
Dijkstra’s Algorithm
R Glen Cooper

19 Nov 23

IntroducƟon

This arƟcle celebrates a classic algorithm [1] of Dijkstra (1930 – 2002) which finds a path of minimal cost
between any pair of nodes in an undirected graph. His procedure is widely recognized as a fundamental tool
for examining communicaƟon and transportaƟon networks (eg. Google Maps) and is surprisingly simple. By his
own admission, he solved this problem in twenty minutues while having coffee with his fiancée Ria [2].

The presentaƟon below views his minimal path problem as coloring the nodes of a weighted undirected graph,
in a certain order, to converge on a minimal path, and uses mathemaƟcal inducƟon to ensure its opƟmality. It
provides a simple theorem that describes the key issue, and from its proof the algorithm follows. An overview
will first explain this approach using a simple example, and then the algorithm itself is wriƩen as a by-product
of that proof. Based on this, a simple SQL WHILE loop implements a soluƟon.

Problem

Find a path from A to H with minimal cost

Overview Of The Algorithm

Dijkstra’s algorithm is presented in the context of node coloring, with no reference to computer programming,
and shows why the algorithm always works.

Node coloring, and the computaƟons that accompany it, are a convenient way to document how to find a path
to source with minimal cost from each node, one node at a Ɵme. Although this seems like overkill, these
calculaƟons are needed to derive a path from A to H with minimal cost.

The algorithm does this by compuƟng the red values N,C for each node, where “N,C” means “You may find a
path of minimal cost C to source by first going to node N.” So, for node H, “F,19” means that a path of minimal
cost 19 from H to A may be found by first going to node F. That node then says that a path of minimal cost 17
from it to source may be found by first going to node D, and so on. ConƟnuing this way yields the path H -> F ->
D -> B -> A from H to A with minimal cost 19.

That the computaƟons below always return a path of minimal cost from A to H (or any other node) will
become evident in the way they’re defined. The order in which they’re calculated is criƟcal. AŌer a
computaƟon is made for a given node, it will be colored red. Each such node always “knows” a minimal path
for it using the nodes that have already been colored, which the remaining nodes then use to color
themselves.

First, color the source red with the values A,0. Then choose a neighbor N of minimal cost C and color it red
with the values A,C. So, for the above example, choose B with values A,2. Since B has minimal cost among all
neighbors of A, no other path from B to A can have a lower cost since it must eventually pass through one of
those neighbors. Note that to make this observaƟon, all costs must be non-negaƟve.

The remaining nodes will be colored in the same way, one at a Ɵme, unƟl all “reachable” nodes are colored.
When the target node is eventually colored (assuming it can be reached), its values N,C will allow us to walk
back from target to source along a minimal path. When the algorithm concludes, the colored nodes will be
those connected to the source by at least one path, along with instrucƟons N,C on how to traverse a minimal
path from each of them to the source. You could, of course, halt the algorithm when the target node has been
colored.

The main problem is finding the next node that can be colored, along with its N,C values.

If there are no neighbors of the red nodes (A,B), then no path from A to H (or any other node) exists so the
algorithm halts.

Otherwise, select one of them to color whose cost to the source node is minimal (using just the red nodes). In
our example, C and D are candidates. Since the cost for C = 6 and D = 5 + 2 = 7 you may color C red with values
A,6. For the same reason as before, no other path from C to A can have a lower cost. For example, C -> D -> B -
> A cannot have a lower cost since the cost of D -> B can’t be smaller than the cost of C -> A, which is minimal
among all neighbors. So, the cost of C -> D -> B -> A can’t be smaller than the cost of C -> A. That’s why we
picked a neighbor with minimal cost to the source, using just the red nodes (whose N,C values have already
been computed).

Subtle point: each neighbor may have mulƟple edges connecƟng it to the red nodes. In that case, select a red
node yielding minimal cost to the source for that neighbor. So, if an edge also existed between C and B whose
cost is 0, then choose that one instead (so the values of C would be B,2 instead of A,6).

