
The Best of
SQLServerCentral.com
Vol 5.

978-1-906434-10-6

The Best of SQLServerCentral.com – Vol. 5

Aaron Ingold, Alex Grinberg, Amin Sobati, Amit Lohia, Andy Warren, Anthony Bressi,

Arvinder Khosla, Asif Sayed, Bilal Khawaja, Bimal Fernando

Boris Baliner, Brandi Tarvin, Chad Miller, Claudi Rego,

Craig Hatley, David McKinney, David Poole

Dinesh Asanka, Frédéric Brouard, Grant Fritchey, Jack Hummer,

Jacob Sebastian, Jambu Krishnamurthy, Janet Wong, Jason Selburg, Jay Dave, Jeffrey Yang,

Joe Doherty, Johan Bijnens, Kathi Kellenberger, Ken Johnson, Keren Ramot

Kumar Part, Lee Everest, Leo Peysakhovich, Mark Balasundram, Michael Ahmadi, Michael Coles

Michael Lato, Mike Dillon, Paul Mu, Peter He, Peter Larsson

Raj Vasant, Richard Gardner, Rob Farley, Robert Cary, Robert Pearl, Roy Carlson

S. Srivathsani, Sachin Samuel, Santhi Indukuri, Simon Munro, Simon Sabin, Steven Hirsch,

Stephen Laplante, Stephen Lasham, Sushila Iyer, Thomas LaRock, Tim Mitchell

Tim Opry, U.K. Padmaja, Vincent Rainardi, Wayne Fillis, Yaniv Mor

Yaroslav Pentsarskyy, Yoel Martinez, Yousef Ekhtiari

The Best of SQLServerCentral – Vol. 5

 2

The Best of SQLServerCentral.com – Vol. 5

Simple Talk Publishing

Newnham House
Ccambridge Business Park

Cambridge, CB4 0WZ

United Kingdom

Copyright Notice

Copyright 2007 by Simple Talk Publishing. All rights reserved. Except as permitted under the Copyright Act of 1976,
no part of this publication may be reproduced under the Copyright Act of 1976. No part of this publication may be
reproduced in any form or by any means or by a database retrieval system without the prior written consent of Simple
Talk Publishing. The publication is intended for the audience of the purchaser of the book. This publication cannot be
reproduced for the use of any other person other than the purchaser. Authors of the material contained in this book
retain copyright to their respective works.

Disclaimer

Simple-Talk Publishing, SQLServerCentral.com, and the authors of the articles contained in this book are not liable
for any problems resulting from the use of techniques, source code, or compiled executables referenced in this book.
Users should review all procedures carefully, test first on a non-production server, and always have good backup
before using on a production server.

Trademarks

Microsoft, SQL Server, Windows, and Visual Basic are registered trademarks of Microsoft Corporation, Inc. Oracle is
a trademark of Oracle Corporation.

Editors

Steve Jones, Tony Davis, Anna Larjomaa

Cover Art

Ross King

The Best of SQLServerCentral – Vol. 5

 3

Table of Contents
Table of Contents .. 3
Introduction.. 5
Administration.. 6
SQL 2000 to SQL 2005: Where have all the old features gone? .. 7
Stress Testing Your SQL Server Databases - A Systematic Approach .. 9
Intro to Database Mail in SQL 2005 .. 12
The OUPUT Command ... 16
Running a Query Using a Text File for Input ... 18
Starting SQL Server in Minimal Configuration... 20
How SQL Server Chooses the Type of Join.. 22
Indexes and Fragmentation in SQL Server 2000 Part 1.. 24
Indexing in SQL Server 2005 .. 30
Database Snapshots ... 38
Database Snapshots in SQL Server 2005... 41
Customizable Error Log Scanning... 46
A Guide to Application Memory Tuning ... 47
Eliminating Tape.. 49
Full Text Search Follies ... 52
SQL Stored Procedure to Log Updates, Independent of Database Structure............................. 55
Identifying Unused Objects in a Database .. 62
Upgrading a Database SQL 2000 to SQL 2005 .. 68
Maximum Row Size in SQL Server 2005 .. 75
Dynamic Management Views and Functions in SQL Server 2005.. 76
Backing Up a Database with SMO .. 81
Document Your Database ... 89
A Transactional Replication Primer ... 90
T-SQL.. 105
Keyword Searching in SQL Server.. 106
Recursive Queries in SQL: 1999 and SQL Server 2005 ... 113
Serializing Procedure Calls Without Unnecessary Blocking.. 134
The Truth Table ... 137
Introduction to Bitmasking in SQL Server 2005... 142
Self Eliminated Parameters ... 151
Finding Primes... 152
CTE Performance.. 155
The Effect of NOLOCK on Performance ... 160
Converting Hexadecimal String Values to Alpha (ASCII) Strings.. 163
A Refresher on Joins ... 166
Using CLR integration to compress BLOBs/CLOBs in SQL Server 2005 172
When To Use Cursors ... 175
Everybody Reports to Somebody.. 177
Not In v Not Equal ... 179
Full Control Over a Randomly Generated Password .. 183
Performance Effects of NOCOUNT... 187
Passing a Table to A Stored Procedure .. 191
New Column Updates.. 195
The T-SQL Quiz .. 200

The Best of SQLServerCentral – Vol. 5

 4

Practical Methods: Naming Conventions... 205
Large Object Data ... 208
Row-By-Row Processing Without Cursor.. 210
Security.. 214
SQL 2005 Symmetric Encryption .. 215
Ownership Chaining .. 222
Preventing Identity Theft Using SQL Server.. 223
ETL and BI... 226
A Common Architecture for Loading Data... 227
Overview of SSIS .. 232
SSIS - Transfer SQL Server Objects Debugged ... 240
SSIS Is Not Just for SQL Server ... 244
SSIS Programming.. 247
Loading a 24x7 Data Warehouse .. 250
More Problems with Data Warehousing .. 253
Storage Modes in SSAS 2005... 256
Dynamic Connection Strings in Reporting Services 2005 ... 258
Populating Fact Tables.. 260
Reporting Services 2005 101 with a Smart Client ... 272
Data Driven Subscriptions for Reporting Services (2000 and 2005) ... 283
Service Broker ... 285
Adventures With Service Broker.. 286
Building a Distributed Service Broker Application ... 292
XML ... 305
The SQL Server 2005 XML Temptress ... 306
I've Got the XML - Now What? .. 312
XML Argument Protocols for SQL 2005 Stored Procedures ... 317
Misc. .. 323
Windows Utilities for the SQL Server DBA .. 324
From DBA to DBAA ... 326
What's a Good Manager.. 328
Mind Your Manners ... 332

The Best of SQLServerCentral – Vol. 5

 5

Introduction

Welcome to The Best of SQLServerCentral.com – Vol. 5!

This is our fifth year of producing a book that covers the best articles of the past year. With SQL Server
2005 now on it’s second full year of deployment, the amount of knowledge, tips, and techniques for
working with this SQL Server paradigm has greatly increased. This year we’ve substantially enhanced the
XML section and added a Service Broker one as well.

We wanted to give you an off-line resource that you can take with you wherever you may need it - most
likely at your bedside. To our authors, this book is our way of saying thank you for the effort you put into
producing great content for the community and also a nice chance to see your names in print!

We would like to thank everyone for their support on the website and especially in the community. Your
visits to the site, clicking through to advertisers, purchasing products, registering for PASS, all help us
continue this community and provide you with a valuable resource that hopefully helps you learn, perform
better at your job, and grow your career.

We’d like to encourage all of you to submit an article in the next year, whether you are working with SQL
Server 2005 or SQL Server 2000! This is a community and we aren’t only looking for the "gurus" to
contribute. We love hearing about the real world you all live in and deal with on a daily basis. In each
"Best Of…", we try to include at least one article from each author and we will send you a couple copies
of the book. It's a useful addition to your bookshelf and makes a great Mother’s Day present!

Once again, thanks so much for your support and we look forward to 2008.

Steve Jones

Tony Davis

The Best of SQLServerCentral – Vol. 5

 6

Administration

This is what we do: administer servers and databases. Everyone has their own set of tricks, tips and
scripts tailored to the quirks of their own systems and this past year, with many people upgrading from
SQL Server 2000 to SQL Server 2005, was one where many of these tools and techniques had to
change.

Here’s a selection of articles to help you manage your instances a bit better and perhaps learn about
some parts of SQL Server that you don't get to deal with in your own systems.

We tackle upgrades, stress testing, mail, and more. As we compile this 5th edition, Microsoft SQL Server
is a very mature product that is mostly being limited by its architecture as hardware continues to grow in
power, loads increase, and many different stresses occur. Nothing earth-shattering here, just some good
information that might help you save the day.

SQL 2000 to SQL 2005: Where have all the old features gone? .. 7
Stress Testing Your SQL Server Databases - A Systematic Approach .. 9
Intro to Database Mail in SQL 2005 .. 12
The OUPUT Command ... 16
Running a Query Using a Text File for Input ... 18
Starting SQL Server in Minimal Configuration... 20
How SQL Server Chooses the Type of Join.. 22
Indexes and Fragmentation in SQL Server 2000 Part 1.. 24
Indexing in SQL Server 2005 .. 30
Database Snapshots ... 38
Database Snapshots in SQL Server 2005... 41
Customizable Error Log Scanning... 46
A Guide to Application Memory Tuning ... 47
Eliminating Tape.. 49
Full Text Search Follies ... 52
SQL Stored Procedure to Log Updates, Independent of Database Structure............................. 55
Identifying Unused Objects in a Database .. 62
Upgrading a Database SQL 2000 to SQL 2005 .. 68
Maximum Row Size in SQL Server 2005 .. 75
Dynamic Management Views and Functions in SQL Server 2005.. 76
Backing Up a Database with SMO .. 81
Document Your Database ... 89
A Transactional Replication Primer ... 90

The Best of SQLServerCentral – Vol. 5

 7

SQL 2000 to SQL 2005: Where have all the old features gone?
By Boris Baliner

Introduction

As more DBAs across the planet begin using SQL 2005 Tools, but still manage SQL 2000 servers with them, I
suspect there will be lots of muffled moaning and wondering where have all the good old features gone. Although
Management Studio has some very nice long-awaited features, some of the good old stuff just isn’t there.

Where are my tried and true tools, such as taskpad? Where’s the IF EXISTS DROP option when I script out the
stored procedures? Could someone pinch me and tell me this is just a bad dream? The aspirin industry will profit
enormously from that sort of thing.

To name a few good old pals that have all but disappeared into obscurity:

• Taskpad
• Ability to quickly script permissions on stored procedures
• Ability to quickly see disk space in database properties
• Time of creation of stored procedures

Sure, if you're connecting to an instance of SQL Server 2005 with Management Studio you get colorful reports and
plethora of professional-looking graphs at your disposal, but what about the majority of us that still did not migrate our
servers to SQL 2005, but already upgraded the tools?

The good news is this will tend to convert many GUI DBAs into hardened command-line pros, improve they're typing
skills, etc. In the next section I will show how to still take advantage of the old tools functionality.

Taskpad functionality

I don't know about you all, but I really like the Taskpad and use it all the time. I am used to it like to an old slipper; it
fits my needs. And even if it did throw a vague error now and then I forgive it now that it's done….forever. But how
can we get its functionality back?

The General tab in Database section is now in database properties under the same heading.

Maintenance section-like information can be found by querying the backupset table in msdb:

select max(backup_start_date) from backupset

where database_name = ‘my_db'

Note: Database options, Number of Users, Date Created and Owner can still be found in database properties in the
SQL 2005 tools.

Space allocated section info can be found by running this T-SQL:

select * from sysfiles

or if you just need to find the space used by you log, execute:

DBCC SQLPERF (LOGSPACE)

The Best of SQLServerCentral – Vol. 5

 8

Table Info tab

I don't use this one very often, but you can get similar functionality by running:

Exec sp_spaceused ‘your_table_name'

To script multiple stored procedures including permissions:

Right-click the database->Tasks->Generate Scripts, pick your database. Set Include object Level Permissions to
True. Note: If you set the Include if NOT EXISTS option to true, the script will not create the stored procedure if it
already exists on target database.

Click Next, and select Stored Procedures only. Next select which procs you want to script, review you final options
and click Finish.

Unfortunately, if you want to drop/recreate the procedures if they exist on the target server, you will need to manually
include the following script in the beginning of each procedure:

IF EXISTS (SELECT name FROM sysobjects

 WHERE name = 'your_proc_name' AND type = 'P')

 DROP PROCEDURE 'your_proc_name'

GO

This one is truly beyond me, for reasons known only to Microsoft and the CEO of Bayer (or whoever is the biggest
headache drug company these days) this option was excluded from final SQL 2005 RTM.

Check disk space

If you're like I am, you're used to clicking on database properties, and the ellipsis in order to see the free disk space
on the server. In SQL Server 2005 you can get this in the report, but until then you can run undocumented extended
stored procedure:

exec xp_fixeddrives

The result would look something like this:

Time of creation of stored procedures:

For some reason the time part of the Create Date column in the Summary tab of SQL 2005 is depreciated. Why? I
guess someone thought DBAs don't need it any longer (rolling eyes). The good news is you can still get this
information by querying the sysobjects table, like:

Select crdate as DateCreated

 From dbo.sysobjects

The Best of SQLServerCentral – Vol. 5

 9

 where name = 'your_proc_name'

Note: make sure NOT to specify the owner, as in dbo.your_proc_name, but simply the procedure name. The result is:

Summary

I've shown you here how to get by with available SQL 2005 Tools until you upgrade your servers to SQL 2005 Server
edition. People get used to their favorite ways to get the job done, and sometimes get “surprised” when their tools get
taken away, and now they have to hammer the nail with the handle of a screwdriver. Hopefully the ways to attain old
functionality will increase productivity, and hopefully the tools will continue to improve.

Stress Testing Your SQL Server Databases - A Systematic Approach
By Anthony Bressi

Stress Testing your SQL Server environments is a practice that can yield great benefits. Stress Testing can be used
for performance tuning, to uncover bottlenecks, and for capacity planning among other things. In this article we will
use the terms 'Load Testing' and 'Stress Testing' interchangeably, even though by definition they are different. So for
the sake of this article 'Load Testing' or 'Stress Testing' is simply running a large number of statements/transactions
against a SQL Server database from various connections or threads - all to give the database server a good workout.
Lastly, this article is not about HOW one physically throws a large number of statements at a server to stress test it,
there are 3rd party tools on the market and available code on the web to help you do that. Instead we'll discuss what
variables are needed and what questions need to be answered to ensure a successful and productive stress test
environment.

WHY You Stress Test Drives HOW You Stress Test

The reasons for Stress Testing vary. You may be trying to determine the apparent cause of poor performance on a
production server, or trying to plan for an increase of users, or trying to workout a new application that is not yet "live"
to determine if it will be able to handle a production load. The reasons vary, but your specific reason will drive your
approach to stress testing. For instance, your approach will vary greatly between a pre-production test and one for a
live server.

Production Environments

If it is a performance problem in a production environment that you're dealing with, you can first try to determine your
problem using Performance Counters sampled throughout your busy times of day (if possible). I realize that this is a
Stress Testing article and I'm starting with a non-Stress Test approach, but in the real-world it is easier to start with
performance monitoring before trying to gain approval for stress testing a production server. By comparing the
gathered performance counter values with generally accepted thresholds you may be able to figure out your problem
without running a Stress Test. We will cover some Microsoft listed thresholds later in the article. You may want to
perform your monitoring several times during the week, as the load on Monday might be different from Wednesday's
load.

The Best of SQLServerCentral – Vol. 5

 10

One more note about stand-alone monitoring before we move on to our main focus: at times it can be beneficial to
gather samples over a 24 hour period or even just at night if day-time sampling is forbidden. Sometimes your late-
night SQL Server Jobs and back-ups can provide some insight. For instance, you may be running back-ups from
across the network and notice that your Network Interfaces have less than favorable throughput.

If you can't take samples during peak times in your production environment, you will be best served by running off-
hour stress tests using the tool of your choice to create the load. In this case you are still working out the
hardware/software configurations on the server in question and capturing performance counter values that can lead
you to the source of the problem if one exists. If the captured performance counter values do not lead to insight, then
concentrating on the execution times of application stored procedures and scripts may help uncover the problem -
perhaps dead-locking, or simply bad indexing. If needed, you can open up SQL Profiler for in-depth tracing
information while your stress test is running.

If you're looking to see how your production environment will scale with an increase in users, then stress testing is the
way to go. You can dial-up virtual users to hammer your server and monitor its response. In this scenario, as well as
all others, you want to gather Performance Monitor samples and execution times. This is also a great way to validate
the need for new hardware, walking into your boss' office with a stress test report shows that you have done your
homework.

Non-Production Environments

For pre-production tests or any tests that won't be held in a live production environment, Stress Testing your database
can be invaluable. You will want to run your tests in a production-like environment. Simulating that can be difficult, but
with automated stress testing packages you can attempt to mimic the amount of load that your servers will face and
scale that load up to really make your server work. Commercial Stress Testing applications like Agilist's SQL Stress
Test or Quest's Benchmark Factory enable you to create a large number of virtual users that will execute the SQL
commands of your choice. A good Stress Testing package will create separate threads for each virtual user and will
avoid connection pooling. In a non-production environment you typically have a lot of freedom, nevertheless, there
are still questions that you will want to think about for testing in both Production and Non-Production environments.

Pre-Stress Test Questions

Here are some questions to ask prior to running your tests:

• How many virtual users will you want to test with? If this will be the back-end of a web or software application,
then what is the maximum number of concurrent users that will be using it?

• What are the main SQL statements and procedures that you will execute during the test? If you are testing the
procedures called by an application then answering this question should not be difficult. Some third party Stress
Testing Tools like Agilist's, will even record the sql statements being executed by users while they use the web or
software front-end.

• How long should each statement or procedure take to execute? I.e. what would be an acceptable return time?
• If this is a pre-production database, does it contain a fair amount of data so that your tests are working in a

production-like environment?
• What location do you want to run the Stress Test and monitoring from? If monitoring from across the network you

will incur some DCOM hit, if monitoring locally on the server you will eat up marginal resources.

A Good Stress Test is Measurable

Throwing a hail storm of statements at your SQL Server is only part of a productive Stress Test. First and foremost,
the test must be measurable. So while giving our server a workout we must gather performance related statistics.
Usually we'll gather Performance Counters and if possible the actual execution times of the statements themselves.
You can gather Performance Counter statistics using Microsoft's Performance Monitor (PerfMon) or the 3rd party tool
of your choice.

The Best of SQLServerCentral – Vol. 5

 11

For these statistics to mean anything we must be able to measure them against something, usually these
"somethings" are baselines that we have created some time in the past or accepted thresholds. Baselines are simply
previously saved results that we can compare against. We also can compare our tests against thresholds listed by
Microsoft and industry professionals as mentioned previously. You can create a baseline the first time you run a test,
simply save your results and now you magically have a measurable baseline that can be recalled for future
comparisons. As time goes by you will want to periodically create baselines for comparison purposes. Baselines are
also great for trending and determining growth rates.

Which Performance Counters To Use?

When choosing Performance Counters we don't just want to know how our SQL Server software is performing, we
also want to know how our hardware and network is performing. The best list of core counters that I have come
across, and have been using for years, come from an article by Brad McGehee entitled "How to Perform a SQL
Server Performance Audit ". I experiment with some other counters but always use the ones mentioned in the article
as the foundation. The counters are:

• Memory: Pages/sec
• Memory: Available Bytes
• Network Interface: Bytes Total/Sec
• Physical Disk: % Disk time
• Physical Disk: Avg. Disk Queue Length
• Processor: % Processor Time
• System: Processor Queue Length
• SQL Server Buffer: Buffer Cache Hit Ratio
• SQL Server General: User Connections

Which Thresholds To Use?

