halt the algorithm when the target node has been 
colored. 
 
The main problem is finding the next node that can be colored, along with its N,C values. 
 



 
If there are no neighbors of the red nodes (A,B), then no path from A to H (or any other node) exists so the 
algorithm halts. 
 
Otherwise, select one of them to color whose cost to the source node is minimal (using just the red nodes). In 
our example, C and D are candidates. Since the cost for C = 6 and D = 5 + 2 = 7 you may color C red with values 
A,6. For the same reason as before, no other path from C to A can have a lower cost. For example, C -> D -> B -
> A cannot have a lower cost since the cost of D -> B can’t be smaller than the cost of C -> A, which is minimal 
among all neighbors. So, the cost of C -> D -> B -> A can’t be smaller than the cost of C -> A. That’s why we 
picked a neighbor with minimal cost to the source, using just the red nodes (whose N,C values have already 
been computed). 
 
Subtle point: each neighbor may have mulƟple edges connecƟng it to the red nodes. In that case, select a red 
node yielding minimal cost to the source for that neighbor. So, if an edge also existed between C and B whose 
cost is 0, then choose that one instead (so the values of C would be B,2 instead of A,6). 
 
ConƟnuing this argument with the expanded set of red nodes, the remaining nodes may now be colored in the 
same way and in the following order: D, E, F, H, D. Note that H, for this example, is not the last node that’s 
colored. 
 
MathemaƟcal InterpretaƟon 
 
Call a set of nodes red if every node in that set has at least one path to the source node using just the red 
nodes, and at least one of them has minimal cost compared to any other path from it to the source node using 
any nodes in the graph. As well, every red node has values N,C where N is the next red node on some path of 
minimal cost, along with the cost C of that path. There may be mulƟple such paths of minimal cost but only 
one value of N is arbitrarily selected.  
 
Clearly the source node S (with values S,0) must belong to the set. In fact, the set {S} itself may be viewed as a 
set of red nodes (where S has values S,0). 
 
The neighbors of the red nodes are, by definiƟon, those non-red nodes in the graph with at least one edge 
connected to a red node. 



 

 
Suppose we could always add a new node to any set of red nodes, whenever that set has at least one neighbor. 
Then this process could conƟnue from {S} unƟl the latest set of red nodes has no neighbors. If the target node 
T has become red, we’re done. Otherwise, S and T are not connected because the latest set of red nodes has 
no neighbors. 
 
Theorem  
If a set of red nodes has at least one neighbor, then one of them may be added to the set 
 
Proof 
Suppose the set of red nodes has at least one neighbor. Choose a neighbor P connected to a red node 
S1(N1,C1) where cost(P,S1) + C1 is minimal among all its edges connected to the red nodes and for all 
neighbors of the red nodes. In other words, P is the “closest” neighbour to the source (and it knows how to get 
there). Call this value the “neighborhood minimal” of the set of red nodes, for convenience. 
 
So, to add P to the set, it remains to show that any path from P to S using any nodes in the graph can’t have a 
lower cost. 
 
Suppose P -> Q1 -> Q2 -> … is another path from P to S using any nodes in the graph. Let Qn be the last Ɵme 
that path enters the set of red nodes (at S2(N2,C2), say). 
 
Then cost(Qn,S2) + C2 can’t be less than cost(P,S1) + C1 because the laƩer is a neighborhood minimal. 
 
So, cost(P,Q1) + cost(Q1,Q2) + … + cost(Qn,S2) + C2 can’t be less than cost(P,S1) + C1 since all costs are non-
negaƟve. Therefore, the new path can’t have lower cost than the original path. 
 
You may now add P(S1,cost(P,S1) + C1) to the set of red nodes.  



Algorithm 
 
S = source node, T = target node 
 
Set RED = {S}, Next(S) = S, Cost(S) = 0  
 
Set N = number of neighbors of RED 
 
WHILE N > 0 
 BEGIN 
 Select a neighbor P of RED with neighborhood minimal value Cost(P,S1) + Cost(S1) 
for some S1 belonging to RED 
 Add P to RED with values Next(P) = S1, Cost(P) = Cost(P,S1) + Cost(S1)  
 Set N = number of neighbors of RED 
 END 
 
Return T(Next,Cost) from RED if T belongs to RED 

 
Upon compleƟon, the set RED contains all nodes connected to source and for each node in RED its Next and 
Cost values idenƟfy the start of a minimal path to source and the cost of that path. 
 