ConƟnuing this argument with the expanded set of red nodes, the remaining nodes may now be colored in the
same way and in the following order: D, E, F, H, D. Note that H, for this example, is not the last node that’s
colored.

MathemaƟcal InterpretaƟon

Call a set of nodes red if every node in that set has at least one path to the source node using just the red
nodes, and at least one of them has minimal cost compared to any other path from it to the source node using
any nodes in the graph. As well, every red node has values N,C where N is the next red node on some path of
minimal cost, along with the cost C of that path. There may be mulƟple such paths of minimal cost but only
one value of N is arbitrarily selected.

Clearly the source node S (with values S,0) must belong to the set. In fact, the set {S} itself may be viewed as a
set of red nodes (where S has values S,0).

The neighbors of the red nodes are, by definiƟon, those non-red nodes in the graph with at least one edge
connected to a red node.

Suppose we could always add a new node to any set of red nodes, whenever that set has at least one neighbor.
Then this process could conƟnue from {S} unƟl the latest set of red nodes has no neighbors. If the target node
T has become red, we’re done. Otherwise, S and T are not connected because the latest set of red nodes has
no neighbors.

Theorem
If a set of red nodes has at least one neighbor, then one of them may be added to the set

Proof
Suppose the set of red nodes has at least one neighbor. Choose a neighbor P connected to a red node
S1(N1,C1) where cost(P,S1) + C1 is minimal among all its edges connected to the red nodes and for all
neighbors of the red nodes. In other words, P is the “closest” neighbour to the source (and it knows how to get
there). Call this value the “neighborhood minimal” of the set of red nodes, for convenience.

So, to add P to the set, it remains to show that any path from P to S using any nodes in the graph can’t have a
lower cost.

Suppose P -> Q1 -> Q2 -> … is another path from P to S using any nodes in the graph. Let Qn be the last Ɵme
that path enters the set of red nodes (at S2(N2,C2), say).

Then cost(Qn,S2) + C2 can’t be less than cost(P,S1) + C1 because the laƩer is a neighborhood minimal.

So, cost(P,Q1) + cost(Q1,Q2) + … + cost(Qn,S2) + C2 can’t be less than cost(P,S1) + C1 since all costs are non-
negaƟve. Therefore, the new path can’t have lower cost than the original path.

You may now add P(S1,cost(P,S1) + C1) to the set of red nodes.

Algorithm

S = source node, T = target node

Set RED = {S}, Next(S) = S, Cost(S) = 0

Set N = number of neighbors of RED

WHILE N > 0
 BEGIN
 Select a neighbor P of RED with neighborhood minimal value Cost(P,S1) + Cost(S1)
for some S1 belonging to RED
 Add P to RED with values Next(P) = S1, Cost(P) = Cost(P,S1) + Cost(S1)
 Set N = number of neighbors of RED
 END

Return T(Next,Cost) from RED if T belongs to RED

Upon compleƟon, the set RED contains all nodes connected to source and for each node in RED its Next and
Cost values idenƟfy the start of a minimal path to source and the cost of that path.

Script

--
-- Parameters
--

DECLARE @Graph NVARCHAR(MAX) = '
SELECT ''A'' AS Node1, ''B'' AS Node2, 2 AS Cost
UNION
SELECT ''A'' AS Node1, ''C'' AS Node2, 6 AS Cost
UNION
SELECT ''B'' AS Node1, ''D'' AS Node2, 5 AS Cost
UNION
SELECT ''C'' AS Node1, ''D'' AS Node2, 8 AS Cost
UNION
SELECT ''C'' AS Node1, ''E'' AS Node2, 2 AS Cost
UNION
SELECT ''D'' AS Node1, ''F'' AS Node2, 10 AS Cost
UNION
SELECT ''D'' AS Node1, ''G'' AS Node2, 15 AS Cost
UNION
SELECT ''G'' AS Node1, ''F'' AS Node2, 6 AS Cost
UNION
SELECT ''G'' AS Node1, ''H'' AS Node2, 6 AS Cost
UNION
SELECT ''F'' AS Node1, ''H'' AS Node2, 2 AS Cost
UNION
SELECT ''E'' AS Node1, ''F'' AS Node2, 20 AS Cost
'
DECLARE @Source VARCHAR(128) = 'A' -- You may put any node here for @Source
DECLARE @Target VARCHAR(128) = 'H' -- You may put any node here for @Target