After monitoring your server, you will need to measure your captured counter values against trusted thresholds so
that you know whether or not a problem may be at hand. I compiled a list of thresholds from Microsoft resources such
as TechNet and others that match the list of Counters above. Below are the MS values along with some comments.
When comparing your values to these you should always ask yourself if the value that you have collected was
sustained over a period of time or if was just a spike - sustained values are obviously much more appropriate for
comparison.

• Memory: Pages/sec: If counter value is consistently > 5 you may likely have a memory issue.
• Available Bytes: Values < 10 MB should raise a serious red flag for you.
• Network Interface: Bytes Total/sec: Microsoft simply advises that if you notice this value dropping it may indicate

network problems. By rule of thumb you can use a value of half of the available network interface bandwidth as
being acceptable. So for a 100 MBS network adaptor, the value of the Bytes Total/sec performance counter can
be 50 MBS or greater.

• Physical Disk: Avg Disk Queue Length: You will need to calculate this value based on the number of physical
drives. It is simply the monitor value / # of disks. A value greater than 2 might indicate an I/O bottleneck. The
number of waiting I/O requests should be sustained at no more than 1.5 to 2 times the number of spindles making
up the physical disk.

• Physical Disk: % Disk time: The recommended numbers for this seem to vary, if the value is greater than 50% you
should be concerned and investigate more. If the value is sustained above 80% it is a serious problem and you
may have a memory leak or I/O issue at hand.

• Processor: % Processor Time: Values in excess of 80% processor time per CPU are generally deemed to be a
bottleneck.

• System: Processor Queue Length: A sustained queue length > 2 (per processor), generally indicates a processor
bottleneck. For instance, if you have 2 processors then a value of 4 or less is usually acceptable.

• SQL Server Buffer: Buffer Cache Hit Ratio: A rate of 90 percent or higher is OK. The closer to 100% the better.
Less than 85% indicates a problem.

The Best of SQLServerCentral – Vol. 5

 12

• SQL Server General: User Connections: This one varies of course. It should be tracked though so that you can
determine what is "normal" for your environment. With this you can spot trends that may signal growing demand,
or you may use it to explain spikes in other counters.

Additional Threshold and Monitoring Resources

There are many good articles that deal with monitoring activity and thresholds. Listed below are some worthwhile
resources:

• "Performance Monitoring - Basic Counters" - Steve Jones
http://www.sqlservercentral.com/columnists/sjones/performancemonitoringbasiccounters.asp

• Monitoring Disk Activity - Microsoft
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/sag_mpmonperf_19.mspx?mfr=true

• Monitoring Memory - Microsoft
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prec_evl_bzcl.mspx?mfr=true

• Troubleshooting Performance in SQL Server 2005 - Microsoft
http://www.microsoft.com/technet/prodtechnol/sql/2005/tsprfprb.mspx

• Performance Tuning Checklist 4.5 (NT Based Systems) - Microsoft
http://www.microsoft.com/technet/prodtechnol/bosi/maintain/optimize/bostune.mspx

Conclusion

There are many things to think about before stress testing your SQL Server databases. I hope that this article outlined
many of those items in a manner that enables you to hit the ground running for your stress testing endeavors. A well-
planned stress test can be extremely beneficial, among other things it enables you to test
application/procedure/database performance before going into production, troubleshoot performance, and plan for the
future.

Anthony Bressi is owner of Agilist Technologies Inc. which specializes in software for DBA's and SQL Server
developers. Mr. Bressi has over 9 years of hands-on experience in the Microsoft SQL Server development
environment.

Intro to Database Mail in SQL 2005

By Corey Bunch

Introduction

We have all seen already that there are a ton of new features in SQL 2005. More realistically put, however, there are
a ton of differences & things to change when migrating from 2000 to 2005, which a lot of the time invokes groans and
moans, because naturally this means more work (and who cares about working?). But Database Mail, my friend, is a
different story. No more Outlook installations....no more MAPI profiles...no more 3rd party smtp connector extended
stored procedures...no more crossing your fingers and clicking your heels three times in order to get an email sent
from your database system. Database Mail has come to the rescue.

Overview

The main difference between SQL Mail in SQL 2000 and Database Mail in 2005 is this: SQL Mail is a headache and
Database Mail is not. After experimenting briefly with Database Mail, I see no reason why one would choose the
legacy SQL Mail over the new Database Mail, unless of course for backward compatibility, legacy applications, etc.

http://www.sqlservercentral.com/columnists/abressi/www.agilist.com

The Best of SQLServerCentral – Vol. 5

 13

Not only does Database Mail handle the somewhat simple task of sending emails rather well. It has some other
robust features that should not go unnoticed, such as...

• Multiple profiles and accounts to specify multiple SMTP servers or different email infrastructure situations

• SQL Server queues messages even when the external mailing process fails

• High security - users and roles have to be granted permission to send mail

• Logging and auditing

• HTML messages, attachment size regulations, file extension requirements, etc.

With all these considerations (plus a good number that I’m not including for purposes of brevity), provided you have
(or are) a good developer, you can make some use of 2005’s new Database Mail functionality.

Initial Setup

After installing SQL 2005, like a lot of features, Database Mail is not automatically enabled. To enable Database Mail,
you must use the Surface Area Configuration Tool. Open the SAC Tool and choose the "Surface Area Configuration
for Features". Choose "Database Mail" and click the checkbox.

An alternate way of enabling Database Mail is by using SSMS’s (SQL Server Management Studio) object browser.
Connect to the server you are interested in, browse to Management and then Database Mail. Right click Database
Mail and choose "Configure Database Mail". According to Books Online, if Database Mail has not been enabled, you
will receive the message: “The Database Mail feature is not available. Would you like to enable this feature?” If you
respond with “Yes”, this is equivalent to enabling Database Mail using the SQL Server Surface Area Configuration
tool.

Database Mail Accounts and Profiles

Profiles
Database Mail profiles are simply an "ordered collection of related Database Mail accounts" (Microsoft). 2005 allow
you to compile a collection of outgoing (SMTP) servers for your messages, to provide some fault tolerance, as well as

http://msdn2.microsoft.com/en-us/library/ms189879.aspx

The Best of SQLServerCentral – Vol. 5

 14

load balancing. SQL Server attempts to send your message through the last successful SMTP server that sent a
Database Mail message, or the server with the lowest sequence number if a message has never gone out. If that
server fails to transfer the message, then it goes onto the next one. Profiles can be public or private. Private profiles
are only available to specified users. Public profiles are available to all users in the mail host (msdb) database. You
can find out more information about public and private profiles here.

Accounts
Simply put, Database mail accounts contain information relating to email (SMTP) servers. This will remind you of the
last time you set up Eudora, Thunderbird, Outlook, or any other simple email client..

Without further procrastination, let’s get into setting up the Database Mail....Of course Microsoft takes care of all this
by providing you with a wizard.

Configuring Database Mail

Using SSMS, browse to Database Mail and right click. Choose "Configure Database Mail". You'll get an initial screen
with some different options on setting up or managing Database Mail.

Leave the default for now, and choose next. Now fill in your profile name & description and click "Add". You’ll get
another window to fill in your SMTP server (or Database Mail account) information. Add multiple Mail accounts and
attach them to this profile if you need to. Your email or server administrator should have an SMTP server or gateway

http://msdn2.microsoft.com/en-us/library/ms189879.aspx
http://msdn2.microsoft.com/en-us/library/ms189879.aspx

The Best of SQLServerCentral – Vol. 5

 15

setup, in order for you to complete this form.

After clicking Next, you’ll be able to set your security on this profile….whether or not you’d like it to be public or
private, if you’d like it to be the default, etc. In order for users to show up on the Private tab, they must exist in the
DatabaseMailUserRole on MSDB. See Books online for more details.

The Best of SQLServerCentral – Vol. 5

 16

Finally, you’ll be able to set some default system parameters concerning attachment size limits, file extension trapping
and other system level details. From here you can go on to modifying your jobs to use Database Mail to alert you via
email, or using sp_send_dbmail in your stored procedures or applications.

Summary

I always thought SQL Mail was a pain, and from the sounds of newsgroups and other SQL communication areas out
there, others thought the same. The good news is that Database Mail is here to help, and here to stay with SQL 2005.

The OUPUT Command
By Dinesh Asanka

OUTPUT Command in SQL Server 2005

This not about the output parameter that can be used in stored procedures. Instead, this is about returning data
affected in a table with a new feature in SQL Server 2005.

SQL Server 2000

A simple question for you. If you want to retrieve the last inserted identity value, what do you do? Obviously
SCOPE_IDENTITY() or @@IDENTITY will be your answer. There is a small different between these too, which I am
not going to discuss right now. Even though both will satisfy the current requirement, I will use SCOPE_IDENTITY(),
which is the correct one.

CREATE TABLE TempTable

 (

 ID INT IDENTITY(1 , 1)

 , Code VARCHAR(25)

 , Name VARCHAR(50)

 , Salary Numeric(10 , 2)

)

INSERT INTO TempTable (Code , Name , Salary)

 VALUES ('A001' , 'John' , 100)

INSERT INTO TempTable (Code , Name , Salary)

 VALUES ('A002' , 'Ricky' , 200)

SELECT SCOPE_IDENTITY() AS LastInsertID

However, this will only be valid when you need the last inserted ID. A Problem arises when you need the last updated
or deleted data. In SQL Server 2000, you don't have any other option other than writing a trigger or triggers to capture
them via inserted and/or deleted tables.

The Best of SQLServerCentral – Vol. 5

 17

SQL Server 2005

To satisfy the database developers' cry, SQL Server 2005 has an added feature called OUTPUT. Here is a short
example:

INSERT INTO TempTable (Code , Name , Salary)

OUTPUT Inserted.ID

 VALUES('A003' , 'Martin' , 300)

The INSERT Statement not only inserts data to TempTable but also return the inserted ID value. Unlike,
SCOPE_IDENTITY(), you have the ability of getting other affected values as well.

INSERT INTO TempTable (Code , Name, Salary)

OUTPUT Inserted.ID

 , Inserted.Code

 , Inserted.Name

 , Inserted.Salary

 VALUES('A001' , 'Paul',400)

The code above will return the ID, Code, Name and Salary fields as well.

The major improvement from the output command is that you have the ability of getting the affected values from an
Update statement. In most cases you may need the information about the values that were there before they were
changed, which you would get normally in an update trigger.

UPDATE TempTable

SET Salary = Salary * 1.10

OUTPUT Inserted.ID

 , Inserted.Code

 , Inserted.Name

 , Deleted.Salary PreviousSalary

 , Inserted.Salary NewSalary

The code above will return the ID, Code, Name along with previous salary and new salary and there is no need for an
additional update trigger, which could have other performance issues.

Finally, let's look at deleting data. Even though it is the same as the above example, just for sake of completeness I
will show this example.

DELETE FROM TempTable

OUTPUT Deleted.ID

 , Deleted.Code

The Best of SQLServerCentral – Vol. 5

 18

 , Deleted.Name

 , Deleted.Salary

WHERE ID = 1

Conclusion

In SQL Server 2005, SCOPE_IDENTITY() and @@IDENTITY still work and there is no need to perform any
modifications if you need the value of the Identity from an insert. OUTPUT is another new feature in SQL Server 2005
to improve the productivity of Database developers. So use it whenever you think it is appropriate.

Running a Query Using a Text File for Input
By Roy Carlson

How high is up? Well everyone knows it is twice as high as it is half as high. Weird question and even weirder
answer but that seems to be the way of SQL. The users relish the idea of stumping the SQL person. Take the case
of a user who requested the order amount for all the orders placed by specific users over the last five years and gave
out the list of customer ids - 17,000 of them - out of a total field of 300,000+. Yikes!

No problem we add a new table and DTS the text data. Oh! Oh! This is a large third party application of which the MS
SQL db is integral to. We can't create a table without causing an issue with the maintenance agreement. We have
rights to query the database using Query Analyzer or Crystal Reports, but that is about it.

We could sit there and run 17,000 queries adding the where clause for each customer id. Not a good plan. We could
array the where clause using an IN array. The user wanted the customer id, their name, order number, date of order
and order amount. The data in real life spanned three tables requiring joins.

To demonstrate another solution we will use the Northwind database and this starting query:

SELECT

 Customers.CustomerID AS ID,

 Customers.CompanyName AS COMPANY,

 Customers.City AS CITY,

 Orders.OrderDate AS [DATE],

 Orders.Freight AS FREIGHT

FROM Customers

 INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID

or as I prefer using aliases:

SELECT

 C.CustomerID AS ID,

 C.CompanyName AS COMPANY,

The Best of SQLServerCentral – Vol. 5

 19

 C.City AS CITY,

 O.OrderDate AS [DATE],

 O.Freight AS FREIGHT

FROM Customers C

 INNER JOIN Orders O ON C.CustomerID = O.CustomerID

Next we have the list of CustomerIDs - definitely not 17,000 but enough to get the point of all this.

custID.txt

ALFKI
ANTON
AROUT
BERGS
BOLID
BONAP
BSBEV
CACTU
CONSH
DOGGY
FOLIG
FOLKO
FRANK
FRANR
FRANS
FURIB

Lets cut-and-paste these names into a text file called custID.txt. Lets also make to other files but keep them empty -
custID.qry and custIDResult.txt. Copy and save as custID.vbs the script below in the same folder. (The files are also
attached at the bottom in a zip file.) The next part is VBScript code. No dont run away. This is not a big deal - trust
me - I am not in politics.

The custid.vbs code is available on the www.sqlservercentral.com site.

All you have to do for the above is make or pick a folder for the files to reside in and change to name of
YOURFOLDER - in both locations - to the name of your folder.

Ok you can skip this next part if you dont want an explanation of the VBScript. The two constants - const - just make it
easy to see that the code is for either reading or appending to an "existing"file. All things starting with "str" are string
variables. We make objects with the Set command using the File Scripting Object. The first bit loops through the
CustID.txt file reading each line - strLine - which is the CustomerID. For each CustomerID the value is added to the
query. Then the new line containing the full query is appended to the file - custID.qry. Then all files are closed.

NOTE: You cannot run this script from Query Analyzer. It is run from a command line using cscript. Example:

C:\YOURFOLDER\>cscript custID.vbs

DO NOT RUN THIS WITHOUT THE cscript prefix Windows default is wscript which will require you to ok a lot of
message boxes for each custID. 17,000 would be a lot of clicks.

Comments about the query itself: I have added SET NOCOUNT code to the front and rear of the query,
because I really dont want to know how many rows are returned. If your search requires you to know if no

http://www.sqlservercentral.com/

The Best of SQLServerCentral – Vol. 5

 20

rows were returned then you might want to delete the SET NOCOUNT ON and OFF. We have another
query we run using sql NOT EXISTS which reports on the missing.

Now comes the good old batch file which we run during minimum activity time. custID.bat which consists
of:

custID.bat

osql /U YOURUSERNAME /P YOURPASSWORD /d NORTHWIND /S YOURSERVER /h-1

 /i "c:\YOURFOLDER\custID.qry" /o "c:\YOURFOLDER\custIDResult.txt"

This uses SQLs osql command to sign on using YOURUSERNAME AND YOURPASSWORD to YOURSERVER and
the NORTHWIND database for this example. If you have not used osql before open "Books On Line." Type in "osql
utility." You will get info on this tool. (Please change the YOURUSERNAME, YOURPASSWORD, and YOURSERVER
as required.)

For every line in the c:\YOURFOLDER\custID.qry, a query is run, appending the data to the file
c:\YOURFOLDER\custIDResult.txt. The custIDResult may not be pretty but we run the file into MS WORD and using
a macro to remove extra spaces, replacing hard returns followed by a comma with a comma and so on the file cleans
up nicely to a comma delimited file. This is saved as a csv file which we import into Excel, Access or Crystal Reports
to get the needed reports.

The sequence of events is:

1. change the path to "YOURFOLDER" in custID.vbs
2. change the server name, username and password in the custID.bat
3. run the custID.vbs from the Command Prompt with "cscript custID.vbs"
4. check the custID.qry with "notepad custID.qry". It should have a query for each custID.
5. run the batch file "custID.bat
6. check the custIDResult.txt and clean up with search and replace with Word to the format of your choice.

We have learned that with a text file of pre-selected data we can read the file into a query command file that can be
processed by an osql command into a delimited text file for reporting. It certainly beats typing in 17,000 queries, but
remember it is not the only way to accomplish this feat.

P.S. There is no Doggy in either the window or Northwind.

Starting SQL Server in Minimal Configuration
By Jay Dave

Summary

The SQL Server tools are top notch & one of the tools is "sqlservr.exe" which starts, stops, pauses, and continues
Database Engine from the command prompt. This article describes how to start an instance of the Database Engine.

The Best of SQLServerCentral – Vol. 5

 21

Over-Committing Memory

I had an issue recently where SQL server services didn't started after min & max server memory configuration of SQL
server was changed. The Server got configured for AWE along with min & max server memory configuration. The
SQL Server didn't start after stopping the services. What I intend to show you here is how problem came to happen &
how it got resolved. In this article I'd like to talk about how this over committed memory issue is been addressed when
value defined for "max server memory" (RAM) is not physically present on the server. Below topic will take you from
Server configuration to Boot.INI file & to enable AWE & configuring server memory using system store procedure
sp_configure & finally sqlservr.exe coming in rescue to start SQL server.

My Server Configuration:

• Windows 2000 Datacenter
• Physical memory 36GB
• SQL Server 2000 Enterprise Edition

Configuring AWE for SQL Server 2000

Use of the /PAE switch in the Windows Boot.INI configuration file provides access to physical memory above the 4
GB limit. This is a requirement for AWE memory access above 4 GB. Any change to Boot.INI file requires server
restart\reboot. Now is time to enable AWE on SQL Server 2000 by running "sp_configure" from query analyzer. The
LOCK PAGE IN MEMORY permission must be granted to the SQL Server account before enabling AWE (SQL
SERVER 2005); this may be enabled if Windows 2003 is on SP1

(USE MASTER)

sp_configure 'show advanced options', 1

RECONFIGURE

GO

sp_configure 'awe enabled', 1

RECONFIGURE

GO

-- Note: - max server memory is in MB

sp_configure 'min server memory', 1024

RECONFIGURE

GO

-- 30GB is 30720MB but accidentally I typed 307200, which is 300GB

sp_configure 'max server memory', 307200

RECONFIGURE

GO

I stopped SQL Server & when I started SQL Server 2000, it didn't start, I tried other possibilities but that didn't help.

The Best of SQLServerCentral – Vol. 5

 22

Solution

To work around the problem, start SQL Server 2000 in minimal configuration mode by using Sqlservr.exe with the -c -
f option and reconfigure "max server memory." For a SQL Server 2000 Default Instance: Navigate to the Binn folder
where the SQL Server 2000 default instance is installed and run the following command:

sqlservr.exe -c -f

For a SQL Server 2000 Named Instance: Navigate to the Binn folder where the SQL Server named instance is
installed and run the following command:

sqlservr.exe -c -f -s Instance_Name

Connect to SQL Server through Query Analyzer, and then run this code:

(USE MASTER)

sp_configure 'max server memory', 30720 --- (Which is now 30GB)

RECONFIGURE

GO

Navigate to the command prompt and then press CTRL+C. To shut down the SQL Server 2000 instance, type “Y”.
After that when you start again SQL Server it will come up fine & your"max server memory" issue is been resolved.