Script 
 
-- 
-- Parameters 
-- 
 
DECLARE @Graph NVARCHAR(MAX) = ' 
SELECT ''A'' AS Node1, ''B'' AS Node2, 2 AS Cost 
UNION 
SELECT ''A'' AS Node1, ''C'' AS Node2, 6 AS Cost 
UNION 
SELECT ''B'' AS Node1, ''D'' AS Node2, 5 AS Cost 
UNION 
SELECT ''C'' AS Node1, ''D'' AS Node2, 8 AS Cost 
UNION 
SELECT ''C'' AS Node1, ''E'' AS Node2, 2 AS Cost 
UNION 
SELECT ''D'' AS Node1, ''F'' AS Node2, 10 AS Cost 
UNION 
SELECT ''D'' AS Node1, ''G'' AS Node2, 15 AS Cost 
UNION 
SELECT ''G'' AS Node1, ''F'' AS Node2, 6 AS Cost 
UNION 
SELECT ''G'' AS Node1, ''H'' AS Node2, 6 AS Cost 
UNION 
SELECT ''F'' AS Node1, ''H'' AS Node2, 2 AS Cost 
UNION 
SELECT ''E'' AS Node1, ''F'' AS Node2, 20 AS Cost 
'          
DECLARE @Source VARCHAR(128) = 'A' -- You may put any node here for @Source   
DECLARE @Target VARCHAR(128) = 'H' -- You may put any node here for @Target  
 
-- Declarations 
DECLARE @ROW_COUNT INT 
DECLARE @Cost  VARCHAR(16) 
DECLARE @Path  VARCHAR(MAX) 
DECLARE @Node  VARCHAR(128) 



 
--  Drop table #Graph 
IF OBJECT_ID(N'tempdb..#Graph') IS NOT NULL DROP TABLE #Graph 
 
--  Create table #Graph 
CREATE TABLE #Graph ( 
Node1 VARCHAR(128) 
,Node2 VARCHAR(128) 
,Cost INT  
); 
 
-- Populate table #Graph 
INSERT INTO #Graph EXEC dbo.sp_executeSQL @Graph 
 
-- Drop table #RED 
IF OBJECT_ID(N'tempdb..#RED') IS NOT NULL DROP TABLE #RED 
 
--  Create table #RED 
CREATE TABLE #RED ( 
[Node]  VARCHAR(128) 
,[Next] VARCHAR(128) 
,Cost  INT  
); 
 
-- Initialize table #RED with @Source 
INSERT INTO #RED SELECT @Source AS [Node], @Source AS [Next], 0 AS Cost  
 
-- Populate table #RED according to induction argument 
SET @ROW_COUNT = -1 
WHILE @ROW_COUNT <> 0 
BEGIN 
 INSERT INTO #RED 
 SELECT TOP 1 d.[Node], d.[Next], d.Cost FROM -- Select top row from query 
 ( 
 SELECT Graph.Node2 AS [Node], RED.[Node] AS [Next], Graph.Cost + RED.Cost AS Cost  
 FROM #Graph Graph INNER JOIN #RED RED ON Graph.Node1 = RED.[Node] 
 WHERE Graph.Node2 NOT IN (SELECT [Node] FROM #RED) 
 
 UNION -- Required since edges have no direction 
 
 SELECT Graph.Node1 AS [Node], RED.[Node] AS [Next], Graph.Cost + RED.Cost AS Cost  
 FROM #Graph Graph INNER JOIN #RED RED ON Graph.Node2 = RED.[Node] 
 WHERE Graph.Node1 NOT IN (SELECT [Node] FROM #RED) 
 ) d 
 ORDER BY d.Cost ASC -- Pick closest neighbor to @Source 
 SET @ROW_COUNT = @@ROWCOUNT 
END 
 
-- 
-- Display answer  
-- 
 
-- Get cost of minimal path from @Target to @Source 
SELECT @Cost = Cost FROM #RED WHERE [Node] = @Target  -- @Target may not belong to #RED  
 
IF @Cost IS NOT NULL  -- @Target belongs to #RED   
 BEGIN 
 -- Build minimal path from @Source to @Target  
 SET @Path = @Target 
 SET @Node = @Target 
 WHILE @Node <> @Source -- Loop through nodes from @Target to @Source using Next column in #RED 
  BEGIN 
  SELECT @Node = [Next] FROM #RED WHERE [Node] = @Node -- Get Next node for current node 
  SET @Path = @Node + ' --> ' + @Path   -- Append to path 



