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Introduction 
 
Scheduling constraints occasionally require the presence of some “feature” over all time 
intervals of fixed width. A typical example might be the following rule for rostering flight 
attendants: 
 

Rosters of one month’s duration must have at least 24 consecutive hours free of duty 
among any 7 consecutive days 

 
Dividing the month into 720 hours, a roster may be represented by a sequence of 720 binary 
digits (0s and 1s), where 0 represents rest and 1 represents work. 
 
Then this constraint may be expressed as: 
 

Sequences of 720 binary digits must have at least 24 consecutive 0s among any 
consecutive 168 binary digits 

 

More generally, for any 1 ≤ L ≤ M ≤ N: 
 

Sequences of N binary digits must have at least L consecutive 0s among any 
consecutive M binary digits 

 
A SQL Server function for testing this rule on any binary sequence will be presented, using a 
few simple SELECTs on a row of integers. No looping or cursors are required because a little 
high school algebra does all the heavy lifting. 
 
To understand the algebraic reasoning below, some definitions are required: 
 
For any sequence S = <si, i = 1,..., N>, its length len(S) is N. 
 
If S = <si, i = M,..., N> is any sequence, its starting position is M. 
 
If S = <si, i = M,..., N> and T = <ti, i = M1,..., N1> are both sequences, then S is a 

subsequence of T, denoted S ⊆ T, if the following holds: 
 

M1 ≤ M 
≤ N ≤ N1 

  
si = ti for i = M,..., N 

 



In other words, subsequences are obtained from sequences by dropping some their 

beginning and ending elements. Clearly ⊆ is a partial order.    
  

If S ⊆ T, then S is said to be contained in T.  To keep notation simple, subsequences S of a 
fixed sequence T will often be identified by their terminal indices: 
 

[M,N] = <ti, i = M,..., N>.   
 
A work period W is any sequence <wi, i = 1,..., N> of binary digits wi, i = 1, ..., N. 
 
Any subsequence of a work period containing just 0s is called a rest period. A rest period is 
maximal if it is not contained in a larger rest period.  
 
In the following work period of length 22, some of the rest periods are shown, one per line.  
Those that are maximal are shaded. 
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The following function defines the constraint for any W, N, M, L: 
 
Sliding(W,N,M,L) 
 
Return True if work period W of length N has every subsequence of length M containing at 
least L consecutive 0s.  Otherwise, return False. 
 

It assumes that 1 ≤ L ≤ M ≤ N. 
 
For example, Sliding(W,720,168,24) tests the constraint in the above example for any W. 
 
Intuitively, it works as follows (although the actual computation is much different): 
 
The function starts with the left-most subsequence <wi, i = 1,..., M> of length M and 
determines if it contains at least L consecutive 0s. If successful, the subsequence “slides” to 
the right by one position <wi, i = 2,..., M+1> and repeats the test (otherwise the test fails). 
 
For a given W, N, M, L a maximal rest period is called basic if its length is at least L.  
 



Clearly any pair of distinct basic periods are separated by at least one 1 (otherwise they 
wouldn’t be maximal).  Furthermore, basic periods are linearly ordered by their starting 
positions. 
 
In the above example, if L = 2, the basic periods are those shown below: 
 

0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 
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On the other hand, if L = 3, only the first maximal rest period is basic.   
 
If L = 1, then they are all basic.  
 
Key Observation 
 
All non-basic rest periods may be removed by converting their 0s to 1 without affecting the 
constraint. That’s because they’ll never be used to verify the existence of L consecutive 0s 
since they have fewer than L 0s.  
 
So, in the above sequence, the red 0s may be set to 1 before testing begins. 
 
This reset is critical, since the Sliding theorem below assumes that adjacent rest periods are 
always basic. 
 
It shows how the Sliding function can determine, using simple algebra, whether the constraint 
fails on any W, N, M, L passed to it. 
 
To help understand the inequalities in the proof, it’s handy to remember that  
 

len([M,N]) =  M - N + 1 
 
for any subsequence [M,N]. In other words, the difference between two integers is one less 
than the number of integers between (or equal) to them. 
 



Sliding Theorem 
 
The constraint fails if and only (iff) at least one of the following holds: 
 
(1) There are no basic periods 
 
(2) The starting position s of the first basic period satisfies:   
 

    s ≥ M - L + 2 
 
(3) The ending position e of the last basic period satisfies:   
 

    e ≤ N - M + L - 1 
 
(4) The ending position e of some basic period and the starting position s of the next basic 

period satisfy:   
 

    s - e ≥ M - 2L + 3 
 
In other words, the constraint will fail iff a sufficiently large gap exists between a pair of 
adjacent basic periods, or the first one starts too late, or the last one ends too soon, or there 
aren’t any basic periods. 
 
Note that if conditions (2) or (3) hold for the first (or last) basic periods, then they hold for all of 
them. 
 
By enumerating the position and length of all basic periods, the Sliding function can test each 
of the above conditions with a simple SELECT on the basic period positions and lengths. 
 
Proof 
 
We will show the left hand side implies the right, and vice versa. 
 

LHS →→→→ RHS  
 
Suppose Sliding(W,N,M,L) fails.   
 
Then there is a subsequence S = [s0,s1] of length M that contains at most L - 1 consecutive 
0s.   
 
Assume there is at least one basic period. It remains to show that (2) or (3) or (4) holds.   
 