How SQL Server Chooses the Type of Join

By Mike Dillon

The problem

A stored procedure that is called via .NET application runs in as short a time as 1-3 seconds some times, but runs for
as long as 1.5 minutes at other times. The same stored procedure ran in Query Analyzer always returns in the 1-3
second time frame. The stored procedure is called multiple times in a small time frame and collects data based on
start dates and end dates. We can't reproduce it to the degree that we see on the client side, but we are able to see
the above mentioned pattern. On the client site, they reach the .NET timeout of 3 Minutes on two of the eight times it
is called. When the timeouts occur, these are also the calls made with the largest date ranges.

Finding the Real Problem

So the first thing that jumps out is the fact that this stored procedure fails to complete during the .NET timeout of 3
minutes on the two largest date ranges. However, upon running the stored procedure in Query Analyzer, it finishes
with in 3 seconds.

Every time.

No hang ups, no slow downs, nothing. Even with bigger date ranges than that specified by our application and
returning as much data as possible, we can't come close to a three minute time out. The procedure still runs in a
matter of seconds.

The Best of SQLServerCentral – Vol. 5

 23

Our thought process jumped to the client environment and possible differences at their site that might explain what it
was they were seeing. Were there other things running at the same time? Was there something else blocking tables
that we needed to get to? This was tested by again running the procedure in Query Analyzer, which did take longer
than at our site. The indexes for the affected tables were rebuilt and now the Query Analyzer test finished in a few
seconds. Ahh! Problem solved. Rebuild the indexes and we should be fine. The client ran the procedure via the
application again that night, and again it failed. Back to the drawing board

At this point we needed to start over and gather facts. We decided to verify that the procedure ran slow from the
application and fast from Query Analyzer. It did run faster. In fact, while running the stored procedure from the
application and watching a trace of the server activity we were able to run the stored procedure from Query Analyzer
while waiting for it to return from the application. At this point we began to suspect something in the .NET
communications layer as that seemed to be the only difference. In order to verify this, we used ApeXSQL's SQL
Edit to run the procedure from as it connects to the DB the same way our application does. That proved to be the
jumping off point that would eventually lead to the detection of the problem.

When we tested the procedure from APEX, it ran slow, much like the application. We were now convinced it was
something with the way .NET connected to the database server. We made a change to the stored procedure and
recompiled it. Sure enough, it was much faster, 1-3 seconds, just like Query Analyzer. We then ran the stored
procedure, which didn't seem to improve much over the previous time, so we ran the stored procedure from APEX
again and it was slow again. Can you imagine our level of confusion? After running several other tests, we became
convinced something was taking place within the application that was causing the query to run slowly during and after
the application was run.

So at this point, the facts were as follows;

• The procedure when run via the application was slow, over a minute in some cases.
• The same stored procedure run from APEX was also slow once the application had been run.
• The stored procedure would run fine from SQL Server Query Analyzer.
• The stored procedure would run fine from APEX as long as it had been recompiled.

So what was different about the procedure when it was run from APEX fast versus APEX when it was slow? We
decided at this point to start digging into the query plan. After analyzing the query plan, we could see the faster one
was much shorter than the slow one, we just didn't know how or why. We discovered that the query plan for the
procedure when it took a long time, used nested loop joins as opposed to when it was faster, in which case it used
hash joins.

Why would it use nested loops some times and hash joins other times? And if the hash joins were faster, why didn't it
use them all of the time. Why would it ever use the nested loops? According to the Microsoft documentation, the
engine will chose to use nested loops for the joins in situations where there is not a lot of data being joined. And it will
chose hash joins if there is a large amount of data being joined. In our case we had both, so why didn't it choose the
right one for the right situation.

The answer lies in one of the other things we mentioned earlier. The procedure would run just fine in APEX if it was
recompiled before it ran. But if it wasn't and the application ran first, then APEX would be slow. What was happening
is that the procedure when run from APEX would chose the query plan from the procedure cache if there was one
there. After a recompile there isn't one there, so it would choose the one for the larger data set as we were testing the
procedure with the widest date sets and the largest data sets. When the application ran however, the first set of dates
were small in range and the data set returned is relatively small. Based on this SQL Server would choose a query
plan using nested loops, which in and of itself is fine. The problem came with the fact that the query plan was now in
cache and would continue to tell the engine to use the nested loop join. It didn't know that the data set would change
and grow. All the engine knows is that the application called a stored procedure for which it had a query plan stored in
cache. It used that plan rather than compiling a new one and the problems described above were revealed.

The Best of SQLServerCentral – Vol. 5

 24

The Solution

The fix for this was relatively simple. We simply inserted a sp_recompile {procedure_name} into the stored procedure
so that it would recompile before it ran each time. This would allow a new query plan to be chosen based on the size
of the current data set rather than simply using what was in cache. You might be thinking that compiling that stored
procedure over and over again would add overhead and you would be right, which is why it is not a best practice to
do this. However, in cases where you call the same stored procedure multiple times with different parameters that
affect the size of the data set returned you might see a huge gain in performance by doing the recompile each time
prior to the stored procedure being run.

Keep in mind this is true in any scenario in which SQL Server is going to chose a query plan based on a set of
parameters that can have drastically different size data sets being called by the same stored procedure.

Indexes and Fragmentation in SQL Server 2000 Part 1

By Joe Doherty

I believe it's my academic background that has seen me develop the need to see the facts for myself before I feel
confident about a particular subject. It has always been both a strength and a weakness of mine. On one hand it
provides the motivation for me to tackle a subject I want to understand, but on the other I have been guilty of
reinventing the wheel just so I can see it work for myself. You might say this is natural for guys like us and essential
for personal development however I'm sure my past superiors have seen it unnecessary for me to totally rebuild a
system from scratch when all that was required was a simple configuration change. But then where does all the fun
come from?!

With this in mind I have finally decided to tackle the subject on fragmentation levels within a database. I've always
been told that proper index maintenance is essential for optimal performance, and over the years have employed
different methods of achieving this. However I have never really seen proof that my maintenance jobs actually have
any benefit. Sure I've seen the odd demonstration and even made improvements to systems I've managed myself but
these have been isolated incidents where the customer has made a complaint or a developer didn't take into account
the amount of data growth within a particular table. These problems have usually been resolved by reindexing a
particular index more frequently or applying a more appropriate index.

What I'm talking about here is a system that has been in production for a number of years, where data volumes have
continually grown, application patches applied, OS and SQL service packs and patches applied, etc. The system is
considerably different now to what is was when it was first released, and chances are you've taken over the
responsibility of these systems somewhere in between.

Ideally a performance audit would need to be carried out periodically to ensure your systems are running optimally,
and I imagine this would be quite some task to undertake on some of the systems that are out there.

What I am interested in here is looking at what fragmentation is, how it happens and how we go about resolving it. I
am also interested in running a few experiments to see how a SELECT query performs on tables that have indexes
with differing fragmentation levels. This article is more of a discovery voyage rather than a 'how to implement your
index maintenance' document and will hopefully give us all a basic foundation to go away with and think about. You
might read the entire article and think I could have got this point over in much less text but I want to take you through
my entire thought process to aid a better understanding.

After some thought I decided that it was best to revisit the topic on how SQL stores it's data and look at the behavior
as data is added. And by running a few experiments we can look further into how the system functions under the
surface. Then by adding an index or two we can look at the differences in the behavior that SQL exhibits.

The Best of SQLServerCentral – Vol. 5

 25

As I said earlier I need to see things for myself and so I am going to start at the very beginning and create a blank
database with one table.

-- This script creates our test database and creates a table within it

-- You will have to modify the 2 filename parameters to values of where you want the DB created

CREATE DATABASE [myIndexes] ON (NAME = N'myIndexes_Data',

FILENAME = N'C:\myIndexes_Data.MDF' , SIZE = 1000, FILEGROWTH = 10%)

LOG ON (NAME = N'myIndexes_Log', FILENAME = N'C:\myIndexes_Log.LDF' , SIZE = 30, FILEGROWTH =
10%)

COLLATE Latin1_General_CI_AS

GO

USE [myIndexes]

GO

CREATE TABLE [dbo].[myTable] (

 [myPK] [uniqueidentifier] NOT NULL ,

 [myID] [bigint] IDENTITY (1, 1) NOT NULL ,

 [Char1] [varchar] (20) COLLATE Latin1_General_CI_AS NOT NULL ,

 [Char2] [char] (200) COLLATE Latin1_General_CI_AS NOT NULL ,

 [Char3] [varchar] (2000) COLLATE Latin1_General_CI_AS NOT NULL ,

 [Num1] [int] NOT NULL ,

 [Num2] [money] NOT NULL ,

 [Date1] [datetime] NOT NULL

) ON [PRIMARY]

GO

ALTER DATABASE myIndexes SET RECOVERY SIMPLE

GO

Have a look at our database (myIndexes) and you'll see that it is initially set to a 1GB data file, 30MB log file and
simple recovery. You might not have enough disk space so feel free to reduce this but it is useful for what we'll do
later on.

Looking in the table (myTable) you'll see I've created a number of fields with differing data types. Hopefully we'll be
able to see if these have any effect on performance later on in the article. You'll also notice that there aren't any
indexes configured on the table - also known as a heap. Initially we are just going to keep things simple and take a
look at the basics of the file structure and how SQL maintains it.

OK, so how and where is the database and table (and system objects) actually stored on the disk? And is there any
fragmentation at this point?

The Best of SQLServerCentral – Vol. 5

 26

Well the database and all its objects are obviously stored in the myIndexes.mdf in the location you specified when
creating the database. But where is [myTable] stored within this .mdf file? The objects within a database are stored
within data pages which are a little over 8k each. When you create a table you define a number of fields that will store
your data. The total number of characters that the combined fields make up cannot exceed this 8k limit. If each
character takes up 1 byte then the total number of characters you assign to the table (i.e. each row) cannot be more
than 8,000 (8,060 to be exact).

For example if you look at the table we have created in our database you will see it is made up of the following fields:

myPK uniqueidentifier 16

myID bigint 8

Char1 varchar 20

Char2 char 200

Char3 varchar 2000

Num1 int 4

Num2 money 8

Date1 datetime 8

 total = 2264

You can see that we have used a total 2,264 bytes. Also I have used the term bytes instead of characters - that's the
official way field length is measured. Generally a text field will use 1 byte per character but this does not easily
convert for a date (8 bytes) or a money field (8 bytes) so it is best that we refer to the length from now on as bytes.
Other data types take up different amounts of storage (e.g.. unicode characters use 2 bytes and would therefore limit
you to 4,000 characters per row). I want to keep things relatively simple here so you can look them up in BOL if you
want to know more.

Note: Certain types can span multiple pages but we won't be covering this here.

OK, so now you see that in general we're limited to a maximum row size of one data page (8k). More often than not
however your total row size will not be anywhere near this and so SQL will be able store more than one row within a
single data page.

As you keep adding rows to your table SQL will start to add more data pages and populate them accordingly. Now
there's one more thing you should know about your data pages and that is SQL groups them into bundles of 8 - and
we refer to these as Extents. An extent is a group of 8 data pages, holding up to 64k of data (i.e. 8k x 8 data pages =
64). Why SQL does this is belong the scope of this article but lets just say it is for optimal disk performance.

Right let's work out how to find which data page is storing our table data. Type the following command... Remember
that all the commands that we use will be against the [myIndexes] database unless otherwise stated.

SELECT * FROM SYSINDEXES WHERE NAME = 'myTable'

This command searches for the system information about our table object. You will see that one row is returned
containing a number of fields. The fields we're interested in are:

first = a pointer to the first data page

dpages = the number of data pages used for our table data

The Best of SQLServerCentral – Vol. 5

 27

Currently these values are set to zero because no data has been inserted yet - so lets add our first record by running
the following command...

INSERT INTO [myTable] VALUES (NEWID(), 'test1', 'test1', 'test1', 123, 321, GETDATE())

and confirm it is there...

SELECT * FROM [myTable]

Now we have a record in our database lets re-run the command on the system table to find out about where our data
is stored...

SELECT * FROM SYSINDEXES WHERE NAME = 'myTable'

and we now see that these vales have been updated. The values you get may differ from mine so bear this in mind
when we use them as parameters for the upcoming exercise. My values are...

first = 0x220000000100

dpages = 1

So this is saying that the data for [myTable] starts on data page 0x220000000100 (a hex value) and that a
total of one data page has been used so far.

Now we'll use one of SQL's undocumented commands to view the contents of the data page, but before we do we
need to decipher the hex number by doing the following (more information can be found here -
http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=5&messageid=291762).

Split the 0x220000000100 number into two halves which will give us the page id part and the file id part.
This gives us page id: 0x220000 and file id: 0x000100. Because we're only using one database file
(myIndexes.mdf) then we can be sure that the file id is 1. The page id needs to be reversed which will
give us 0x000022 (always leave the 0x bit at the front) and now convert this to decimal. I use Google to
do this - just type 'convert 0x000022 to decimal' and I get 34. This is page where our data is stored.

SQL's undocumented command DBCC PAGE allows us to view the contents of a page but we must
switch on the trace element first...

DBCC TRACEON (3604)

DBCC PAGE (myIndexes, 1, 34, 3)

Remember to replace the value 34 with the one you got from your Google result. Try changing this value to see what
else is lurking in other data pages but at this point you'll only see system related data. I'm not going to discuss this
command because it is already well documented on the Internet - see http://support.microsoft.com/kb/q83065/ -
you won't find it in BOL and Microsoft say they do not support it seen as it hasn't gone through the usual rigorous
testing that supported commands have. Or perhaps it has but they wanted to keep it back as part of their own toolkit
for support purposes - I know I've been instructed to use it by Microsoft Product Support services (PSS) in the past
while investigating database corruption.

Anyway back to the contents of our data page - you should now see your record within the text and in the
bottom section. That's how you view the contents of your data pages. And no, scanning these pages will
not reveal system passwords!

http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=5&messageid=291762
http://support.microsoft.com/kb/q83065/

The Best of SQLServerCentral – Vol. 5

 28

So far we have created a blank database, a table and inserted one row of data and have seen that SQL
stores this in a data page. Now we need to get a decent amount of data in there so we can start to look at
how the system grows and also see if there's anything interesting going on. I have written a script that
populates the table with random data - unfortunately this script does take some time to run but can be
stopped and started as you see fit. Lets get this running now and then continue talking about the next
step.

Before you do run the script please run the following command and store the results - we'll be talking
about this next and we need to capture the values before you start adding the records.

DBCC SHOWCONTIG ('myTable')

Store these results and proceed to run this script to start generating our records...

Editor’s Note: This script is available at www.sqlservercentral.com.

You will see at the start of the script that it loops 1000 times (WHILE @Loop < 1000) - this also refers to the number
of records that will be added so ideally we want to change this to nearer 500000. Perhaps you can run it overnight.
I've challenged a colleague at work to see which of us can come up with a script that randomly inserts values into the
database the fastest - I have some good ideas but not had the time to try them out. If anyone is interested in joining in
the fun (or has any suggestions) let me know and I'll send you the contest rules!

OK while the script is running lets run a check to make sure we can see things happening as we would expect them
to. Run the following to check that the number of data pages has been increasing - remember it was at one before...

SELECT * FROM SYSINDEXES WHERE NAME = 'myTable'

If you repeatedly run this the number of rowcnt and dpages should keep going up. However depending on how busy
your system is you may need to issue the following command to force a system update. Remember this command
because it is very useful when you need up to date information.

DBCC UPDATEUSAGE(0)

If you've ever resized your database or inserted a number of records and SQL does not report values to
represent this then running this command will update SQL's internal system values for you. We might see
more of this in action later. BOL definition: Reports and corrects inaccuracies in the sysindexes table,
which may result in incorrect space usage.

If you remember earlier on one of the questions we asked is whether we had any fragmentation after the point we had
inserted a record. Well I'm sure you'd agree that this is highly unlikely since we are dealing with a brand new
database. And before you ran the script that inserts lots of records I asked that you quickly run the DBCC
SHOWCONTIG command and store the results. Well now we'll look at what we actually did here...

DBCC SHOWCONTIG, as BOL puts it, displays fragmentation information for the data and indexes of the specified
table. We actually ran this command against our table and would have received results like the following:

- Pages Scanned................................: 1

- Extents Scanned..............................: 1

- Extent Switches..............................: 0

- Avg. Pages per Extent........................: 1.0

- Scan Density [Best Count:Actual Count].......: 100.00% [1:1]

The Best of SQLServerCentral – Vol. 5

 29

- Extent Scan Fragmentation: 0.00%

- Avg. Bytes Free per Page.....................: 7827.0

- Avg. Page Density (full).....................: 3.30%

Lets look at each of the results in turn to gain an understanding of what it is they are telling us.

• Pages Scanned
This tells us that 1 page was scanned in total to produce our results. And we are happy with the fact that we only
have 1 page.

• Extents Scanned
As we know there are 8 pages per extent but seen as we only have 1 page then that would infer we only have 1
extent.

• Extent Switches
If there were 100 extents SQL might have to flick between each of them multiple times to read all the records in
the data pages. When performing this command think of it that SQL must access every record therefore having to
visit every page and extent that contain current records. If the records are not in order then SQL will need to keep
flicking between Extents to access the required data. You see when a record is added it isn't necessarily added to
the end of the table - it might be inserted somewhere in the middle. Or if a record is updated and it becomes too
big to fit in to it's current space allocation SQL will move it and set a pointer to the new location. Therefore when it
comes to reading it again it will be passed to the new location which may be on another page and extent. It is this
flicking that causes additional disk reads which in turn affects performance.

Ideally the number of extents scanned should be one more than the number of extent switches that take place.
This would mean that SQL has started at extent one and read through each of them in turn without being
redirected elsewhere.

• Avg. Pages per Extent
As we know we only have one data page so SQL has only create one at this point. As data starts to grow SQL will
think ahead and create more.

• Scan Density
Best count is the ideal number of extent changes if everything is contiguously linked. Actual count is the actual
number of extent changes. The number in scan density is 100 if everything is contiguous; if it is less than 100,
some fragmentation exists. Scan density is a percentage. As you can see from our results we have a perfect
100%!

• Extent Scan Fragmentation
Because we're not using an index yet this value is irrelevant.

• Avg. Bytes Free per Page
Average number of free bytes on the pages scanned. The higher the number, the less full the pages are. Lower
numbers are better.

• Avg. Page Density (full)
Average page density (as a percentage). This value takes into account row size, so it is a more accurate
indication of how full your pages are. The higher the percentage, the better.

If you run the DBCC SHOWCONTIG command again on your table you will start to see different results on the
extents. Because we are working with a heap (a table without a clustered index) the data is in no particular order. It is
generally in the order that it was inserted into the table (providing that we are mainly inserting new rows) however
SQL will also insert data in to any available space it comes across. If you do a SELECT * FROM [myTable] you will
probably find that the [myID] column doesn't increment serially in the early part of the table and this is because as
SQL grows the pages and extents it will copy approximately half of the contents of one page into the next so that
there's always room for quick insertion of additional records later on (known as page splits). In the early stages of our
data generation script SQL will find free space in some of the initially created data pages and insert some records into
these pages rather than at then end of the table. I've never actually had confirmation of this but this is how I
understand it - it's as if SQL initially expands quite quickly leaving a lot of free space in the first extent(s) and then
returns shortly after to fill them in.

The Best of SQLServerCentral – Vol. 5

 30

I hope you have picked up on the point that because we are using a heap the data is in no particular order. And if you
perform any kind of SELECT statement on a heap the entire table must be scanned. And as we have read if we were
to select all the records from the table we wouldn't necessarily get them back in the order they were inserted.