  END 
 
 -- Display minimal path from @Source to @Target 
 SELECT @Cost AS Cost, @Path AS Path 
 
 -- Display all minimal paths 
 SELECT * FROM #RED 
 END 
ELSE 
 SELECT -1 AS Cost, '@Source and @Path are not connected' AS Path 
 
You may change @Source and @Target to any pair of nodes. Of course, when @Source changes so do the 
values of the Next column for each node in the #RED table. Also note that if both values are set to H in the 
above example, there are two minimal paths from E to H but the script arbitrarily selected the path of greater 
length because it was not concerned about how many nodes were used. 
 
Important: Use the stored procedure sp_MinimalPath which has performance improvements and extensive 
error checking on @Graph. Most processing involves populaƟng #RED. For example, on a test machine the run-
Ɵme on 8000 edges was about 3 minutes (so check the size of @Graph before proceeding). Seƫng 
@StopAtTarget = 1 will improve performance by stopping the populaƟon of #RED when @Target has been 
reached. 
 
Historical Notes 
 
In theorem-proving, an inducƟon technique like the one above is someƟmes used to prove that a finite set has 
a given property by first showing that any proper subset of it, with that property, can always be enlarged by 
adding another (carefully selected) element. So, finding any subset with that property (like {S} in our problem) 
would demonstrate that the complete set has that property. This won’t work for infinite sets, of course, but 
similar construcƟons may be used to prove the opposite case.  
 
For example, Euclid showed that there are infinitely many primes by assuming that the set of all primes is 
finite. But by adding 1 to their product yields a larger number which won’t be in that set. And by construcƟon, 
it can’t be divided by any member of that set. So, it’s either a new prime or it’s divisible by some prime that 
can’t be in that set. This contradicts the assumpƟon that a finite set of all primes exists, so it must be false. 
Such mode of thinking, from someone who approached this problem 2,500 years ago, demonstrates the 
Ɵmelessness of ancient mathemaƟcal thinking and the brilliance of its thinkers. 
 
Cantor’s famous diagonalizaƟon argument [3] is another example, where he shows that no infinite sequence of 
real numbers can include them all, so the set of reals is “larger” in some sense than the set of integers. This 
inspired a revoluƟon in set theory, where infinite sets can now be larger than others. It was later shown [4] 
that it can’t be proved or disproved that some set exists that’s greater in size than the integers but smaller 
than the reals. So, the usual axioms of set theory need to be amended, depending on what you want to 
believe. This brought in the logicians who, among other things, legiƟmized Newton’s use of infinitesimals via 
Abraham Robinson’s non-standard analysis [5] and provided the foundaƟon for Prolog [6], a well-known AI 
language.  
 
Turing and Godel used similar arguments in their work about what’s computable or decidable. 
  



ApplicaƟon To Human Resources 
 
In a previous arƟcle [7] it was shown how hierarchical tables commonly used by HR may be viewed as trees 
when a “parent” relaƟonship exists between records (ie. where one of its columns refers to each record’s 
“parent” or manager). The top node of the tree would be the company’s CEO (whose parent is NULL), all other 
records have a parent, and no looping occurs in the relaƟonship. By adding and populaƟng new columns 
numChildren, numDescendants, numLeaves, Height, Depth using simple CTE calculaƟons, some complicated 
quesƟons may be easily answered, such as “Which manager three steps below the CEO has the largest number 
of direct reports compared to all employees of that manager?.” Such quesƟons are vital when planning 
corporate re-organizaƟons. 
 
But suppose you want to ask that quesƟon on earlier versions of the table, which no longer exist? In an 
upcoming arƟcle it will be shown how to convert the tree of one such table to an earlier version using an auto-
generated SQL script when comparing them. Each version of the table will have its script stored (and date-
stamped) in a log table. This results in an undirected graph whose nodes represent different versions of that 
tree, and whose edges connecƟng them represent the SQL scripts converƟng one node to an earlier node. By 
comparing today’s tree with yesterday's tree each day, the log table allows you to compare today's tree with 
last year’s tree, which no longer exists, by simply execuƟng those scripts chronologically to build last year's 
tree from today’s. In the same way, you may add edges between any pair of trees in the past (on a weekly 
basis, say). Dijktra’s algorithm is then used to compute a path from today’s tree to last year’s tree involving a 
minimal number of SQL statements. 
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