Update multiple servers in a single bound
Working with replication, specifically merge replication, I often have the need to run a sql script on each server. I have 1 main publisher server, 2 re-publishers running SQL Standard Edition and approximately 20 subscriber servers running SQL Express that are on user laptops. A “pet peeve” of mine is repetitive work, so if I can automate it I will. In this article, I have put together a process to automate running a script in a single bound or rather from a stored procedure called by a job.
I have created a database that I use for my DBA activities that I call DBA_Reports; I use it over and over in my articles. I’ve included the pertinent portions in this article so you can make this process work. However if you’ve already set up my other processes, then you can skip to step 2. If you are starting from scratch, please make sure that you have the following before you begin:
· DBMail enabled on your server - this is absolutely key to this process
· Enable xp_cmdShell on each remote server, so you will be able to see what servers are on line and load them into a table (this will be discussed and used in steps 2 and 3). This is also important to this working properly.
· Depending how you are set up and what servers you are watching, you may need to create a linked server for each server. In my case, since my users are laptops with SQL Express installed on them, I had to create a linked server to each.
· Create yourself as an operator so you can receive notifications if your job fails. Personally I like to add a notification on every job I create in case it fails. This is optional.
I'm not going to go into details on how to set these up as they are readily available from other sources, however, just consider them as prerequisites.
Step One: Create the Table and Get Servers Job
Once you set up the above, it's time to create the tables we will use.
The “ServerList” table below will house the servers name and email address associated to it. This table will be used later for email notifications and also for verifying what servers are currently online. The server names will be populated by a job, however the email addresses will need to be manually added. Although this takes some manual setup initially, once setup, only minimal maintenance will be required if new servers come online. I have a job that runs 3 times a day that will populate this table. If a new server is inserted, I receive an email notification so I know to go and add the email address for that server. The email address in my case belongs to the owner of the server however it could be anyone supporting a server. This is the only manual intervention I have after initial setup. You will see this job later in this article. Copy/paste/Run the script below to create the ServerList table.
use DBA_Reports
go
CREATE TABLE [dbo].[ServerList](
 [Server] [varchar](128) NOT NULL,
 [Server_email] [varchar](50) NULL,
 CONSTRAINT [PK_ServerList] PRIMARY KEY CLUSTERED
([Server] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 99) ON [PRIMARY])
ON [PRIMARY]

The “DBA_Reports - Get New Servers” job will create and populate the ServerList_Stage and populate ServerList tables. This job uses xp_cmdshell to call the ''sqlcmd /Lc'' command. This command searches the network looking for servers where SQL Server is installed. Once it finds a server, it will insert the server name into a temp table called #Server, then as long as the server name is not null, it will create and insert into the ServerList_Stage table. The ServerList_Stage is just a staging table where we will use it to compare to our ServerList table later, so it is, as it says just a “staging” table. If the record does not already exist, then it will insert it. If a new record is inserted, it will send an email listing out the newly added records with the subject of ''SQL Server - New Servers Found Today”. When I received these emails, I immediately go to the ServerList table and add in an email address that is associated to that newly added server. By doing this, I will be prepared prior to my other jobs running.
After you create this job, schedule it to run every day. I have my job running 3 times a day because I have users in multiple time zones as well as logging in at all different times. Once this job is setup and an initial run has occurred edit the ServerList table and enter an email address for each server. Copy/Paste/Run the script below and make sure you change <ADD YOUR INFO HERE> to your information.
USE [msdb]
GO

BEGIN TRANSACTION
DECLARE @ReturnCode INT
SELECT @ReturnCode = 0
IF NOT EXISTS (SELECT name FROM msdb.dbo.syscategories WHERE name=N'DBA Monitoring' AND category_class=1)
BEGIN
EXEC @ReturnCode = msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', @name=N'DBA Monitoring'
IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
END
DECLARE @jobId BINARY(16)
EXEC @ReturnCode = msdb.dbo.sp_add_job @job_name=N'DBA_Reports - Get New Servers',
 @enabled=1,
 @notify_level_eventlog=2,
 @notify_level_email=2,
 @notify_level_netsend=0,
 @notify_level_page=0,
 @delete_level=0,
 @description=N'Gets the new servers that are not in the table and sends out an email for new servers',
 @category_name=N'DBA Monitoring',
 @owner_login_name=N'sa',
 @notify_email_operator_name=N'<ADD YOUR INFO HERE>', @job_id = @jobId OUTPUT
IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'step1',
 @step_id=1,
 @cmdexec_success_code=0,
 @on_success_action=1,
 @on_success_step_id=0,
 @on_fail_action=2,
 @on_fail_step_id=0,
 @retry_attempts=0,
 @retry_interval=0,
 @os_run_priority=0, @subsystem=N'TSQL',
 @command=N'USE [DBA_Reports]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N''[dbo].[ServerList_Stage]'') AND type in (N''U''))
DROP TABLE [dbo].[ServerList_Stage]
GO
USE [DBA_Reports]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[ServerList_Stage](
 [Server] [varchar](128) NOT NULL,