Saying that, and I hope you are with me at this point, can a heap actually become fragmented? And if so is there a
command to defrag it? Well I suppose the answer to whether a heap can become fragmented is yes but would that
actually cause us any problems? It's not as if we would be scanning the table without any indexes applied and, as
we've not specified any order for the table, then we're not loosing out. Fragmentation, of a kind, can occur on a heap
when forwarding records are created that point to an updated record that was moved due to the update making it
bigger that it's currently allocated space (i.e. there was no room for it in the current slot). There is no command that
will defrag a heap (unless you apply a clustered index and remove it again as this will force an order which will remain
after the index is dropped, but will not be maintained).

Conclusion

So we've not really learnt anything new about how to improve our table fragmentation but we have been through the
motions of how data builds up within the database file. And we've seen that having a table without an index, in
particular a clustered index, deserves the name 'heap' because basically that is all it is, and of little use to us. Running
any form of query on a heap will force a full scan of the table and could take a considerable amount of time. And the
results from the DBCC SHOWCONTIG command, which is a tool for measuring fragmentation, is also of little use on
a heap.

I am going to finish at this point because it is a big subject to tackle and I want to get some feedback before releasing
the next part of this article. In my next installment we will look further into data pages and start analyzing the different
types and how these manage the allocation of extents and free space. Then we'll start using indexes. We're a long
way off but we'll get there slowly and in an academic fashion.

Do have a play and a think about what we have covered so far. Any suggestions would also be welcome. And please
remember I am by no means a SQL expert - this work is my findings that I am willing to share with you. If you feel I
have mislead you, have incorrectly stated something or simply need more info then please submit feedback.

Until next time...

Indexing in SQL Server 2005

By Aaron Ingold

Introduction:

Database indexing is not an exact science. It's difficult to weigh the performance benefits adding indexes to a table
will have. While adding indexes can improve performance on SELECT queries, it can slow down performance or
introduce locking scenarios on highly transactional tables with a high number of INSERT/UPDATE/DELETE
statements. With the release of SQL Server 2005, Microsoft has snuck in a few new ways to help you with this
strategy. Most people are aware of the Database Engine Tuning Advisor which can provide good information by
analyzing a workload from SQL Profiler, however there are other approaches which I'd like to discuss.

For this article, I'm assuming you have a good grasp of indexing basics: the difference between clustered and
nonclustered indexes, how they are stored, how the query processor makes use of them, using them to "cover" a
query, and the various index options. This isn't to teach someone how to index, per se, but hopefully add some new
tools to your approach to indexing in SQL Server 2005. For demonstrations in this article I will be using the
AdventureWorks database which comes with SQL 2005 or can be downloaded here. As with all performance
"enhancements", things don't always work the way you'd think they would. For each change I would recommend you
take a baseline, apply in a test environment first, measure against the baseline to be sure your changes have the
desired affect, and always have an undo script.

http://www.microsoft.com/downloads/details.aspx?FamilyId=E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en#filelist

The Best of SQLServerCentral – Vol. 5

 31

Identifying Potential Indexes: sys.dm_db_missing_index_details

The new dynamic management views in SQL Server 2005 have done a lot to enable quick scripting of management
functionality. One which has gone largely undocumented is sys.dm_db_missing_index_details. This stores a list of
columns the query processor has gathered since the last server restart which would assist in covering the queries.

For the first example, I will execute the following code to view a list of orders and their details in the last 3 years with a
value of $20,000 or more:

SELECT h.SalesOrderID, h.OrderDate, h.DueDate, h.TotalDue

 , p.[Name] AS Product_Name, d.OrderQty, d.UnitPrice, d.LineTotal

FROM Sales.SalesOrderDetail d

JOIN Sales.SalesOrderHeader h

ON h.SalesOrderID = d.SalesOrderID

JOIN Production.Product p

ON d.ProductID = p.ProductID

WHERE h.TotalDue >= 20000

AND h.OrderDate >= DATEADD(yy, -3, GETDATE())

Now it's time to go check the dynamic management view and see what the query processor picked up:

This view collects data for the entire server, yet I only want information about the current database (AdventureWorks),
hence the WHERE database_id = DB_ID(). The last four columns are the ones you really want to look at here. Here's
how they break down:

• equality_columns - This lists any columns where the query processor looked for an exact match (i.e. column =
value). In this case it's null as we had no equality statements needing to be scanned upon in our WHERE clause.
The only equal statements in there are on our JOIN conditions, however since all our key columns in the join have
indexes on them they're not listed.

• inequality_columns - This lists any columns where the query processor looked for an inequality match. Greater-
than, less-than, not-equal or BETWEEN predicates would fall in here. As we were looking for records which fell
both above a certain value and a certain date, the OrderDate and TotalDue columns are listed here.

• included_columns - SQL Server 2005 allows you to specify non-key columns which will be stored with the index.
This allows you to include more columns within the index so that you can cover queries more effectively while not
requiring the data in those columns to be sorted during transactional processing.

• statement - This is the underlying object on which the index would be created.

Your initial reaction here might be to think that Microsoft has done all the work for you, however this would be
premature. This should be used to point you in the right direction for what to index, not build indexes directly off of it.
In general you should build your indexes by listing the equality (most restrictive) columns first, the inequality columns

The Best of SQLServerCentral – Vol. 5

 32

second and specifying the included columns in your INCLUDE clause. If you stop here and build your indexes you
may be missing a large part of the picture. Let me identify some other considerations you should think about:

• In practice I've seen this technique list columns in SELECT order, rather than the order in which they're scanned
by the query processor. You would really gain the most performance by building the index in the order in which
they query processor scans them.

• How large is the table? A narrow table and/or one that will not grow above 100 rows might not be worth indexing.
• You don't really know how often the queries which reference these columns are run. Are they one-time ad-hoc

queries or part of a larger stored procedure which is run frequently? In the case in the example it's easy, however
if you select from the same management view on a production machine you may have many rows returned. It is
unlikely that building and maintaining an index which would be referenced only occasionally would do anything to
increase performance.

• There may be multiple listings in this view which could all be covered by a single query. For instance if you add
another line to the WHERE clause (say "AND DATEDIFF(dd, h.OrderDate, h.ShipDate) > 7" to find any orders
that didn't ship within a week) and re-run the query and then check the management view again. You should see
an additional column in the list:

Instead of making two indexes, it might be better off to only create a single index including the extra column and allow
the query processor to use that index to cover both queries. As always, set a baseline, implement the changes in a
test environment, and measure the performance impact before implementing in production.

Identifying Potential Indexes: SET STATISTICS XML ON

While sys.dm_db_missing_index_details is good, you still need to trod carefully and think about how you use the
columns it lists. A more focused approach is to use SET STATISTICS XML ON to receive an XML showplan result
detailing how the query processor fulfilled the request. To return to our original example (with appropriate
additions/commenting for this section):

SET STATISTICS XML ON;

GO

SELECT h.SalesOrderID, h.OrderDate, h.DueDate, h.TotalDue

 , p.[Name] AS Product_Name, d.OrderQty, d.UnitPrice, d.LineTotal

FROM Sales.SalesOrderDetail d

JOIN Sales.SalesOrderHeader h

ON h.SalesOrderID = d.SalesOrderID

JOIN Production.Product p

ON d.ProductID = p.ProductID

WHERE h.TotalDue >= 20000

AND h.OrderDate >= DATEADD(yy, -3, GETDATE())

-- AND DATEDIFF(dd, h.OrderDate, h.ShipDate) > 7

The Best of SQLServerCentral – Vol. 5

 33

GO

SET STATISTICS XML OFF;

GO

Executing this block of code returns both the standard result set and a Microsoft SQL Server 2005 XML Showplan
result. Clicking on the XML in Management Studio will bring it up in its own document for easier browsing. The
element we want to focus in on is <MissingIndexes>:

As appropriate you will see various ColumnGroup elements for EQUALITY, INEQUALITY and INCLUDE which work
in the same way as the previous example. The Impact value indicates an estimated improvement by the query
processor assuming an index was created on the listed columns.

Specifying another predicate in the where clause which references another table (for instance "AND d.SpecialOfferID
= 1") changes the XML plan when run to include multiple suggested indexes to improve overall query performance. In
this case, adding the example above gives me this for my <MissingIndexes> element:

The Best of SQLServerCentral – Vol. 5

 34

This shows two separate indexes on two separate tables which could assist in query processing.

This is very helpful in the early stages of improving problem queries. If you have an idea that a certain SQL statement
is going to be repeatedly executed, using this technique can assist you in building better indexes on your tables.

Removing Unused or Problem Indexes: sys.dm_db_index_usage_stats

I once had a developer look me straight in the eye and say that there would never be a problem with adding as many
indexes as possible to a table; the query processor would simply select the ones it needed and ignore the rest. While
this is somewhat correct, it really falls far from the whole truth. Unnecessary indexes can force the query processor
to evaluate more before deciding on an optimum execution plan, can slow down transactional processing and can
take up a great deal of space on disk.

Index usage information is stored in another dynamic management view called
sys.dm_db_index_usage_stats. Like the previous views, information available inside only persists since the
last SQL Service startup. I would highly recommend you not evaluate information in this view until after the system
has been running for an adequate period of time under normal load and usage conditions. This will allow you to obtain
a decent set of information before determining which indexes to potentially remove.

With my warning out of the way, let's get to the code I like to use:

SELECT o.name AS object_name, i.name AS index_name

 , i.type_desc, u.user_seeks, u.user_scans, u.user_lookups, u.user_updates

FROM sys.indexes i

JOIN sys.objects o

ON i.object_id = o.object_id

LEFT JOIN sys.dm_db_index_usage_stats u

ON i.object_id = u.object_id

AND i.index_id = u.index_id

AND u.database_id = DB_ID()

WHERE o.type <> 'S' -- No system tables!

ORDER BY (ISNULL(u.user_seeks, 0) + ISNULL(u.user_scans, 0) + ISNULL(u.user_lookups, 0)

 + ISNULL(u.user_updates, 0)), o.name, i.name

The reason I use a LEFT JOIN to sys.dm_db_index_usage_stats is to ensure that any indexes which have not been
used since the last server restart are still listed accordingly. If my server has been up and running for six months
without using that index, perhaps its time to consider dropping it! By sorting it in the order which I do, it moves the
least used indexes to the top of the list. It's also important to note that indexed views will be listed in the object_name
column.

I would highly recommend again that you factor in other considerations before removing or disabling indexes. It's
important to make sure the database will not be using the index. It's also good to read this information even for your
more commonly used indexes and examine the scans vs. seeks. This can provide good hints for optimizing your
existing indexes and queries (for a good explanation of a scan vs. a seek, check out Craig Freedman's WebLog –
http://blogs.msdn.com/craigfr/archive/2006/06/26/647852.aspx).

The Best of SQLServerCentral – Vol. 5

 35

Summary:

As I said at the start, the intent of this article is not to teach you how to index. There are numerous resources devoted
to this topic and it is beyond the scope of this article (see below for recommended reading). SQL Server 2005 gives
you some great new tools to better understand index usage and gain insight into where new indexes might be helpful.
While there is still no tool which can really replace a good understanding of how SQL Server makes use of indexes
and where they can be beneficial, the information you can glean from the new dynamic management views and
enhancements to viewing query statistics can assist you in optimizing your indexing to see real performance gains.

Recommended Reading:

• http://www.sqlservercentral.com/columnists/lPeysakhovich/indexcreationguidelines.asp – Index Creation
Guidelines by Leo Peysakhovich
• http://www.sqlservercentral.com/columnists/gjackson/whocaresaboutfillfactor.asp – Who Cares about FillFactor?
by Gregory Jackson
• Index Basics - SQL Server 2005 Books Online (link doesn't work with FireFox)

Moving Your Database to a New Server

By Paul Mu

Time to Give Your Databases a New Home?

Do you have a server that is underperforming? Do you have end-users constantly reminding you that a server is slow
at certain times of the day? Maybe the server has passed its used-by date and requires an overhaul, or maybe that
you have a need to implement load balancing by having a second server (or a third). If this (or any other scenario that
requires a replacement server) fits you then read on to find out what you need to consider and the approaches that
are available to you to have your new server up and running in as little time as possible.

We will assume here that your aim is to have a replacement server, and that this server already has the OS, services
and applications installed, which may or may not be an exact replica of the existing server. Therefore, what is left is
the task of moving all relevant databases (and other SQL Server related objects) from one server to another.

Understanding What is Involved

Before delving into specifics, there are questions that need consideration upfront. The following is not meant to be an
exhaustive list, but gives some idea as to what might be involved:

1. What is your operation's system downtime policy?
2. Is your database server also involved in replication (either as publisher or subscriber)?
3. Is the move between same releases of SQL Server or not?
4. Will the existing server continue to operate or be retired?
5. Will the system databases be moved, in particular the master database?
6. How should all this be implemented? Using scripts and/or SSIS packages?

Means of Approach

The fact that some operations are 12x7 has meant that system downtime is a premium that needs to be considered
carefully. The following discussion will principally be concerned with restoring a database to another machine, and
how quickly this can be achieved.

http://www.sqlservercentral.com/columnists/lPeysakhovich/indexcreationguidelines.asp
http://www.sqlservercentral.com/columnists/gjackson/whocaresaboutfillfactor.asp

The Best of SQLServerCentral – Vol. 5

 36

Most companies already have a database maintenance plan setup that performs regular full and differential (optional)
database backups followed by frequent transaction log backups. Figure 1 shows a remote database restore process
that makes use of the full and differential backups only, making it applicable for all database recovery models. Note
the serial nature of the process and the sequence to be followed by each individual task. Steps 1 and 4 are tasks to
perform against the current system, whereas steps 2, 5 and 6 are tasks to perform against the replacement server.
Steps 3 and 7 are dependent on your system downtime policy, which may (in its simplest form) require all affected
databases to be set in read-only mode.

The overall process execution time will largely depend on the time taken to perform the differential backup on the
existing databases and the corresponding restores on the replacement server. Therefore, the smaller the differential
backup the shorter the execution time. This can be achieved by performing the maintenance process as close as
possible to the completion of the full backup (shaded regions between steps 1 and 4), thus reducing the size of the
differential backup.

Figure 1. Restoring a database to a remote server using the full and differential backups.

In the event that transaction log backups exist, then the approach would be to perform a NORECOVERY restore of
the full, differential (if available) and all transaction logs (in the appropriate order) on the replacement server before
the start of system downtime, then after system downtime is initiated, perform a final transaction log backup on the
existing system and then to restore it on the replacement server. As with the previous approach, the closer the
transaction log backup is to the completion of the differential backup, the quicker will be the backup and restore
process.

What happens if you have a replicated database? Well, it depends on whether you are dealing with a publisher or a
subscriber. With the former, there is the issue of whether or not the replacement server takes over completely and
whether it will have the same name as the existing server. The consequence being that replication may need to be
rebuilt on the publisher as well as the need to move the existing server off the network (or offline it). This is a subject
for another time, suffice to say that your network admin staff would be help you with such matters.

In the case where you are only interested in moving a subscription database, then the approach is much simpler. The
trick is to use a no-sync subscription (to be created at point B' in Figure 1), particularly where very large tables are
involved (There are caveats to using a no-sync subscription, but nothing that a DBA cannot handle). A prerequisite for
using a no-sync subscription is to ensure that data in both publisher and subscriber databases are in sync. That is, to
ensure that all undelivered commands in the distribution database have been delivered to the subscriber before
performing the final backup.

The following script (to be executed at point A' in Figure 1) will help with this check, which displays the number of
undelivered commands in the distribution database for all articles in all publications on that server.

use <publication database>

go

if object_id('tempdb..#dist_status') is not null

The Best of SQLServerCentral – Vol. 5

 37

 drop table #dist_status

go

select *

into #dist_status

from distribution..MSdistribution_status

go

select p.name as publication, a.name as article, t.*

from #dist_status t

 left outer join sysarticles a

 on t.article_id = a.artid

 inner join syspublications p

 on a.pubid = p.pubid

 where UndelivCmdsInDistDB > 0

 order by p.name,a.name,t.agent_id

Other Considerations

If you are migrating, say from SQL Server 2000 to SQL Server 2005, then you will need to run the SQL Server 2005
Upgrade Advisor against your server to identify an incompatibilities that will need taken care of beforehand. This
includes DTS packages, whose meta-data are stored in the msdb database. There may be a need to rework some of
the DTS packages before it will execute in 2005, otherwise look at migrating these packages using the Package
Migration Wizard in SQL Server 2005.

If you do not wish to restore the system databases then there are other considerations for you to take note of. One of
the most important being the user logins. There are three approaches to this, including (a) manually create the logins
using the system stored procedures; (b) use off-the-shelf scripts to generate the logins (e.g.
http://support.microsoft.com/default.aspx?scid=kb;en-us;246133) ; or (c) use the SSIS Transfer Logins Task. Method
(a) will require some extra work to realign the SIDS for the logins, so the approach I would take is either (b) or (c).
Then, there are also linked servers, which are easy enough to script out and apply.

Finally, there is a tool that can help with putting your scripts and process together. SQL Server Integration Services
(or SSIS for short) is a powerful tool that can be used for such a task. I used it in my last server migration project, and
I can say that it beats running scripts in QA (or the Management Studio equivalent in 2005). Once you are familiar
with the SSIS interface and know how to configure the various components that you will be using, it is rather fun to
design and to deploy.

Conclusion

In conclusion, the aim of this article is to provide you with some approaches that are available to you as you ponder
the need to provide a new home for your databases. The focus of the discussion is more on the need to minimize the
downtime to your production system. With some proper planning - and this involves doing as much of the work
outside of the system downtime window - it is possible to achieve minimal impact to your production systems.
Hopefully, there is sufficient information here for you to plan your next database-move project.

The Best of SQLServerCentral – Vol. 5

 38

Database Snapshots
By Kumar Part

This article is a first part of the three part series. In this series of articles, I will focus on Microsoft's different offerings
for SQL Server data availability. In this first part, the focus is on database snapshots, in the second part, the focus will
be on snapshot backups and in the last part I will focus on Microsoft Data Protection Manager (DPM).

Recently IT Managers have started talking about the acronyms RPO and RTO. RPO stands for Recovery Point
Objective and RTO stands for Recovery Time Objective. RPO can be defined as the acceptable amount of data loss
and RTO can be defined as the acceptable amount of business downtime. Lowering RPO and RTO should be an
important objective in your backup and recovery strategy.

Microsoft offers following data protective measures to minimize your RPO (data loss) and RTO (down time).

1. Full database and differential backup
2. Granular backups (file level or log level)
3. Log Shipping or Database Mirroring
4. Shadow copying data

o Database Snapshots
o Snapshot Backup

5. Data Protection Manager

RPO = 0 (or near-zero) and RTO > 0, means some data loss and some business down time. For example, if you
perform a point in time restore up to a minute before the disaster, you have achieved an RPO of 1 minute, but your
RTO is equal to your recovery time. Conventional recovery strategy (bullet 1 &2) involving full base and log backups
would help you in lowering RPO but not in lowering RTO.

To minimize RTO, you can add log shipping or database mirroring (supported only in SQL Server 2005) in your data
protection strategy. If you have a well established standby server, during disaster (example, disk crash) you can
promote your standby as production and perform a recovery of original production during off-peak hours. This way
you can achieve a smaller RTO. The mirroring solution does protect your data against the physical disaster but does
not protect your data against the logical disaster (example, data corruption) because the mirroring solution will simply
replicate your corrupted data to a mirror server.