Let PPPP be the set of basic periods P = [p0,p1] such that p0 < s0 and let QQQQ be the set of basic 

periods Q = [q0,q1] such that s0 ≤ q0.  Obviously, each basic period belongs to exactly one of 

PPPP or QQQQ.   



Since there is at least one basic period, exactly one of the following holds: 
 

 (a) PPPP is non-empty but QQQQ is empty 

 

 (b) PPPP is empty but QQQQ is non-empty 

 

 (c) PPPP is non-empty and QQQQ is non-empty 

 
Suppose (a) holds.   
 

Choose P = [p0,p1] ∈ PPPP.    

 
Clearly p1 <  s1 (otherwise S contains all 0s since p0 <  s0). 
 
Since at most L - 1 elements of P can belong to S:  
 

p1 - s0 + 1 ≤ L - 1   
 

Note that this inequality holds even if p1 ≤ s0 (and if L = 1 then p1 < s0).  
 
Hence, 

p1 ≤ s0 - 1 + L - 1 
 

But s0 + M – 1 = s1 ≤ N so s0 ≤ N - M + 1 

  

 Therefore, 
  

p1 ≤ (N - M + 1) - 1 + L – 1 = N - M + L - 1 
 
so (3) holds. 
 

Suppose (b) holds.  Choose Q = [q0,q1] ∈ QQQQ.   

 

By definition of QQQQ, s0 ≤ q0. 

 
Since at most L - 1 elements of Q can belong to S: 

 

s1 - q0 + 1 ≤ L - 1   
 

Note that this inequality holds even if s1 ≤ q0 (and if L = 1 then s1 < q0).  
 



Hence  

q0 ≥ s1 + 1 - L + 1 = s0 + M - 1 + 1 - L + 1  

                                                 ≥ 1 + M - 1 + 1 -  L + 1  
                                                 = M - L + 2  
 
so (2) holds. 
 
Suppose (c) holds.   
 

Choose P = [p0,p1] ∈ PPPP with the largest starting point p0 and Q = [q0,q1] ∈ QQQQ with the smallest 

starting point q0.  Then P is the immediate predecessor of Q, as shown in Fig. 1:   
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Fig.  1 
 
Since the length of S is M: 
 

s1 - s0 + 1 = M 
 
By adding terms that cancel each other: 
 

(p1 - s0) + (q0 - p1) + (s1 - q0) + 1 = M 
 
(q0 - p1) = M - (p1 - s0) - (s1 - q0) – 1   

 

Since there can be at most L - 1 elements between s0 and p1:    
 

p1 - s0 + 1 ≤  L - 1  
p1 - s0 ≤  L - 1 - 1  
p1 - s0 ≤  L - 2 

 
Note that if p1 < s0 the inequality holds trivially.   
 
For similar reasons: 
 

s1 - q0 + 1 ≤  L - 1   

s1 - q0 ≤  L - 1 - 1   

s1 - q0 ≤  L - 2   



 
Combined with above equality we derive: 
 

q0 - p1 ≥ M - (L - 2) - (L - 2) - 1 = M - 2L + 3 
 

so (4) follows. 

 

RHS →→→→ LHS  
 
If (1) holds then Sliding(W,N,M,L) immediately fails. 
 
Suppose (2) holds for the first basic period P = [po,p1]: 
 

po ≥ M - L + 2   
 

M - p0 + 1  ≤  L - 1 
 
Consider S = [1,M], which is a subsequence of length M.   
 
Let n be the number of members of P contained in S.   
 

Then S will contain L consecutive 0s iff n ≥ L since P is the first basic period.   
 
But  

n ≤ max{0, M - p0 + 1} ≤ max{0, L - 1}  
 

Note that this inequality holds even if M ≤ p0 (and if L = 1 then M < p0).  
 
For this is follows that S cannot contain L consecutive 0s.   
 
Hence Sliding(W,N,M,L) fails. 
 
Suppose (3) holds for the last basic period Q = [q0,q1]: 
 

q1 ≤ N - M + L - 1   
 

q1 - N + M ≤ L - 1   
 

q1 - (N - M + 1) + 1 ≤ L - 1   
 
Consider S = [N - M + 1, N], which is a subsequence of length M.   
 
Let n be the number of members of Q contained in S.  
 

Then S will contain L consecutive 0s iff n ≥ L since Q is the last basic period.  
 



But  

n ≤ max{0, q1 - (N - M + 1) + 1} ≤ max{0, L - 1}  
 

Note that this inequality holds even if N - M + 1 ≥ q1 (and if L = 1 then N - M + 1 > q1). 

 

So, S cannot contain L consecutive 0s.   
 
Hence Sliding(W,N,M,L) fails. 
   
Suppose (4) holds for a basic period P = [p0,p1] and the next basic period Q = [qo,q1]: 
 

q0 - p1 ≥ M - 2L + 3.   
 
Consider S = [p1 - L + 1, q0 + L - 1], which consists of the q0 - p1 - 1 elements strictly between 
p1 and q0 joined with the last L elements of P and the first L elements of Q.   
 
The length of S is: 

 
q0 + L - 1 - (p1 - L + 1) + 1 = q0 - p1 + 2L – 1 

                                                              ≥ M - 2L + 3 + 2L - 1  
                                                              = M + 2.   
 
By deleting its first and last members, S is reduced to a subsequence of length M containing L 
- 1 consecutive 0s, but no more.   
 
Hence Sliding(W,N,M,L) fails. 