 CONSTRAINT [PK_ServerList_Stage] PRIMARY KEY CLUSTERED
(
 [Server] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 99) ON [PRIMARY]
) ON [PRIMARY]
GO
SET ANSI_PADDING OFF
GO
-- Load table with server names
-- This will only work if XP_CMDSHELL is Enabled
USE DBA_Reports
GO
Create table #Server ([Server] [varchar](128))
Insert Into #Server
 Exec xp_cmdshell ''sqlcmd /Lc''
Insert Into ServerList_Stage ([Server])
 select [Server] from #Server where [Server] is not null
DROP Table #Server
GO
--Send email to with new servers found
SET nocount ON
--
DECLARE @Subject VARCHAR (100)
SET @Subject=''SQL Server - New Servers Found Today''
DECLARE @Count AS INT
SELECT @Count=COUNT(*) FROM DBA_Reports.dbo.ServerList_Stage where [Server] not in (select [Server] from [ServerList])
PRINT @Count
IF @Count > 0
BEGIN
DECLARE @tableHTML NVARCHAR(MAX) ;
SET @tableHTML =
N''<table border="1">'' +
N''<tr>'' +
N''<th>Server</th>'' +
N''</tr>'' +
CAST ((SELECT td=[server],''''
FROM [ServerList_Stage]
where [Server] not in (select [Server] from [ServerList])
FOR XML PATH(''tr''), TYPE
) AS NVARCHAR(MAX)) +
N''</table>'' ;
EXEC msdb.dbo.sp_send_dbmail
@profile_name = ''<ADD YOUR INFO HERE>'',
@recipients = ''<ADD YOUR INFO HERE>'',
@subject = @Subject,
@body = @tableHTML,
@body_format = ''HTML'' ;
END
INSERT INTO [DBA_Reports].[dbo].[ServerList]
 ([Server])
 SELECT [Server]
 FROM [DBA_Reports].[dbo].[ServerList_Stage]
 where [Server] not in (select [Server] from [DBA_Reports].[dbo].[ServerList])
GO
',
 @database_name=N'DBA_Reports',
 @flags=0
IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
EXEC @ReturnCode = msdb.dbo.sp_update_job @job_id = @jobId, @start_step_id = 1
IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
EXEC @ReturnCode = msdb.dbo.sp_add_jobschedule @job_id=@jobId, @name=N'Daily 3 times',
 @enabled=1,
 @freq_type=4,
 @freq_interval=1,
 @freq_subday_type=8,
 @freq_subday_interval=3,
 @freq_relative_interval=0,
 @freq_recurrence_factor=0,
 @active_start_date=20110512,
 @active_end_date=99991231,
 @active_start_time=63000,
 @active_end_time=220000

IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = @jobId, @server_name = N'(local)'
IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback
COMMIT TRANSACTION
GOTO EndSave
QuitWithRollback:
 IF (@@TRANCOUNT > 0) ROLLBACK TRANSACTION
EndSave:
GO

Step Two: Create the Stored Procedure - push_changes_to_servers
This stored procedure will do the following:
· Check to see which servers are on line then. Thes portion is similar to step one of this article however it creates an additional temp table called ServerList_update which collects who is currently on line, then uses that list to compare against the ServerList table to grab the owner email address.
· For each server
· Send an email out to the server owner that you put in step one asking users to remain on the network for maintenance
· Run a query as defined by you by running sqlcmd. Before you run the sproc, you will need to add your script below for the variable @query. The @query is a varchar(8000) and you will need to place your script between the single quotes. If your script contains a parameter or something that is in single quotes, then you will need to use an extra set of single quotes around that portion. For example if you are inserting using a where clause like WHERE something = ‘something’ then you will need to use this WHERE something = ‘’something’’. These are two single quotes not a double quote.
· Send an “all clear” message to server owners where the update was applied.
· [bookmark: _GoBack]Finally it will send an email to me or rather the DBA showing what servers were updated and the script that was run.
This job could be ran from a job, however since you will be changing the @query variable with a new query, it is just as easy to run it from the command line using exec push_changes_to_servers after you recompiled the stored procedure.
Copy/Paste/Run the script below to create the stored procedure. Please change the areas in <> that state to add your info.
USE [DBA_Reports]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

-- ==
-- Author: Kimberly Killian
-- Create date: 7/29/11
-- Description:	Push scripts to servers
===
CREATE PROCEDURE [dbo].[push_changes_to_servers]
AS