To achieve an infinitesimally small RPO and RTO from the logical disaster, consider using 3rd party transactional log
management products such as Lumigent's Log Explorer. If you do not want to pay and maintain a 3rd party product,
you can consider using SQL Server 2005 database snapshots. So, conventional backups plus mirroring plus
database snapshot will protect your data against the physical and logical disasters.

Microsoft is also working towards addressing low RPO and RTO through another product called Data Protection
Manager (DPM). The current DPM offerings do not support SQL Server or Exchange.

Database Snapshots

SQL Server 2005 Database snapshots use NTFS sparse files with the Alternate Data Stream (ADS) mechanism. In
this scheme, before updating the original data block in a file, it will be copied to the respective sparse file; this concept
is called copy-on-write. A database snapshot operates on a data file level, so for each data file of a database 'db' you
have to associate a sparse file to create a successful database snapshot. The sparse file mechanism is supported in
NTFS but not in FAT32. If you delete the original file, the sparse file will also be deleted. This mechanism is also used
in certain DBCC commands such as DBCC CHECKDB, DBCC CHECKTABLE and DBCC CHECKALLOC

The Best of SQLServerCentral – Vol. 5

 39

In the sparse file system, storage is not fully allocated as in the original data file. When you create a snapshot it does
not take much storage, but it grows when your disk blocks change in the original file. So, the older the snapshot is,
the larger the disk space requirements (assuming your database changes regularly).

SQL Server Management Studio does not support creating and managing the snapshots. So, you need to rely on T-
SQL for creating, reverting and deleting the snapshots.

To create a snapshot database sample_snap1 for the sample database use the following query.

CREATE DATABASE [sample_snap1]

 ON (NAME=[sample]

 ,FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\sample_snap1')

 AS SNAPSHOT OF [SAMPLE]

The above query takes logical name of the sample as the database's data file. To get logical name of data and log
files use the following query

USE SAMPLE

SELECT [name] FROM sys.sysfiles

If you try creating a snapshot, when the original database is in the middle of running a transaction, you would get the
following error

Server: Msg 226, Level 16, State 5, Line 2

CREATE DATABASE statement not allowed within multi-statement transaction.

After the successful creation of a snapshot, you will see the snapshot database in the object explorer like any other
SQL Server database. Also, sys.databases field source_database_id will point to original database id.

Transactional log files, offline files or files in loading state are not considered for database snapshots
because a database snapshot is read-only and a snapshot must always be created in a consistent state.
You can compare the amount of disk space that is used by normal and snapshot database by using the
following query.

SELECT BytesOnDisk

 FROM fn_virtualfilestats(DB_ID('sample_snap1')

 ,FILE_ID('C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\sample.snap1'))

The above query returned 192K for the snapshot database and 1.18MB for the original database. If you make some
updates to original database, size of the snapshot database will grow. For example, if you add a file to your sample
database, as shown by the following query

ALTER DATABASE [sample]

 ADD FILE (NAME=sample1, FILENAME='C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\sample1')

Note, ALTER DATABASE command is not allowed on database snapshots. You cannot alter the snapshot; you need
to newly create one, including all the file specifications as shown below.

The Best of SQLServerCentral – Vol. 5

 40

CREATE DATABASE [sample_snap2] on

(NAME=[SAMPLE1],FILENAME='C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\sample1_snap2'),

(NAME=[SAMPLE],FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\sample_snap2')

 AS SNAPSHOT OF [sample]

If you do not specify a file specification, you will get the following error

Server: Msg 5127, Level 16, State 1, Line 1

All files must be specified for database snapshot creation. Missing the file "sample".

One of the key benefits of a snapshot is guarding against data corruption. If you are planning to perform a bulk copy
or concerned that your data more prone to corruption, consider taking frequent snapshots. Note having too many
snapshots will impact your production environment performance because snapshot access requires access to the
original database.

Now, create a table called mytab in the sample database and insert some rows.

CREATE TABLE mytab(c1 int, c2 varchar(12))

go

INSERT INTO mytab VALUES(1,'hello')

Take a snapshot sample_snap3from sample.

If the original table is truncated, you can recover the original table data using the following query.

INSERT sample..mytab SELECT * FROM sample_snap3..mytab

If the original table data is updated as shown below,

UPDATE sample..mytab SET c2='corrupted' WHERE c1=1

You can recover from the corruption using the following query

UPDATE sample..mytab SET c2=(SELECT c2 FROM sample_snap3..mytab WHERE c1=1)

If your table is huge, the above described two methods of data recovery might take longer than recovering (reverting)
the original database using one of the snapshots. Before you recover (or revert) to a snapshot, you have to delete
rest of the snapshots.

So, I drop sample_snap1 & sample_snap2 snapshots

DROP DATABASE sample_snap1

DROP DATABASE sample_snap2

Then recover to sample_snap3 using the following query

RESTORE DATABASE sample from DATABASE_SNAPSHOT= 'sample_snap3'

The Best of SQLServerCentral – Vol. 5

 41

Note you cannot drop or detach the original database unless you drop the snapshots associated with it. SQL Server
uses a reference counting mechanism and prevents you from accidentally dropping the original database.

Reverting to a snapshot is not supported, if

• The source database contains any read-only or compressed files
• Any files are offline that were online during snapshot

During the revert operation, both the original and snapshot will be marked as "in restore". Before reverting, it is
recommended you perform a log backup and after reverting, perform a full database backup because reverting
breaks the log chain.

You cannot backup database snapshots, therefore you cannot restore them. Though a database snapshot protects
your data from logical disaster, you need to note the following limitations.

• The original database performance is reduced due to increased I/O between original database and snapshots
whenever a page is updated. You can minimize this by limiting the number of snapshots.

• The source database is not scalable with snapshots
• Reverting will recover your data from corruption, but you have to perform the full database backup following the

revert operation.
• Snapshots will take up your disk space. So consider deleting older snapshots, if they are not needed.

Understanding these limitations and exercising caution will definitely minimize your Recovery Time Objective.

Database Snapshots in SQL Server 2005
By Arvinder Khosla and S. Srivathsani Murthy

Introduction

Database snapshots is a new feature added in SQL Server 2005.Database Snapshot can be used to create a read-
only copy of the database. Database snapshot consists of the read-only static view of the database without including
the uncommitted transactions. The uncommitted transactions are rolled back to make the database snapshot
transactionally consistent.

Uses:

Database snapshots can be used for

• Protecting your system from user or administrator error
• Offloading reporting
• Maintaining historical data
• System upgrades
• Materializing data on standby servers
• Recovering data

How Database Snapshots Work?

Database snapshots occur at the page level. Before a page of the source database is modified for the first time, the
original page is copied from the source database to the snapshot. This process is called a copy-on-write operation.

The Best of SQLServerCentral – Vol. 5

 42

The snapshot stores the original page, preserving the data records as they existed when the snapshot was created.

To store the copied original pages, the snapshot uses one or more sparse files. Initially, a sparse file is an essentially
empty file that contains no user data and has not yet been allocated disk space for user data. As more and more
pages are updated in the source database, the size of the file grows. When a snapshot is taken, the sparse file takes
up little disk space. As the database is updated over time, however, a sparse file can grow into a very large file.
This is illustrated with the help of this diagram:

1. At first when the snapshot is created, the sparse file is empty.

2. When the first update operation happens, the original data is copied into the sparse file. The database engine then

updates the data in the source database.

The Best of SQLServerCentral – Vol. 5

 43

When the first update operation happens, the original data is copied into the sparse file. The database engine then
updates the data in the source database. During the read operation on the snapshot, the original data is read from
the source database. For the data which has been changed, the snapshots read from the sparse file.

Advantages

1. The user can create as many snapshots as he/she wants quickly in no amount of time. The user can schedule to
take snapshots every hour. This will be useful in auditing scenarios

2. The snapshots can be used in restore operations.
3. The corrupted or deleted data can be recovered from the snapshot to repair the primary database.
4. In case of user error, the administrator can revert back to the snapshot taken just before the error.

Disadvantages

1. Database snapshots are available only in the SQL Server 2005 enterprise edition.
2. Database snapshots are dependent on the primary database. If the primary database goes offline, then the

snapshots are not accessible.
3. Performance of the source database is reduced, due to increased I/O on the source database resulting from a

copy-on-write operation to the snapshot every time a page is updated.
4. Full-text indexing is not supported in database snapshots.
5. If the data changes rapidly, the snapshot might run out of disk space.

The Best of SQLServerCentral – Vol. 5

 44

Creating a Database Snapshot-TSQL

In the PUBS database we have 3 data files under 2 file groups:

1. Primary File group contains Pubs and pubs_logicalname
2. Pubs_data filegroup (Secondary Filegroup) contains Pubs_2

The statement below creates a snapshot on the PUBS database

CREATE DATABASE pubs_Snapshot1800 ON

(Name=pubs,Filename='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\pubs_data1800.ss'),

(Name=pubs_logicalname,Filename='C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pubs_logicalname_data1800.ss'),

(NAME = pubs_2,

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\pubs2_data1800.ss')

AS SNAPSHOT OF pubs

In pubs database, there are three files. The user should include all the three files while taking the snapshot. The
database is a combination of data present in all three files. So we need to mention the all the three logical file names,
so that all the data from these files will get stored in the location 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\filename_with_timestamp.ss'. In the example given above,

• pubs_Snapshot1200 --> Snapshot Name
• pubs --> Logical File Name
• C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\Northwind_data1000.ss --> Physical File Path

Suppose if the user wants to create the snapshot at 2400 hrs then he has to just change the name of the database
and the physical file name.

CREATE DATABASE pubs_Snapshot2400 ON

(Name=pubs,Filename='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\pubs_data2400.ss'),

(Name=pubs_logicalname,Filename='C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\pubs_logicalname_data2400.ss'),

(NAME = pubs_2,

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\pubs2_data2400.ss')

The snapshot can be used just like the database. The user has to remember that the snapshot is a read-only copy of
the database. So he/she cannot issue the update, delete or insert commands.

The Best of SQLServerCentral – Vol. 5

 45

Viewing Snapshots from SQL Server Management Studio

1. Expand Databases.
2. Expand Database Snapshots.
3. Select the snapshot created in the above section

Restoring from the Database Snapshot

Consider the database Pubs. Suppose the user deletes dbo.table_1 from the Pubs database. We have to recover it
from the database snapshot by issuing the following command.

Restore database pubs from database_snapshot = 'pubs_Snapshot1800'

Dropping the Snapshot

Drop Database 'Snapshot_Name'

Frequently Asked Questions on Snapshots

Question 1. How is Snapshot different from the full backup of the database?
Answer 1. Differences are as follows:

1. In case of backup, we have to restore it somewhere to actually use it. The user cannot query the backup file. On
the other hand snapshots are static read only data at that point of time. So it can be used just like any other
database.

2. Another advantage or difference that snapshots have over backups is that backups occupy lot of space.
For example: Suppose if there is a database in which only few updates takes place. Then definitely snapshot is a
better option because less data has to be stored in the sparse file.

If we remember that in case of snapshots, only the pages which are updated are stored in the sparse file. When we
fire the select query, the snapshots will read the pages which are not changed from the source database and the
changed ones are read from the sparse file. Thus snapshot proves more advantageous than full backups in these
scenarios.

Question 2. Is ss the default extension of the data files?
Answer 2. The default extension is not ss. It can be anything

Question 3. When to use Snapshot and when to use Full backups? And are differential backups influenced /
dependent on Snapshot?
Answer 3.
Backups and Snapshots are two different concepts. Snapshots are definitely NOT a replacement for backups.
Snapshots should be used for auditing or reporting purposes. Recovery operations can be done with the help of
snapshots. But it is not the primary resource. Snapshots provide a read only view of the database at that point of time.
It does not include uncommitted transactions. When we take backups, the uncommitted transactions are also
included in the backups.
Differential backups are not dependent on snapshots. Differential backup is the differential of the last full backup and
the current state of the database.

The Best of SQLServerCentral – Vol. 5

 46

Got more questions?
Please mail us (Arvinder Singh Khosla or Srivathsani Murthy)

Customizable Error Log Scanning
By Thomas LaRock

Background

The SQL Server error log has a wealth of information contained inside. Sometimes it is too much, sometimes it is not
enough. And then situations occur when you do not know if there is enough in the log or not until well after you have a
resolution. In my opinion, things are even more complex with 2005, as there seems to be a lot of messages that end
with "This is an informational message only; no user action is required." If that is the case, then I may or may not want
to be alerted about this, right? User action may not be "required", but what if it is actually "desired"?

Like many shops, we developed an in-house system for monitoring our database servers. Built over the past two
years, the system is called DBA_Perform. One of the very first items we incorporated into DBA_Perform was the error
log scan. Code for all of the tables and stored procedures for the solution can be found in the downloadable zip files.
There is also a readme file included to assist with your implementation. I have tried to keep things as general as
possible, but some additional modifications may be necessary based upon your specific environment.

The Need To Know

I believe that many shops have processes in place to scan the logs for review. Some shops are small enough (less
than ten total servers) that no process is really necessary because they can simply review the logs by hand as
needed. However, I would argue that using an automated process to scan the log periodically is the smart thing to do,
so that you can be alerted should something occur. That is exactly what we set out to build over two years ago.

What we found was that setting up a process to scan the error log is very easy to do. There were lots of examples
available from community sites. We sampled some and found that while they did work, there was always something
missing. What one solution would have, another solution would not. So, we took the best of everything we could find,
added in our own ideas, and ended up with the solution being presented. What set ours apart from others at the time
was the ability to include (or exclude) certain keywords that would appear in the error log.

This was very important for our group as the number of servers we managed went from around ten to over seventy in
less than fifteen months. The combination of production, test, and development servers also meant that the errors we
would be concerned about varied. For example, our production servers are set to log any failed logins, but test and
development are not. Any solution we would roll out to a new server had to work regardless of environment. But do
we want to be alerted by email each and every time someone fails to log in? No, probably not. But what if that failed
attempt was by someone trying to login as "sa", or "admin", or "root"? That could be something that we want to know
about quickly, as it could be an attack or a virus.

The Magic

First, get the code from sqlservercentral.com. This has been tested with SQL Server 2000 and SQL Server 2005.

We needed to build a process that would scan and dump the contents of the error log, clean up the
contents based upon keywords we wanted to include and/or exclude, and then send us an email if
necessary. The procedure we currently use is named Usp_error log_Notification, and is included the zip
files. The procedure makes use of the xp_readerror log extended stored procedure in order to gather all
details from the log into a temporary table as an initial starting point. The process does a check to see

mailto:arvinder_khosla@infosys.com?subject=FAQs
mailto:srivathsani_m@infosys.com?subject=FAQs

The Best of SQLServerCentral – Vol. 5

 47

what version of MS SQL Server you are running, because Microsoft changed the output of the
xp_readerrorlog extended stored procedure in SQL 2005.

While checking the version, we also verify that the reading of the error log results in a valid date that will
ultimately be inserted before our emails are sent. This is essential because the very next step does a
calculation of the maximum date, so we need to make certain the date is valid in order for the max()
function to return a proper result. If this is the first time a scan has been run, then a default date is
assigned. Otherwise, it will retrieve the max date from an earlier run of the process from the error tables
and that date will be used to filter out rows from the temporary tables later in the process.

Before that cleanup happens, a cursor is built to go through the entries in the temporary table and filter out the rows
that do not have a keyword that we want to scan for. The keywords for this part are found in the
ErrorlogScanKeyword table, and include words and phrases such as 'stack', 'is full', and 'error'. If a row exists in the
#Errors temporary table that do not have any of the words listed in this table, then they are filtered out.

After filtering the temporary table, leaving behind only rows that have keywords we are scanning for, we then cleanup
the table by using the calculated date mentioned in the previous paragraph. As our #Errors table gets smaller, we
next need to force the inclusion of specific words. We take the current rows in #Errors and insert them into a separate
temporary table named #ErrorsHOLD. At this point we remove rows from #ErrorsHOLD that do not have words and
phrases found in the ErrorlogForceInclude table. In our experience, we found that is not sufficient to only exclude
certain words, there also needs to be the forced inclusion of keywords as well. By forcing the inclusion of certain
keywords (for example, the word 'admin' would be a forced include), we can tell the system to be more flexible. This is
the magic. We can tell the system to not bother us every time the phrase "Login failed for user", but to make certain
we know whenever "Login failed for user 'sa'" appears in the error log.

After setting those rows off to the side, we do one final scan on the #Errors temporary table to exclude certain
keywords outright (for example, certain error numbers above 50000, and this is where we would exclude the generic
'Login failed for user'). From there, it is a quick reinsert into the #Errors from #ErrorsHOLD and we have the desired
result set. The last step is to generate an email and notify our team that there is something in the error log that may
be worth further investigation.

Create the Job

The last thing we needed to do was to put together a job that would run every ten minutes. We created a job that
simply calls the Usp_error log_Notification procedure (also included in the zip file). Feel free to modify the job as you
see fit, changing the frequency of the schedule or whatever you desire.

Conclusions

As your environment gets more and more complex, you may find that the number of alerts increase substantially.
Some of the processes that you build while you have a small shop may not be as effective as more and more servers
come under your control. If you start with a customizable toolbox you can save yourself some headaches later. With
the above solution, you can decide for yourself what you want to be notified about during an error log scan, and not
have to worry about filtering through the white noise that we all seem to be swimming in these days.

A Guide to Application Memory Tuning

By Paul Mu

This article will provide the DBA with appropriate background information and links to resources in order to have a
good understanding of application memory tuning, with specific application to SQL Server 2000 EE under Windows
Server 2003.

The Best of SQLServerCentral – Vol. 5

 48

Lets start by defining some terms that are important to our discussion. A process is an instance of a running
application. A physical storage consists of the physical memory (RAM) and system paging files. A virtual memory
is defined as a range of address space (or pointers) with no associated physical storage.

For a 32-bit Windows operating system, Windows allocates all processes a 4GB address space. This 4GB
limit is because a 32-bit pointer can have a maximum of 2^32 values, whereas a 64-bit system will be able to handle
2^64 values, a very large number indeed! The 4GB address space is divided into two partitions, a user mode
partition and a kernel mode partition. By default, each of these is sized at 2GB. It is however possible for a
process to use more than the default 2GB of addressable memory. The /3GB switch offers such an option.

The /3GB Switch

The /3GB switch, when configured in Windows, will expand the user mode address space for a process from 2GB to
3GB. The down-side is that the kernel mode address space must also decrease to 1GB in order to preserve the 4GB
limit for a 32-bit OS. To configure this in Windows, add the /3GB switch to the appropriate line in the BOOT.INI file, or
follow the steps in this link for Windows Server 2003 (http://support.microsoft.com/kb/317526).

The /3GB switch is only applicable to systems having between 2GB and 4GB of configurable RAM.
Where more than 4GB of memory is available, Windows can be configured to use the /PAE switch
instead.

The /PAE Switch

PAE stands for Physical Address Extension, and according to Microsoft 'PAE is the added ability of the IA32
processor to address more than 4 GB of physical memory'. To enable PAE you add the /PAE switch to the
appropriate line in the BOOT.INI file.

It is also possible to use the /PAE switch in conjunction with the /3GB switch. However, in this instance, the maximum
memory that windows can manage is limited to 16 GB due to the kernel mode partition being reduced to only 1GB
of addressable memory.

Not all Windows OS support these switches. According to the following article
(http://support.microsoft.com/?kbid=291988), the /3GB and /PAE switches in the Boot.ini file are to be used with
the following products: Windows 2000 Server (Advanced and Datacenter editions) and Windows Server 2003
(Enterprise, Datacenter and Small Business editions). Other scenarios where the switches are supported are for
testing purposes only.