-- Declarations
DECLARE @ROW_COUNT INT
DECLARE @Cost VARCHAR(16)
DECLARE @Path VARCHAR(MAX)
DECLARE @Node VARCHAR(128)

-- Drop table #Graph
IF OBJECT_ID(N'tempdb..#Graph') IS NOT NULL DROP TABLE #Graph

-- Create table #Graph
CREATE TABLE #Graph (
Node1 VARCHAR(128)
,Node2 VARCHAR(128)
,Cost INT
);

-- Populate table #Graph
INSERT INTO #Graph EXEC dbo.sp_executeSQL @Graph

-- Drop table #RED
IF OBJECT_ID(N'tempdb..#RED') IS NOT NULL DROP TABLE #RED

-- Create table #RED
CREATE TABLE #RED (
[Node] VARCHAR(128)
,[Next] VARCHAR(128)
,Cost INT
);

-- Initialize table #RED with @Source
INSERT INTO #RED SELECT @Source AS [Node], @Source AS [Next], 0 AS Cost

-- Populate table #RED according to induction argument
SET @ROW_COUNT = -1
WHILE @ROW_COUNT <> 0
BEGIN
 INSERT INTO #RED
 SELECT TOP 1 d.[Node], d.[Next], d.Cost FROM -- Select top row from query
 (
 SELECT Graph.Node2 AS [Node], RED.[Node] AS [Next], Graph.Cost + RED.Cost AS Cost
 FROM #Graph Graph INNER JOIN #RED RED ON Graph.Node1 = RED.[Node]
 WHERE Graph.Node2 NOT IN (SELECT [Node] FROM #RED)

 UNION -- Required since edges have no direction

 SELECT Graph.Node1 AS [Node], RED.[Node] AS [Next], Graph.Cost + RED.Cost AS Cost
 FROM #Graph Graph INNER JOIN #RED RED ON Graph.Node2 = RED.[Node]
 WHERE Graph.Node1 NOT IN (SELECT [Node] FROM #RED)
) d
 ORDER BY d.Cost ASC -- Pick closest neighbor to @Source
 SET @ROW_COUNT = @@ROWCOUNT
END

--
-- Display answer
--

-- Get cost of minimal path from @Target to @Source
SELECT @Cost = Cost FROM #RED WHERE [Node] = @Target -- @Target may not belong to #RED

IF @Cost IS NOT NULL -- @Target belongs to #RED
 BEGIN
 -- Build minimal path from @Source to @Target
 SET @Path = @Target
 SET @Node = @Target
 WHILE @Node <> @Source -- Loop through nodes from @Target to @Source using Next column in #RED
 BEGIN
 SELECT @Node = [Next] FROM #RED WHERE [Node] = @Node -- Get Next node for current node
 SET @Path = @Node + ' --> ' + @Path -- Append to path

 END

 -- Display minimal path from @Source to @Target
 SELECT @Cost AS Cost, @Path AS Path

 -- Display all minimal paths
 SELECT * FROM #RED
 END
ELSE
 SELECT -1 AS Cost, '@Source and @Path are not connected' AS Path

You may change @Source and @Target to any pair of nodes. Of course, when @Source changes so do the
values of the Next column for each node in the #RED table. Also note that if both values are set to H in the
above example, there are two minimal paths from E to H but the script arbitrarily selected the path of greater
length because it was not concerned about how many nodes were used.