 SET NOCOUNT ON;

 Declare	@DatabaseName varchar(128),
			@ServerName varchar(128),
			@cmdmail	varchar(50)			

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[ServerList_update]') AND type in (N'U'))
DROP TABLE [dbo].[ServerList_update]

CREATE TABLE [dbo].[ServerList_update](
	[Server] [varchar](128) NOT NULL,
	 CONSTRAINT [PK_ServerList_update] PRIMARY KEY CLUSTERED
([Server] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 99) ON [PRIMARY]
) ON [PRIMARY]

-- Load table with server names
-- This will only work if XP_CMDSHELL is Enabled

Create table #Server ([Server] [varchar](128))
Insert Into #Server
 Exec xp_cmdshell 'sqlcmd /Lc'
Insert Into ServerList_update ([Server])
 select [Server] from #Server where SERVER in (select [SERVER] from dbo.ServerList)
DROP Table #Server

-- Loop on Server list and run the update

	Declare SrvCurs CURSOR FORWARD_ONLY FOR
	select Server from dbo.ServerList_update
	
	open SrvCurs
	fetch SrvCurs into @ServerName
	
	while @@FETCH_STATUS = 0
	BEGIN
	
--send warning email to remote servers
 Declare @email varchar(25)			
 select @email = Server_email from dbo.SSIS_ServerList where Server = @ServerName

--send the email
 Declare @body varchar (1000)
 SET @body = '<html><body>
 <p>Database Maintenance has started on ' + @ServerName + '. Please do not disconnect your machine from the network. This may take some time.

 An email will be sent upon completion.</p>
 <p><i>We apologize for any inconvenience this may cause. Please contact me if you experience any issues or need to disconnect.</i></p>
 <p>Thank you,

 <Add your name here>

 <add your title>

 <Add your company here>

 <add your phone # here>

 <add your email here>
 </p>
 </body></html>'

 --send warning email do not remove from network			
	
	EXEC msdb.dbo.sp_send_dbmail
	@profile_name	= '<add your profile here>',
	@recipients		=@email,
	@copy_recipients = '<add your email here>',
	@subject		='AUTOMATED SEND: Database Maintenance Started Please Do not disconnect',
	@body			=@body,
	@body_format	='HTML';		
 	
 --Set the query to be used to update each server
 Declare @query varchar(max)
 SET @query = '<put your query here>'

--Run the query on each server
 Declare @OpenServerRunQuery varchar(8000)
 SET @OpenServerRunQuery = 'sqlcmd -E -S "' + @ServerName + '" -q "' + @query + '"'

 --exec queries for each server

 exec master..xp_cmdshell @OpenServerRunQuery

 --send completion email to remote servers
 SET @body = '<html><body>
 <p>Database Maintenance has completed on ' + @ServerName + '.
</p>
 <p>Thank you,

 <Add your name here>

 <add your title>

 <Add your company here>

 <add your phone # here>

 <add your email here>
 </p>
 </body></html>'

 --send all clear email 		 	
	EXEC msdb.dbo.sp_send_dbmail
	@profile_name	= '<add your profile here>',
	@recipients		=@email,
	@copy_recipients = '<add your email here>',
	@subject		='AUTOMATED SEND: Database Maintenance has completed',
	@body			=@body,
	@body_format	='HTML';		

fetch SrvCurs into @ServerName

END

--Send email of who was updated
SET nocount ON
--
DECLARE @Subject VARCHAR (100)
SET @Subject='SQL Server - Servers Updated Today'

DECLARE @Count AS INT
SELECT @Count=COUNT(*) FROM ServerList_Update

PRINT @Count

IF @Count > 0
BEGIN

DECLARE @tableHTML NVARCHAR(MAX) ;
SET @tableHTML =
N'<table border="1">' +
N'<tr>' +
N'<th>Server</th>' +
N'</tr>' +
CAST ((SELECT td=[server],''
FROM [ServerList_Update]
ORDER BY Server
FOR XML PATH('tr'), TYPE
) AS NVARCHAR(MAX)) +
'

<hr>
Patch installed:
' + @query + '

<hr>' +
N'</table>' ;

EXEC msdb.dbo.sp_send_dbmail
@profile_name = '<add your profile here>',
@recipients = '<Add your email here>',
@subject = @Subject,
@body = @tableHTML,
@body_format = 'HTML';

END

--clean up
close SrvCurs
deallocate SrvCurs

GO

Conclusion
This is a very simple process to automate repetive updates or pushing out a script manually to many servers.

Included in this package, the following will be created:
Tables:
ServerList_Stage
ServerList
ServerList_Update

Stored Procedures:
push_changes_to_servers

Jobs:
DBA_Reports - Get New Servers