Configure SQL Server to Use More Memory

According to Microsoft AWE is a set of APIs to the memory manager functions that enables applications to address
more memory than the 4 GB that is available through standard 32-bit addressing. The important thing to note from
this statement is that AWE is related to a process (or application), and that not all applications or versions of an
application are AWE-aware.

Further information on the particular version of SQL Server and the underlying Windows Operating System that
support this type of memory configuration, as well as instructions on how to enable AWE on SQL Server, can be
found in this website (http://support.microsoft.com/?id=274750). For SQL Server 2000 EE with SP4, there is a fix
for AWE which you can download from this website (http://support.microsoft.com/?kbid=899761).

Once you have enabled AWE on your SQL Server, you can set an appropriate min/max server memory thresholds.
Understand that if the operating system does not have enough memory it will request memory from SQL Server, thus
setting an inappropriate min/max server memory will impact on the performance of SQL Server. For a dedicated
database server, the default memory settings for SQL Server should suffice. Note that a value of 0 for min server
memory simply means that SQL Server will dynamically manage its memory.

http://support.microsoft.com/kb/317526
http://support.microsoft.com/?kbid=291988
http://support.microsoft.com/?id=274750
http://support.microsoft.com/?kbid=899761

The Best of SQLServerCentral – Vol. 5

 49

Conclusion

For certain applications running under various Windows operating system, it is possible to tune the memory used by
both the OS and the application. For the OS, the two configurable switches are the /3GB switch and the /PAE switch.
Once configured, an AWE-aware application (such as SQL Server 2000 EE) can be enabled to access memory in
excess of 4GB.

References

• A highly recommended book for the serious DBA is The Gurus Guide to SQL Server Architecture and Internals by
Ken Henderson.

• Further information on Memory Configuration Options for SQL Server can be found at this website:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1a_2f3b.asp

• Further information on PAE can be found at this Microsoft support
website:http://support.microsoft.com/default.aspx?scid=kb;en-us;283037

Eliminating Tape

By Tim Opry

Disk-based Backup in a Small-Business Environment

Overview:

This article is a follow-up to a recent editorial by Steve Jones
(http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=263&messageid=326270) on this topic. There
have been numerous trade journal articles over the past two plus years about the efficacy of using inexpensive IDE or
SATA disks for backup vs tape. The purpose of this article is not to rehash those well documented pros and cons,
only to describe our transition to a home-grown disk based solution.

Environment

Our company is a small financial services firm with approximately 50 employees that utilize a combination of thin
clients and traditional PCs all running MS Windows. The servers are a combination of rack-mounted Dell PowerEdge
servers which are being replaced as they reach their EOL with SuperMicro 1U servers, all of them running W2k or
W2k3. While it is beyond the scope of this article to discuss why we have migrated from Dell to a white-box solution, it
has been my experience over the past many years that if you have the technical expertise in-house, a SMB is much
better served by this type of solution than with the major vendors (Dell, HP or IBM). Even with the highest level of
warranty/maintenance offered, SMBs simply do not have the buying power to get the attention of those firms.
Additionally, the price differential allows you to provide a more robust solution for the average SMB back-office
environment.

From late 2001 until late 2005, we had been using a traditional backup methodology with two LTO (rev 1) tape
devices (DAT prior to that). Each device was capable of 120GB (compressed) and data was backed up using the
latest version of Backup Exec with appropriate agents for SQL, Exchange and open files. We used a traditional tape
rotation sequence and stored a full set of backup tapes at an offsite facility once per week.

As the business grew and with the advent of SOX (Sarbanes Oxley) as well as our own internal disaster recovery
requirements, the backup window and protection provided by the tape devices was reaching the limits of that solution
(both in space and the length of time in the backup window).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/optimsql/odp_tun_1a_2f3b.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;283037
http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=263&messageid=326270

The Best of SQLServerCentral – Vol. 5

 50

Objective

To create a backup solution that would exceed the governmental regulations as well as our internal requirements and
be flexible enough to grow and improve our disaster recovery / restoration requirements. With tape, our exposure for
data loss in the event of total system failure or a disaster (assuming the most recent tape was 100% accessible) was
a minimum of 1 day up to a potential of 1 week. This window did not apply to the actual financial data which is
maintained separately by the custodians, only the normal day to day, routine business data. Regardless, we wanted
to reduce the exposure to a fraction of that, ideally to 1 hour or less (depending on the type of data).

We had been using software imaging for several years. Originally in the form of Ghost to push desktop images to
clients to decrease downtime in system failure and later to the original Power Quest V2i solution for servers. (PQ was
later acquired by Symantec [as was the company that made Ghost], and this solution was recently re-branded as part
of the BackUp Exec family). I had tested the PQ product in the server environment and it worked well, but was limited
to restoring to like hardware. While this was acceptable for the majority of system failures we were likely to
experience, it would not meet our goals for disaster recovery. The thought of having to reinstall and reconfigure 6
servers with all of the associated patches, was not something I wanted to face. The effort of simply keeping the
documentation current for that possibility, was extremely time consuming and tedious.

Solution:

This has been an evolving solution for the past 24+ months and it will continue to evolve and change as hardware
and software solutions improve. The most notable improvement to backup systems that I have seen is Continuous
Data Protection (CDP) solutions. At the time I was researching this almost 2 years ago, there were very few options in
the CDP field and all were outside our budget range. Since that time, there are several vendors in this space
(including an MS solution) and the price point is becoming feasible for an SMB. As such, we are looking at including
CDP to compliment our current methodology.

Since we have the requisite IT experience in house and the market was evolving rapidly due to both technology and
acquisitions (Symantec buying Ghost, PQ, Veritas, etc), I chose to start with a homegrown solution to validate the
plan and then add to and improve it over time.

STEP 1: Purchased an inexpensive 4 disk IDE JBOD enclosure from Promise Technologies and connected it to our
existing backup device (a 1U Dell NAS) via SCSI.

We installed 4, 400GB (largest available at the time) IDE drives and configured it as JBOD, giving us a 1.6TB device
(1.45 usable). This was to be used as nothing more than incremental storage, so the amount of space was more
important than RAID 5. Total cost (2 years ago): Under $1500 (not including the NAS). Of course this same solution
would be much less expensive today and have a greater capacity.

Using the imaging software (V2i) we created weekly base (full) images directly to the JBOD device. We then pulled
the images to our LTO tape drives for offsite storage. Since our total compressed image size at that time was under
120GB, we could store over 2 months worth of weekly images on the JBOD device and move an entire weeks worth
of images onto one LTO tape cartridge.

While using server images improved our restoration time in the event of a normal failure, in the event of a disaster
where all hardware was lost, we were still likely to be facing a full OS installation with data restore, which while an
improvement, failed to meet all of our goals.

STEP 2: Approximately 1-year later, Symantec added the ability to create incremental images. This would allow us to
easily capture incremental changes on an hourly (or less) basis and reduce the likelihood of data loss from 1 day to 1
hour or less. However, we still faced the daunting task of OS reinstallation in the event of total system loss.

STEP 3: This year (2006), Symantec (and others) added the ability to restore an image to totally different hardware.
In the event of a total system loss, we can bring up a system on most any hardware that is capable of running the
imaged software vs being limited to sourcing hardware that is technically similar to the system lost (or keeping spare
parts for emergencies).

The Best of SQLServerCentral – Vol. 5

 51

To test this, we purchased a SuperMicro 1U server with two SATA-II 250GB drives, configured as RAID-1 with a third
drive configured as a hot-spare and redundant power supplies. We had a 2U Dell PowerEdge that was almost 5 years
old that had reached EOL. This was a 5-drive SCSI system with the OS on two drives configured as RAID 1 and the
data partition on 3-drives configured as RAID 5. The new system had twice the total disk space and was a much
higher performance system that cost less than 50% of what a comparable system would cost from Dell or HP IF you
could get a similar configuration which you cannot. The Dell system hosted W2k server configured as a Terminal
Server.

We first migrated the OS and Data partitions (C and D logical devices) to the new hardware. After a phone call or two
to Symantec, (their documentation at the time had no details on how to do this) the system came up and ran
flawlessly. We documented the process, wiped the drives clean and repeated the installation in less than 1 hour!

We then tested upgrading this system to W2k3 knowing that if we had any issues, we could take it back to its original
state in less than 1 hour. The upgrade ran without problems and the server has been running without any problems or
a single event log error for several months.

STEP 4: Get rid of tape! With the increasing size and speed of SATA devices and decreasing prices we purchased a
small 4 drive hot-swappable external SATA-II device from Addonics along with a PCI card and several removable
drive bays that allowed us to connect it to a standard PC. Now instead of pulling the images off to tape each week, we
copy it across our LAN onto a single 250GB SATA II drive, which is then removed and taken offsite. The SATA tower,
card and removable drive bays were around $800 and the cost of the drives only gets cheaper. Granted, you can buy
solutions from Dell, HP, Iomega and many others that do these same tasks, but you will pay appreciable more for the
same functionality.

All of this process is automated using a batch file (some habits die hard) that first deletes the oldest backup set from
the JBOD and then creates a folder for the current set and copies the images and incrementals into a new folder
named for the current week. The imaging software creates a new base/full image of ALL drives on all of the servers
which currently totals about 175GB. Since this is run over the weekend over a gigabit switch, the total time to create
all of the images is less than 8 hours. A copy of the latest images is then moved to the removable SATA drive which
is sent offsite first thing Monday morning. I also use some in-house developed software to copy the images to the
SATA drive and check for errors and send notifications via SMS if problems are detected. (All backup data is both
password protected and encrypted.)

Since the most likely catastrophic event we will experience is a fire and secondarily theft, we needed a way to move
data offsite more frequently than once per week or we still faced the possibility of a one week loss. We accomplish
this by transferring the incremental images offsite via secure FTP. Fortunately, the amount of data we have to push
offsite hourly is relatively small and can be accomplished with our current bandwidth.

Going forward, as we look at integrating CDP into this solution we will also explore moving the incremental CDP data
offsite in real-time as well. In theory this would give us a solution that until recently would be impossible for a SMB. In
the event of a total loss, we can purchase off the shelf components from local vendors and have basic services
restored within 24 hours (assuming hardware availability). I have also tested bringing up base images as virtual
machines. VMWare supports the V2i disk format and I have successfully booted several of my images as virtual
machines this is a great timesaver for testing.

There are some limitations and concerns with imaging software, specifically as it pertains to SQL, Exchange and AD
stores (transactions getting out of sync). These limitations are well documented by the imaging vendors and we do
still backup this data separately each and every day using more traditional (agent based) solutions. The data is still
stored on disk and moved offsite with the images, however I have restored all of these from full and incremental
images without problems in both test and migration scenarios. However, I do understand the potential for failure and
this is yet another reason for my wanting to add CDP to compliment this solution.

Final note

This is meant only to give you a brief overview of our current approach. If you have suggestions on how we can
improve this (within the constraints of a SMB budget), I welcome any and all feedback.

The Best of SQLServerCentral – Vol. 5

 52

There are several areas that I did not mention that are part of our disaster recovery plan and current backup
methodology. Those were excluded primarily as they were not relevant to this context or due to security concerns.
Additionally, I have no affiliation with any of the vendors mentioned. There are many that make these same devices
and software. The ones mentioned are simply those I chose at the time and continue to use.

About the author: I have been involved with computers since the dark ages learning how to program originally in
Fortran using lined paper and punch cards. I have been the partner/co-founder of 3 different software startups, each
having varying degrees of success. Currently in semi-retirement, serving as the ersatz CTO for The Henssler
Financial Group in Atlanta, GA.

Full Text Search Follies
By Robert Pearl

The following story you are about to read is true. In no way is the attempted humor meant to mask the seriousness of
the issue, nor harm, insult or embarrass anyone, except perhaps myself. I write this article to share my experiences
and give you a heads up as to what you might encounter during a database migration from SQL 2000.

One of the most common ways of migrating our databases from SQL Server 2000 to 2005, is the old trusted method
of backup and restore. SQL Server 2005 allows us to restore a 2000 database, and gives us the option of bringing the
compatibility level up to 9.0 (2005).Therefore, it is perhaps one of the quickest, simple, and reliable ways of migrating
the database, ensuring that all data, objects, and users come over.

I know that I have migrated many SQL Server databases in this manner.However, until recently, I ran into some full-
text search (FTS) issues with a particular database where a full-text index and catalog was created on the database,
but never really utilized in production. Nonetheless, several entries with respect to this Full-Text definition were made
into the system tables, and caused some major headaches.

What happened next ranges from the ridiculous to the sublime.Either occurrence I am about to describe is
unacceptable, and certainly would be considered a show-stopper to deploying your SQL2K5 instance into production.
First, take notice of the fact that in SQL 2005, FTS is installed as a separate service/component. Depending on how
you specify the start-up option during the install, usually it will show up in the control panel as 'Automatic' startup.

Quick background on our server resources. We're running SQL Server 2005 64-bit Standard Edition SP1; Windows
Server 2003 R2 x64 Enterprise Edition, 4 Dual-Core Processors (with hyper-threading that's 16 logical CPUs), with 12
GB of purely addressable RAM. One powerful box!

In our environment, when we first attempted to restore the 2000 database to our new 2005 server, we watched the
restore complete successfully, and then the full-text engine kicked in attempting to rebuild the catalog on the
database.Here we watched helplessly, as if witnessing a tsunami approaching but unable to get out of its way. We
monitored the CPU usage and saw it climb incrementally from 0 to 100% flat-lining across all processors, maxing out
memory and page-faulting all over itself. At that point, crucial migration on the line, we checked our pulses as well!

Fortunately, breathing resumed and we were ok, but no such luck for the server.It was hung, and any attempt to
regain control was unsuccessful, leaving us no choice but to reboot the machine.By the way, we did try one of SQL
2005's newest features, the dedicated administrator's connection DAC "BOL: a special diagnostic connection for
administrators when standard connections to the server are not possible. It allows an administrator to access SQL
Server to execute diagnostic queries and troubleshoot problems even when SQL Server is not responding to standard
connection requests." (In our case, Do not Attempt Control :-). However, please do remember to enable the DAC via
Surface Area Configuration for Features, as it might come in handy since it's not enabled by default oops!

The good thing about SQL Server 2005 is that with the help of its very extensive and verbose error logging, we very
quickly realized where the problem was, and identified that Full-Text Search was indeed the causus-belli. We even
were able to reproduce the behavior at-will.I'd say we're now resident experts on how to crash the mightiest of

The Best of SQLServerCentral – Vol. 5

 53

servers. One message appearing in the SQL FT log clued us in, "The full-text catalog monitor reported catalog
"MyCatalog" in database "MyDB" in REINITIALIZE state. This is an informational message only. No user action is
required." No kidding! All joking aside, all the above was useful for our support call with Microsoft.

Upon further review of our logs, we noticed this: "Warning: No appropriate filter was found during full-text index
population for table or indexed view '[MyDB].[dbo].[MyTable]' (table or indexed view ID 'X', database ID
'1784393426'), full-text key value 0x0001E119. Some columns of the row were not indexed" So, it appeared that we
had some sort of corruption with the full-text index, and the problem likely to be with the Filter that is not available for
FTS.

Once we finally got the situation under control, where we would disable the FTS service temporarily while working to
resolve issue, we proceeded to create a simple backup plan to regularly backup our newly migrated 2005 database.
To our horror, when the backup kicked off it failed straight away, and we receive the error:

"Error message when you perform a full backup of a database in SQL Server 2005: Backup failed for Server
'ComputerName\SQLInstanceName' or The backup of the file or filegroup 'sysft_FullTextCatalog' is not permitted
because it is not online"

So, now this was personal.How can we deploy this database and application in production when we can't even take a
backup?!Fortunately, the aforementioned error appears to be a known issue at Redmond, and has a KB-article on
same: http://support.microsoft.com/kb/923355/en-us.

According to the article, "This behavior occurs because a full-text catalog in the database is not online. To perform a
full backup, SQL Server 2005 requires all the database files and full-text catalogs in the database to be online."
Great!So, in order to be able to backup the database, our choices were 1) enable FTS, and therefore crash the
server, or 2) hey, who needs a backup anyway?

Although the article is gives various potential causes and resolutions, it doesn't seem to clearly indicate what
commands, and in what order, to execute to get around the issue.

For example, the KB-article suggests, "If you do not need the full-text catalog any longer, you can drop the
problematic full-text catalog. Then, perform a full backup of the database in SQL Server 2005." Ok, in our case we no
longer needed the catalog. Whew! That sounds simple enough.So I proceed with the system stored
procedure:sp_fulltext_catalog 'AdiosMyCatalog', 'drop'.Result: "Full-text catalog 'AdiosMycatalog' has been
lost. Use sp_fulltext_catalog to rebuild and to repopulate this full-text catalog" Lost!? I don't remember losing it
anywhere. I looked around for it, but no luck.

Back to the KB-article for more clues:

The full-text catalog folder is either deleted or corrupted.

You did not enable the database for full-text indexing.

The database is restored from a Microsoft SQL Server 2000 database backup. Therefore, the folder of the full-text
catalog in the database does not exist on the server where you restore the database.

Sounds plausible.Full-text is not enabled on the database, and it was restored from a MS SQL 2000 backup. Must be
getting warmer. I figured I'd do as the error msg says (not as the error msg does), and attempted to rebuild the
catalog (thinking it would at least refresh any values it needed, to then be able to successfully drop the catalog.) Upon
query execution, I get my confirmation:

"Full-Text Search is not enabled for the current database. Use sp_fulltext_database to enable Full-Text search." A no-
brainer. Use MyDB, sp_fulltext_database 'enable' slam dunkwhat the !@#$%? "Full-text catalog 'AdiosMycatalog'
has been lost" Again?? Seems now that I was lost too.

http://support.microsoft.com/kb/923355/en-us

The Best of SQLServerCentral – Vol. 5

 54

After some research on the 'Net searching for fellow survivors of "Lost" no, not the TV show
(http://www.tv.com/lost/show/24313/summary.html), I came across a potential solution in the MSDN forums.
Suggested was the following:

Look at the sysfulltextcatalogs table in your database: SELECT * FROM sysfulltextcatalogs. If there is an entry,
get the Ftcatid and look your sysobjects:

SELECT * FROM sysobjects

 WHERE ftcatid IN (SELECT ftcatid FROM sysfulltextcatalogs)

OR

SELECT * FROM sysobjects WHERE ftcatid > 0

If you encounter the objects, update the sysobjects table:

UPDATE sysobjects SET ftcatid = 0

 WHERE ftcatid > 0

 or IN (SELECT ftcatid FROM sysfulltextcatalogs)

Well, I had nothing to lose, since I already lost my catalog ok, enough with the "lost" jokes. I certainly won't forget the
wisdom of the poster who warns us in red letter italics (I kid you not): "But, remember Backup Full before
[running] these procedures"I took my chances. After executing the above statements, I proceeded to run
the below system stored procs, in the following order:

sp_fulltext_table 'SoLongMyTable', 'drop'

go

sp_fulltext_database 'enable'

go

sp_fulltext_catalog 'HastaLaVistaMyCatalog', 'drop'

go

sp_fulltext_service 'clean_up'

go

And, alas, no error messages! All was not lost. :-P Definitely, a positive sign, but now for the ultimate test the
database backup. Right-click >> Tasks >> Backup.After several minutes, I was satisfied that indeed the issue has
been resolved, and I had my first good backup of the SQL Server 2005 database.

Now, although the above full-text SQL statements are valid in SQL 2005, here is a list of those that are deprecated
and its replacements.Keep in mind that they may be removed altogether in future versions of SQL Server.