Important: Use the stored procedure sp_MinimalPath which has performance improvements and extensive
error checking on @Graph. Most processing involves populaƟng #RED. For example, on a test machine the run-
Ɵme on 8000 edges was about 3 minutes (so check the size of @Graph before proceeding). Seƫng
@StopAtTarget = 1 will improve performance by stopping the populaƟon of #RED when @Target has been
reached.

Historical Notes

In theorem-proving, an inducƟon technique like the one above is someƟmes used to prove that a finite set has
a given property by first showing that any proper subset of it, with that property, can always be enlarged by
adding another (carefully selected) element. So, finding any subset with that property (like {S} in our problem)
would demonstrate that the complete set has that property. This won’t work for infinite sets, of course, but
similar construcƟons may be used to prove the opposite case.

For example, Euclid showed that there are infinitely many primes by assuming that the set of all primes is
finite. But by adding 1 to their product yields a larger number which won’t be in that set. And by construcƟon,
it can’t be divided by any member of that set. So, it’s either a new prime or it’s divisible by some prime that
can’t be in that set. This contradicts the assumpƟon that a finite set of all primes exists, so it must be false.
Such mode of thinking, from someone who approached this problem 2,500 years ago, demonstrates the
Ɵmelessness of ancient mathemaƟcal thinking and the brilliance of its thinkers.

Cantor’s famous diagonalizaƟon argument [3] is another example, where he shows that no infinite sequence of
real numbers can include them all, so the set of reals is “larger” in some sense than the set of integers. This
inspired a revoluƟon in set theory, where infinite sets can now be larger than others. It was later shown [4]
that it can’t be proved or disproved that some set exists that’s greater in size than the integers but smaller
than the reals. So, the usual axioms of set theory need to be amended, depending on what you want to
believe. This brought in the logicians who, among other things, legiƟmized Newton’s use of infinitesimals via
Abraham Robinson’s non-standard analysis [5] and provided the foundaƟon for Prolog [6], a well-known AI
language.

Turing and Godel used similar arguments in their work about what’s computable or decidable.

ApplicaƟon To Human Resources

In a previous arƟcle [7] it was shown how hierarchical tables commonly used by HR may be viewed as trees
when a “parent” relaƟonship exists between records (ie. where one of its columns refers to each record’s
“parent” or manager). The top node of the tree would be the company’s CEO (whose parent is NULL), all other
records have a parent, and no looping occurs in the relaƟonship. By adding and populaƟng new columns
numChildren, numDescendants, numLeaves, Height, Depth using simple CTE calculaƟons, some complicated
quesƟons may be easily answered, such as “Which manager three steps below the CEO has the largest number
of direct reports compared to all employees of that manager?.” Such quesƟons are vital when planning
corporate re-organizaƟons.

But suppose you want to ask that quesƟon on earlier versions of the table, which no longer exist? In an
upcoming arƟcle it will be shown how to convert the tree of one such table to an earlier version using an auto-
generated SQL script when comparing them. Each version of the table will have its script stored (and date-
stamped) in a log table. This results in an undirected graph whose nodes represent different versions of that
tree, and whose edges connecƟng them represent the SQL scripts converƟng one node to an earlier node. By
comparing today’s tree with yesterday's tree each day, the log table allows you to compare today's tree with
last year’s tree, which no longer exists, by simply execuƟng those scripts chronologically to build last year's
tree from today’s. In the same way, you may add edges between any pair of trees in the past (on a weekly
basis, say). Dijktra’s algorithm is then used to compute a path from today’s tree to last year’s tree involving a
minimal number of SQL statements.

References

[1] https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
[2] https://www.cwi.nl/en/about/history/e-w-dijkstra-brilliant-colourful-and-opinionated/
[3] https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
[4] https://en.wikipedia.org/wiki/Continuum_hypothesis
[5] https://en.wikipedia.org/wiki/Nonstandard_analysis
[6] https://en.wikipedia.org/wiki/Prolog
[7] https://www.sqlservercentral.com/articles/verifying-trees