DEPRECATED REPLACEMENT

sp_fulltext_catalog CREATE/ALTER/DROP FULLTEXT CATALOG

http://www.tv.com/lost/show/24313/summary.html

The Best of SQLServerCentral – Vol. 5

 55

sp_fulltext_table

sp_fulltext_column

sp_fulltext_database

CREATE/ALTER/DROP FULLTEXT INDEX

ALTER FULLTEXT INDEX

sp_help_fulltext_tables

sp_help_fulltext_columns

sp_help_fulltext_catalogs

sys.fulltext_indexes

sys.fulltext_index_columns

sys.fulltext_catalogs

It might be worthy to note that upgrading to SQL Server 2005 from a previous SQL Server version is supported by the
SQL Server 2005 Setup program. You can also migrate databases from previous SQL Server versions to an instance
of SQL Server 2005.If you have full-text indexes present, the upgrade process marks your databases as full-text
disabled, and hence catalogs must be repopulated. Since this operation can be time and resource consuming, it is not
run automatically by the setup.Therefore, it is quite conceivable that because we chose to migrate our database via
backup/restore, we did not have the full-text properly disabled. So plan carefully and consider what is the best
upgrade method based on your current database environment.

There is one more solution that was suggested by another poster, which has yielded positive results. Make sure
you're MSSQL 2005 instance is on SP1, then right-click, tasks, and select 'Detach' to detach the database. Uncheck
the option "Keep Full Text Catalogs". Then, reattach the database by right-clicking, tasks, 'Attach', and search to the
path of the data files. The backup now completes successfully!

Many thanks to those folks out there who posted their similar issues and resolutions it was indeed a great
help.Subsequently, I requested a full-refund from Microsoft support, for being a known issue, yet unable to get to a
quick resolution.I'm still waiting to hear back from them, I guess their server is hung indefinitely.

Written by: Robert Pearl, President
Pearl Knowledge Solutions, Inc.

rsp05@pearlknows.com
http://www.pearlknows.com

Copyright 2007 - All Rights Reserved.

Note: Not to be reprinted or published without express permission of the author.

SQL Stored Procedure to Log Updates, Independent of Database
Structure
By Keren Ramot

Have you ever needed a quick, retroactive solution to track changes on your database? Well, if youre a good system
designer you wouldn't, but when contracting for clients you may find often that the characterization of the project is
ever changing, and there is only so much you are able to foresee.

When working with multiple clients, with only a certain amount of hours dedicated to each project, you may want your
patches to be applicable for multiple projects. The following is such a patch. It functions to track updates done through

mailto:rsp05@pearlknows.com
http://www.pearlknows.com/

The Best of SQLServerCentral – Vol. 5

 56

the website, storing information such as the user information, the page on which the action took place, the old value
and the new value of the changed information and a date time stamp.

THE LOG TABLE

Once you know what information you'd like to store you can easily knockoff stage one of the process by creating the
log table. It may look something like this:

LogID int 4

TableName NVARCHAR 100

RecordNumber int 4

ActionBy NVARCHAR 50

ActionPage NVARCHAR 100

ChangeClmn NVARCHAR 100

OldValue NVARCHAR 75

NewValue NVARCHAR 75

ActionDate datetime 8

- The LogID is just a unique identifier

- The TableName, RecordNumber and ChangeClmn would indicate where the change took place in the database

- We need the OldValue and the NewValue of the field.

The field's length would have to be as long as the longest field in the database that is being tracked. If your database
has fields too big to be tracked, you may want to consider truncating them. You can maintaining smaller OldValue and
NewValue, but keep in mind that if you have a field that's say a 1000 characters long, but you would only like to
maintain 250 characters, if the field is changed outside of the first 250 characters, it will not be logged as a changed
field. This will become clearer as you read on.

Some of you may argue that the old value is not necessary, and indeed it isn't if you store the initial values, but aside
from the fact that for the sake of reporting it would be much easier to have the old value and the new value in the
same record, one would also have to assume that this table is going to grow rapidly and you may need to archive
records at some point, then you would potentially have to go between the log table and the archived tables to get the
old values.

- ActionBy would store the user information It would be a char if you would like to store the user name, or an integer if
you would like to associate it with a login table or a user table.

- ActionPage would be the name of the page the action was taken on.

- ActionDate would be a getdate()

The Best of SQLServerCentral – Vol. 5

 57

THE PLAN

If you weren't interested in the client information (the user and page name), and didn't want to target certain pages on
your site, rather then tracking all the pages and changes made directly on your database, the easiest way to create
such a log would be through triggers. Of course, these triggers would be database specific, and you would have to
write one for each and every table you want to track.

If you really really are willing to do just about anything to avoid coding these triggers one by one, keep reading. You
would be able to run lines 15 trough 91 in query analyzer to automatically produce these triggers. I am sure that you
would find this method to be a bit splergy with the system resources relative to the resources a simple hard coded
trigger would require.

In order to track user and page information, as well as being able to track only targeted pages, you would have to
make some code changes. A good patch constitutes the fewest possible changes to existing code specially when that
code is already tested, or god forbid already running on a live site.

Depending on your work methods, you may find that often the least intrusive way to add such tracking functionality as
far as your code is concerned, would be to change the stored procedure calls. A lot of us maintain separate include
files for stored procedure calls, and would only have to go over one directory in the website. If you were to reroute
your existing stored procedures through one main stored procedure, you wouldn't have to change the stored
procedures them selves, just the code that calls them.

Now, the stored procedure would take care of carrying the user and page information on to the database, but as you
may have suspected getting the old values is a bit more complicated.

Getting the old value with a trigger is simple, you simply ask for the deleted value, something that can't be done in a
stored procedure. In a stored procedure you would select all the fields that are about to be updated before the update
occurs, and store them into variables. That would require changing the original stored procedure. If you were to do
that, you might as well add 2 more parameters to be passed from the code that calls the stored procedure (ActionBy
and ActionPage) and then have the stored procedure insert records into the Log table. This method would force you
to change all your update stored procedures, change the code calling these procedures, and would only apply to the
one project.

So how do you maintain a log that contains the user information (something a trigger alone can not do), and get the
deleted values of the updated fields, without massive changes to your project and the ability to apply it to any project?
Well, as you may have already gathered it would have to be a combination of the 2. This brings me to the plan:

A routing stored procedure would create a trigger on the table you are about to update, run your stored
procedure, and then drop the trigger.

THE ROUTING STORED PROCEDURE

A routing stored procedure would expect the following parameters:

• @SPName would pass the name of the stored procedure to be run.
• @str1 would pass the parameters for the @SPName stored procedure.
• @TableName would pass the name of the table on which the trigger should be created.
• @RecordId would pass the value of identifier of the table
• @OpName would pass the name of the user making the changes.
• @PageName would pass the name of the page the action was taken on.

Rules of passing the @str1:

1. Make sure Null values don't have quotes.

The Best of SQLServerCentral – Vol. 5

 58

2. Bit values don't come in as true/false but as 1/0
3. Each string is surrounded by quotes

You may create a class to pass these variables to the stored procedure. That way you will not have repeated code on
your site. In ASP the class may look something like this:

Editor’s Note: The class code is available at www.sqlservercentral.com

And the call to it would look like this:

<%

 set SObj = New SPRouter

 SObj.Connection = objConnection

 'get connection string

 SObj.addParameter Request.form("FieldName")

 'get the form field from a post form

 Sobj.StoredProcedure="StoredProcedureName"

 'stored procedure name

 Sobj.ReferID= 1

 'record ID

 Sobj.TableName="table_name"

 'updated table name

 Sobj.Operator = Session("Operator")

 'User name

 Sobj.PageName=request.ServerVariables("SCRIPT_NAME")

 'User location

 Sobj.SPRouterForLog

 Set Sobj=Nothing

%>

The sorted procedure will look like this:

CREATE PROCEDURE dbo.SPRouterForLog

(

@SPName NVARCHAR(50),

The Best of SQLServerCentral – Vol. 5

 59

@RecordId NVARCHAR(10),

--The record ID doesn't have to be passed to the SPRouterForLog.

-- You can get that identifier from the syscolumns table.

-- The syscolumns would be discussed below.

@TableName NVARCHAR(100),

@OpName NVARCHAR(50),

@PageName NVARCHAR(50)

)

AS

 --Do something

Go

THE TRIGGER

What does the trigger need to do? To simplify, it needs to find the updated values, and for each of those values insert
a record into the tbl_log with the old value, the new value, the database location information, and the user and page
information.

How would we go about doing that? We would have to iterate through each of the updated columns and compare the
old value to the new value. The general idea is as follows:

Select * from inserted

Select * from deleted

For each column

 If Deleted <> Inserted

 Insert values into tbl_log

Next

Getting the column names
In order to compare the columns, we need to know the column names. The column names can be easily obtained
from the syscolumns table or information_schema.columns.

The syntax would be a followed:

SELECT name

 FROM syscolumns

 where id = object_id('''+@TableName+''')

Iterating through the columns one by one
The iteration can be done using the colid from the syscolumns
The simplest syntax for looping in SQL would be with a cursor. And the syntax is as follows:

The Best of SQLServerCentral – Vol. 5

 60

declare @colid int declare curFields cursor fast_forward for

select colid, name from syscolumns where id = object_id(''+@TableName+'')

open curFields

fetch curFields into @colid, @tmpName

while @@fetch_status = 0

begin

 --****Compare your values, insert your record****

end

fetch curFields into @colid, @tmpName

end

close curFields

deallocate curFields

Of course, a cursor will eat up your system resources. Which is why I suggest iterating with a while loop, like so:

Editor’s Note: The code is available at www.sqlservercentral.com

Columns_updated()
We are going to iterate through all the columns in the table, but there is no reason to compare columns that have not
been updated. For the sake of shortening the process, we should make sure the column has been updated.
Unfortunately the syntax "if updated(@tmpName)" will not work. So we shall use the columns_updated() function.

if (substring (columns_updated(), 1+ round ((@CurrentRowId - 1) / 8, 0), 1)

 & power (2, (@CurrentRowId - 1) % 8) <> 0)

 BEGIN

 --Do your thing

 END

Columns_updated() brings back a varbinar(8 base), so it needs to be formatted like shown above.

The fact that a field has been updated, is no guarantee that it's value has changed. We would still have to compare
the old value against the new value.

Comparing the values

At the point of compartment we would want to do something like this:

if @new<>@old

 begin

 --insert

The Best of SQLServerCentral – Vol. 5

 61

 End

Unfortunately, the query "SELECT @old=@tmpName FROM deleted" will bring back the column name and not the
field value. So we will be forced to get the value from an executable. Like so:

DECLARE @old varchar(75),@tmpName sysname ,@subsql NVARCHAR(200)

SELECT @subsql = N''SELECT @old = convert(varchar(75), d.''

 + @tmpName+'') from deleted as d ''

EXEC sp_executesql @subsql, N''@ old varchar(75) OUTPUT'', @ old OUTPUT

But deleted would not work in an executable, because it is outside the trigger, which means that
we would have to create a temp table, and then get the value from that table:

SELECT * INTO #deleted FROM deleted

SELECT @subsql = N''SELECT @old = convert(varchar(75), d.''

 + @tmpName+'') from #deleted as d ''

EXEC sp_executesql @subsql, N''@old varchar(75) OUTPUT'', @old OUTPUT

When creating temp tables, we must make sure they don't already exist. A good way to do that, would be giving them
dynamic names. The way I chose is creating a random number to be added to the name by using the Rand()
function:

declare @VarRandom NVARCHAR(50)

set @VarRandom=ltrim(str(replace(Rand(), '.', '')))

-- Creates a random number as a string

SELECT * INTO #deleted'+@VarRandom+' FROM deleted

SELECT @subsql = N''SELECT @old = convert(varchar(75), d.''

 + @tmpName+'') from #deleted'+@VarRandom+' as d ''

EXEC sp_executesql @subsql, N''@old varchar(75) OUTPUT'', @old OUTPUT

Putting everything together:

Editor’s Note: The code for this is available at www.sqlservercentral.com

Now, all that's left is to call the stored procedure to update the table, and then drop the trigger from the table.

declare @strSqlExec NVARCHAR(4000)

set @strSqlExec=@SPName+' '+@str1

EXEC (@strSqlExec)

drop trigger PreUpdateTrigger

The Best of SQLServerCentral – Vol. 5

 62

GO

LIMITATIONS

This patch will not work if you try to log a text, ntext or image datatype.

It's also highly recommended to maintain small field lengths for a couple of reasons:

• The practical reason would be that the @str1 can only sustain so many characters, depending on the length you
set it to. Your updated values including the commas and the apostrophes can not exceed the length of the @str1
string.

• The methodological reason would be that certain field changes are illogical to store. If you have a comments field
that's an NVARCHAR 4000, why would you want a log of every time a comma was added on there? Maintaining
these changes would reek habit on your system's resources - Your tbl_Log oldValue and newValue would have to
be a datatype of at least that length, and querying the log table would require sorting through more unnecessary
records and pulling much bigger datatypes then necessary.

If you already have big datatypes in your database, while you do have to make sure that the @str1 is not exceeded,
you don't have to go back and make changes to your database to instate this patch. All you need to do is truncate
these values when you convert them (@old = convert(varchar(75), d.''+@tmpName+'')), keeping in mind that only a
change within the first however many characters you are truncating it to would be recorded in the tbl_log.

IN CONCLUSION

This cool little patch, while not being the most efficient way to deal with such functionality, is certainly one of the
fastest ways. It took me a couple of highly frustrating days to come up with it, and I would like to take this opportunity
to thank my co-worker and good friend Tejal Shah for all her help and for always supporting my crazy ideas.

Identifying Unused Objects in a Database
By Leo Peysakhovich

Recently, when I chatted about SQL Server issues, I found the following email: "Is anyone aware of any
freeware/shareware tools that can assist in identifying unused objects in a database? I have inherited a database
from a previous developer, and there seems to be a lot of unused database objects
in the database. I know than Apex SQL clean can do the job, but my boss won't agree to the purchase the tool. Any
suggestions would be appreciated."

How many times have we had such an answer from the boss! So, I started to check the ways to define the unused
objects without using any tools. I understand that tools may do the job better but I was interesting to do it myself at
least just for basic analysis and for fun.

You know that in many cases deletion of unused objects will help make easier and quicker development maintenance
and may improve the efficiency and the performance of a database. There are many methods that can be used. At
the end, the main task is to answer what objects were not used for the month or two. I am saying a month or two
because the time depends on the fact that a database may be used not only by the applications but by the backend
processes as well. For example, in my company we have daily, weekly and monthly processes that define the time of
how often object may be used. The task can be achieved with many methods, one of them by using SQL Profiler, but
it will require keeping the tool running constantly for a long time which is not practical and may even degrade the
system's performance.

In my company the task becomes a little bit easier by knowing the fact that any database can be accessed only via
call to a stored procedure. E.g. I have to split the task to the 2 sequential subtasks:

The Best of SQLServerCentral – Vol. 5

 63

1. Find unused stored procedures and drop them
2. Find the objects that are not referenced by any stored procedure and are not lookup tables at the same time.

The main idea of my method is to constantly query the system cache to find the procedures that have no execution
plan for long periods of time. This can be achieved by using system table syscacheobjects which contains information
on how the cache is used. Syscacheobjects belongs to the master database. At first glance, it may be hard to fully
appreciate the value of this technique and the information produced by the output report but the method is very easy
and provides a very accurate picture for the unused stored procedures. The technique is not as flawless as it may
appear, but it offers a good available way for DBAs to find unused stored procedures, functions and the other objects
by checking the database-execution plans.

Let's see the step by step and ideas and implementation. Will check an idea by analyzing the cache behavior for one
procedure USP_Checkuser

 select name, id from sysobjects where name = 'USP_Checkuser'

name id

--- -----------

USP_Checkuser 1093578934

select bucketid, cacheobjtype, objtype, objid, dbid

 from master.dbo.SYSCACHEOBJECTS

 where dbid = 6 and objid = 1093578934

bucketid cacheobjtype objtype objid dbid

---------- ----------------- -------- ----------- ------

545 Executable Plan Proc 1093578934 6

545 Compiled Plan Proc 1093578934 6

sp_recompile 'dbo.USP_Checkuser'

Object 'dbo.USP_Checkuser' was successfully marked for recompilation

select bucketid, cacheobjtype, objtype, objid, dbid

 from master.dbo.SYSCACHEOBJECTS

 where dbid = 6 and objid = 1093578934

bucketid cacheobjtype objtype objid dbid

----------- ----------------- -------- ---------- ------

The Best of SQLServerCentral – Vol. 5

 64

Exec dbo.USP_Checkuser

go

select bucketid, cacheobjtype, objtype, objid, dbid

 from master.dbo.SYSCACHEOBJECTS

 where dbid = 6 and objid = 1093578934

bucketid cacheobjtype objtype objid dbid

---------- ----------------- -------- ----------- ------

545 Executable Plan Proc 1093578934 6

545 Compiled Plan Proc 1093578934 6

If you would like to make sure that object is marked for recompilation the next statement will show you the changes in
object base schema and schema versions:

select name, id, base_schema_ver,schema_ver from sysobjects

 where name = 'USP_Checkuser'

BEFORE RECOMPILATION

name id base_schema_ver schema_ver

--- ---------- --------------- -----------

USP_Checkuser 1093578934 48 48

AFTER RECOMPILATION

name id base_schema_ver schema_ver

--- ---------- --------------- -----------

USP_Checkuser 1093578934 64 64

As you can see the fields base_schema_ver and schema_ver are changing the value from 48 to 64. Every time the
procedure will be marked for recompilation the field's value will be changing.

The Best of SQLServerCentral – Vol. 5

 65

Step one is to cleanup the cache by using the stored procedure sp_recompile that causes stored procedures and
triggers to be recompiled the next time they are run. Or DBCC FREEPROCCACHE can be used to clear the
procedure cache. Freeing the procedure cache would cause, for example, an ad-hoc SQL statement to be recompiled
rather than reused from the cache. While you do this the object name and id can be written into the table to show the
time the cache for the object was cleared.

create table MONIT_ObjectRecompilation (

 MOR_ID int not null identity(1,1),

 SEQ_ID int,

 DB_NM varchar(50),

 Object_NM varchar(200),

 ObjectID int,

 Object_type varchar(2),

 Status char(1),

 -- R - recompiled;

 -- S - from syscaheobject table

 Create_DT datetime default(getdate()))

The next step is to add each existing object while marking it for the recompilation. It can be done dynamically by the
next batch.

Begin

 declare @minid int,@maxid int, @cmd Nvarchar(1000)

 , @dbnm varchar(50), @seq_id int, @objectid int

 declare @tmp table (objectid int, rcmd varchar(1000), tid int identity(1,1))

 set @dbnm = db_name()

 select @seq_id = max(seq_id) from dbo.MONIT_ObjectRecompilation

 set @seq_id = ISNULL(@seq_id,0) + 1

 insert into @tmp(rcmd, objectid)

 select 'EXEC sp_recompile ['+ name + ']' , id

 from sysobjects

 where type in ('P', 'FN', 'TR', 'TF')

The Best of SQLServerCentral – Vol. 5

 66

 select @minid = 1, @maxid = max(tid) from @tmp

 while (@minid <= @maxid)

 begin

 select @cmd = rcmd, @objectid = objectid from @tmp where tid = @minid

 EXEC sp_executesql @cmd

 insert into dbo.MONIT_ObjectRecompilation

 (SEQ_ID, DB_NM , Object_NM, objectID, Object_Type, Status)

 select @seq_id, @dbnm, name, id, type, 'R'

 from dbo.sysobjects

 where id = @objectid

 select @minid = @minid +1

 end

end

Next step will be inserting into the table the objects that are not recompiled yet. I setup a job that inserted a not
compiled list of objects to the table. The job is running every 10 minutes.

declare @dbnm varchar(50), @seq_id int

set @dbnm = db_name()

select @seq_id = max(seq_id) from dbo.MONIT_ObjectRecompilation

set @seq_id = ISNULL(@seq_id,0) + 1

insert into dbo.MONIT_ObjectRecompilation (SEQ_ID, DB_NM, Object_NM, objectID, Object_Type,
Status)

 select @seq_id, @dbnm, so.name, so.id, so.type, 'S'

 from dbo.sysobjects so

 left join master.dbo.SYSCACHEOBJECTS sc

 on sc.objid = so.id

 left join master.dbo.sysdatabases sd

 on sd.dbid = sc.dbid and sd.name = @dbnm

 where so.type in ('P', 'FN', 'TR', 'TF')

The Best of SQLServerCentral – Vol. 5

 67

 and sc.objid is null

This job will run for a month before I can define a usage of the stored procedures and functions. Then, let's find
unused procedures and functions. If object name is in every insert for non recompiled object then the object is never
was used.

declare @seq_id int

select @seq_id = max(seq_id) from adm_support.dbo.MONIT_ObjectRecompilation

select DB_NM, Object_NM, objectID, Object_Type, Status, count(*)

 from dbo.MONIT_ObjectRecompilation mor

 where mor.status = 'S'

 group by DB_NM, Object_NM, objectID, Object_Type, Status

 having count(*) = (@seq_id - 1)

Seq_id 1 was used to get all recompiled objects.

The research can be extended by usage of additional columns from table syscacheobjects that will allow you to
analyze all databases on a server, how often object is used, and get over unknown ad-hoc queries and users who
runs them as well as to see the first 128 characters of the statements.

cacheobjtype nvarchar(34) Type of object in the cache:

Compiled Plan
Executable Plan
Parse Tree
Cursor Parse Tree
Extended Stored Procedure

objtype nvarchar(16) Type of object:

Stored Procedure
Prepared statement
Ad hoc query (Transact-SQL submitted as language events from
isql or osql, as opposed to remote procedure calls)
ReplProc (replication procedure)
Trigger
View
Default
User table
System table
Check
Rule

objid int One of the main keys used for looking up an object in the cache.
This is the object ID stored in sysobjects for database objects
(procedures, views, triggers, and so on). For cache objects such as
ad hoc or prepared SQL, objid is an internally generated value.

dbid smallint Database ID in which the cache object was compiled.

uid smallint Indicates the creator of the plan for ad hoc query plans and
prepared plans. -2 indicates the batch submitted does not depend

The Best of SQLServerCentral – Vol. 5

 68

on implicit name resolution and can be shared among different
users. This is the preferred method. Any other value represents the
user ID of the user submitting the query in the database.

usecounts int Number of times this cache object has been used since inception.

sql nvarchar(256) Procedure name or first 128 characters of the batch submitted.

Conclusion.

Your database may have many stored procedures, tables and views that aren't being used anymore but unless you
determine which of your objects fall into this category you will be stuck with them forever. The technique described in
the article is not as flawless as it may appear, but it offers a good available way for DBAs to find unused stored
procedures, functions and the other objects by checking the database-execution plans without buying any third party
tools. The captured information also may offers some great clues about what database objects you need to pay
attention.

Upgrading a Database SQL 2000 to SQL 2005
By Sachin Samuel

Introduction

The objective of this white paper is to lay down a step-by-step guide for a SQL Server 2005 upgrade from SQL Server
2000. All the steps, explained in this document, are based on experience with the recent upgrade done for one of our
Customer. The database was VLDB (very large database) having size of 470 GB and hosted on an active/passive
cluster.

In this document, I will also explain about the tools used for planning the SQL 2005 upgrade, the upgrade process (In-
place upgrade), and the rollback strategy. But the most important point is to achieve a smooth and trouble free
transition, for which you must devote ample good time in planning and testing of the upgrade.

Why Upgrade to SQL Server 2005

SQL 2005 server contains many new features and improvements as compared to the old version. One or more can
be the compelling reason for upgrade. A few of the important features are as below.

1. Online database mirroring
2. Maintaining stronger and more flexible security.
3. Greater manageability for VLDBs.
4. Better development features.
5. Better business development solutions.

You can download complete list of features from this URL:
http://download.microsoft.com/download/2/4/5/2456889a-df87-4def-a553-
91f15b4e8c00/SQLServer2005_WhyUpgrade_final.doc

Methods to Upgrade

There are two methods to upgrade SQL Server 2000 to SQL Server 2005.

1. In-place upgrade

http://download.microsoft.com/download/2/4/5/2456889a-df87-4def-a553-91f15b4e8c00/SQLServer2005_WhyUpgrade_final.doc
http://download.microsoft.com/download/2/4/5/2456889a-df87-4def-a553-91f15b4e8c00/SQLServer2005_WhyUpgrade_final.doc

The Best of SQLServerCentral – Vol. 5

 69

2. Side by Side Upgrade

In-place upgrade: SQL Server 2005 gives you ability to automatically upgrade an instance of SQL Server 2000 or
7.0 to SQL Server 2005. The reason it is called in-place upgrade is because a target instance of SQL Server 2000 or
7.0 is actually replaced with a SQL Server 2005 instance. You do not have to worry about coping data from the old
instance to new instance as the old data files are automatically converted to new format. This upgrade method is the
easiest way to upgrade the database to newer version.

It's because the files are automatically upgraded without any manual intervention. The number of instances and
server involved in this type of upgrade is always one. This upgrade method cannot be used if you want to upgrade
only a single database.

Side-by-Side Upgrade : In this upgrade method, a new instance is created on the same server or in a new server. In
this upgrade method the old database instance runs in parallel to the old legacy database. So as the old instance is
untouched during this type of upgrade, the old legacy database is still available and online for the application.

In this upgrade you will have to manually move the data files and other supporting objects (Jobs, DTS packages etc.)
to the new instance.

Choosing an Upgrade Method

Lets discuss about the advantages and disadvantages of each method.

In-place upgrade advantages:

1. It's easier and faster, especially in small systems.
2. It's mostly an automated process
3. The instance will be offline for a minimum amount of time.
4. The resulting instance after upgrade will have the same name as the original, as the new setup will replace the

older version.
5. No additional hardware is required.

Disadvantages:

1. It's very complex to rollback.
2. Not applicable in scenarios where you want to upgrade a part of system like upgrading just one single databases.
3. You cannot run an upgrade comparison after doing the upgrade.

Side-by-Side Upgrade advantages

1. More control over the upgrade, as you can upgrade the components, which you want to.
2. You can keep you application running even when you are installing SQL 2005 as the old instance or server will be

available.
3. Easy to do a rollback as the original database server is untouched.

Disadvantages:

1. You might need additional hardware resources in terms of disk space, CPU and RAM.
2. Manual intervention is required to migrate databases, Jobs, logins.
3. There will be change in configuration settings, which are used by the application to connect to the database.
4. More time is required while moving VLDB to the new version of database.

The Best of SQLServerCentral – Vol. 5

 70

Preparing for Upgrade Upgrade Advisor

Upgrade advisor is a tool available to find out your database compatibility and blocking issues while doing the
migration. You can download this tool from this url:
http://www.microsoft.com/downloads/details.aspx?familyid=1470E86B-7E05-4322-A677-
95AB44F12D75&displaylang=en

This tool requires .NET framework 2.0. Later in the document we will discuss, how to use this tool and take benefits
from it.

Upgrade advisor smoothes the transition from an older version to the newer version by anticipating issues/blocking
with legacy databases. The Upgrade Advisor generates reports explaining the upgrade issues and also guidance on
how to resolve them. In addition to analyzing databases and objects, the Upgrade advisor can also analyze T-SQL
queries, by using SQL trace files. When you start upgrade advisor, you will see the welcome screen below.

Fig 1.1

You can launch upgrade advisor by clicking on link, "Launch Upgrade Advisor Analysis Wizard". On clicking on this
link, you will prompt with a window to select components, which can be analyzed by upgrade advisor. You can select
the components or you can click on the detect button. The detect functionality will automatically detect and select the
components which need to be migrated. You cannot specify an instance name in the server name box. In the case
you want to analyze a server with multiple instance, then you have to specify just the name of the server in the server
name box.

Once you have chosen the server name, and have selected the components for analysis, you can click on next button
to reach connection parameter screen. Enter the credentials needed to connect to the server.

In this screen, supply the instance name and login credentials. Click next, and the required details are supplied. If the
login credentials supplied are correct, you will be re-directed to a new screen as below.

http://www.microsoft.com/downloads/details.aspx?familyid=1470E86B-7E05-4322-A677-95AB44F12D75&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=1470E86B-7E05-4322-A677-95AB44F12D75&displaylang=en

The Best of SQLServerCentral – Vol. 5

 71

At this point you will be allowed to choose databases, which you want to run against Upgrade Advisor. If you choose
to analyze all the databases, wizard will also analyze SQL Server configurations settings. It's always a good practice
to choose all the databases in case you are planning to do an in-place upgrade.

You can also run trace files against upgrade advisor. This way you will be able to analyze any adhoc query getting
executed from application. The recommended SQL profile template is SQLProfilerTSQL_Replay, as this will have
unique number of queries.

Fig 1.4

On clicking next, the Upgrade Advisor will prompt you to analyze components you selected. Below is the screen shot.
You can analyze either all the DTS packages on the server or any specific DTS packages saved in a file.

At the end of the wizard, you will have a chance to confirm all the options you have selected. Once confirmed by
clicking on "Run" button, Upgrade Advisor analyzes each selected database and components and when done, it

The Best of SQLServerCentral – Vol. 5

 72

saves the report on the default path of logged in user. The reports are saved in XML format, for each component. You
can launch the Report viewer to view the reports generated.

Once done, you can launch the report viewer to check the report. You can also apply filter on the report to check
analysis reports for a specific component.

Each report has got its own importance level. Red X symbol means that this error needs to be fixed before upgrading.
A yellow triangle indicates that additional action needs to be taken once upgrade is done.

The "When to Fix" column indicates when you should address the error. Any error having "Before" as the value in
"When to fix" need to be addressed immediately as this error can be blocker for the upgrade. For example in the
previous screen shot, there is an error, which says, "Read-only Database cannot be upgraded". This is because if the
database is set to read only mode, SQL Server setup won't be able to upgrade it by running scripts on it.

You can expand each report as shown above screen shot to check the objects causing the error and how to resolve
it. This can be done by clicking on link, "Show Affected objects"

Things To Do

I will break this section into three parts "Before upgrade", "During upgrade" and "After upgrade". Please carefully note
all points in each part.

Before Upgrade

1. As discussed above, you should run upgrade advisor for all databases (including system databases) and fix any
issue/blocker for upgrade.

2. Take proper down time before starting the upgrade. The outage required would depend upon the size of the
databases and the environment in which database servers are hosted. In my case we took 48 hours of downtime.

3. Once all the issues and blockers are solved, and all applications are closed, take complete backup of all the
databases (including master, model and msdb).

The Best of SQLServerCentral – Vol. 5

 73

4. Also take transactional backup for all user databases and the disable all the jobs including jobs for taking full
backups, jobs to defrag and other maintenance plans.

5. It is also recommended to take an image of your database server, this can be very handy in case you will have to
rollback.

6. in case you are planning to use Reporting Services in the future, be sure to install IIS on all the nodes of SQL
Server. For this you will require the Windows OS CD.

7. If the operating system of the server is Windows 2003, make sure that Windows service pack 1 is installed. This
needs to be done on all the nodes of cluster in case the database server is on Failover Cluster environment.

8. You can save upgrade time by installing a few prerequisites in the database server. They are .Net 2.0 framework
and SQL Native Client. in case you have servers on cluster, install these setups on each node.

9. Get ready with the new SQL 2005 DVD and the edition you want to install. Also download the latest service pack
(SQL Server 2005 SP2) and some cumulative hotfixes. Keeping them ready will save time.

10. Make sure that you have enough space in the drive where SQL Server 2000 is installed in case of in-place
upgrade. At least 2 GB will be required.

11. Fulltext indexes applied on tables in SQL 2000 are not compatible with SQL Server 2005. Therefore they should
be removed from all the database in case there is any. Once they are removed, execute the below script. This will
remove any fulltext index left. It is recommended that you execute the script under a login id having system
administrator privileges.

 exec sp_configure 'allow updates',1

 reconfigure with override

 update sysobjects set ftcatid = 0 where ftcatid <> 0

 declare @a int

 set @a = 1

 while @a > 0

 begin

 set rowcount 300000

 delete from sysfulltextnotify

 select @a = @@rowcount

 end

 update syscolumns set colstat = colstat & ~16

 update sysindexes set status = status & ~33554432

 update sysobjects set status = status & ~200, ftcatid = 0

 exec sp_configure 'allow updates',0

 reconfigure with override

The Best of SQLServerCentral – Vol. 5

 74

12. Once all the Fulltext indexes are removed from the database(s), detach the user databases, before starting the
upgrade. This is a good practice, as you have your database untouched during the setup goes on. in case the
upgrade fails because of any error you can reattach them on legacy database and continue the production.

During Upgrade

13. Make sure, all the points are taken care from "Before upgrade section".
14. Start installing by clicking SetUp.exe from SQL Server 2005 DVD.
15. The setup program is designed in such a way that it automatically updates the database binaries. It altogether

create a different folder "90" to contain its new binaries. 90 specifies the compatibility of the database. It also
upgrades the other SQL Servers on clusters automatically but only the database engine and not other
components like reporting services or analysis services. This is very important. Therefore you will have to install
other components separately in each node.

You can see the progress of installation on installation screen. in case installation is done on cluster, setup will
populate all the nodes in a drop down list.

16. Once all the nodes are upgraded with the database engine and all components are installed individually on
servers, install the latest SQL Server service pack. This need to be done on all the cluster nodes

17. A reboot may be required to complete the installation due to open file locks during the installation process. If the
installation log does not contain any 3010 error, then a reboot is not required.

After Upgrade

18. Once installation is successfully done on all the nodes, attached the databases.
19. Change the compatibility of all the databases attached to 90. If this step is not performed, you won't be allowed to

use new features from SQL Server 2005. You can use the below script to achieve this:

 EXEC sp_dbcmptlevel @dbname ='<Database Name>', @new_cmptlevel = '90'

 GO

 use [Report]

 GO

 Alter authorization on database:: '<Database Name> to sa

 Alter database [Report] set parameterization forced

 GO

20. Recreate all the full text indexes removed from the databases.
21. Update the statistics for all the databases. This step may take time depending on the size of database. It took me

15 hours to update statistics for all the databases.
22. Once it is done, it's very important to test the application with the new database server 2005.

Conclusion

As discussed in the white paper, SQL Server 2005 is complex but can be made quite straight forward by doing lot of
testing and study. I will recommend to test multiple times to get confidence and a fair idea about entire process.

The Best of SQLServerCentral – Vol. 5

 75

Maximum Row Size in SQL Server 2005
By Andy Warren

I've been using SQL 2005 on a part time basis for a while now (those SQL 2000 servers work pretty good you know!)
and I'm still intrigued at the things I find that have changed the rules of the game. It's pretty commonly known that
SQL pages are 8k, and that the max row size is 8060 bytes (though Steve Jones proved that isn't always the case in
his SQLServerCentral artice, What is the Maximum Page Size in SQL Server 2000? But in SQL 2005, the max
row size of 8060 bytes is even less true than it was before!

Assuming I'm not the only one that still have a SQL2K instance, create a test table as follows:

CREATE TABLE [dbo].[TestTable](

[LargeColumn1] [varchar](8000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,

[LargeColumn2] [varchar](8000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

GO

You should get the following warning:

Warning: The table 'TestTable' has been created but its maximum row size (16025) exceeds the maximum number of
bytes per row (8060). INSERT or UPDATE of a row in this table will fail if the resulting row length exceeds 8060
bytes.

The problem is that this table could work fine for a day, a week, or a lifetime, and then boom, you get bitten by your
bad table design. Just to prove that really happens, let's inject a row and then make some changes:

insert into Testtable (LargeColumn1, LargeColumn2) values ('Blah1', 'Blah2')

update testtable set largecolumn1 = replicate ('0123456789', 800)

At this point LargeColumn1 is 8000 bytes, leaving us the 60 or so bytes for column LargeColumn2. Let's see what
happens if we try to update it with 100 characters:

update testtable set largecolumn2 = replicate ('0123456789', 10)

We get this lovely error:

Msg 511, Level 16, State 1, Line 1
Cannot create a row of size 8113 which is greater than the allowable maximum of 8060.
The statement has been terminated.

In fact, the most we can stuff into LargeColumn2 is an additional 47 bytes. Now suppose we try our scenario on a
SQL 2005 instance, what do you think might happen? The first thing is you get NO WARNING that you're exceeding
the 8060 byte when you run the create table statement . Why? Because it's not a real limit anymore! Here is an
except from BOL (search on row-overflow to find the entire detail):

Surpassing the 8,060-byte row-size limit might affect performance because SQL Server 2005 Database Engine still
maintains a limit of 8 KB per page. When a combination of varchar, nvarchar, varbinary, sql_variant, or CLR user-
defined type columns exceeds this limit, the Database Engine moves the record column with the largest width to

http://www.sqlservercentral.com/columnists/sjones/pagesize.asp

The Best of SQLServerCentral – Vol. 5

 76

another page in the ROW_OVERFLOW_DATA allocation unit, while maintaining a 24-byte pointer on the original
page. Moving large records to another page occurs dynamically as records are lengthened based on update
operations. Update operations that shorten records may cause records to be moved back to the original page in the
IN_ROW_DATA allocation unit. Also, querying and performing other select operations, such as sorts or joins on large
records that contain row-overflow data slows processing time, because these records are processed synchronously
instead of asynchronously.

We can fully populate both columns with no error message:

insert into Testtable (LargeColumn1, LargeColumn2) values ('Blah1', 'Blah2')

update testtable set largecolumn1 = replicate ('0123456789', 800)

update testtable set largecolumn2 = replicate ('0123456789', 800)

This new behavior affects the entire record rather than a single column, and in the worst case you could have parts of
columns bouncing back and forth between in row and out of row storage. Here's another interesting twist; setting the
compatibility level to 70 or 80 on a SQL 2005 instance does not change the behavior - so you could update a SQL
2000 server, set SQL2K compatibility, and still use the new behavior. One side affect of that is that if you had
designed a table in SQL 2000 where the total width exceeded the maximum and always worried that you might get
burned someday this could save you!

I haven't decided if I like the new behavior or not. My Zen side says that there is a time and place for all options, but
the more practical side says that sometimes it's good to have some solid rules to work within. One thing I do dislike is
that the new behavior is silent. If you've been a DBA for a while you probably rely on that warning message to keep
you from creating super wide tables by accident, but now you'll have to work harder and total up the bytes. I think a
new version of the warning message would have been nice, something like this:

Feature Change Warning: The table 'TestTable' has been created but its maximum row size (16025)
exceeds the maximum number of bytes per row (8060). On instances of SQL 2000 and earlier INSERT or
UPDATE of a row in this table will fail if the resulting row length exceeds 8060 bytes. On SQL 2005
instances using any compatibility level there are cases where it is possible to exceed the 8060 byte
restriction. Please see row-overflow in BOL for more information.

Dynamic Management Views and Functions in SQL Server 2005
By S.Srivathsani

Introduction

Dynamic Management views and functions are a new add on feature in SQL Server 2005.In previous versions, to find
out the real time statistics the user had to issue DBCC commands or run profiler.SQL Server 2005 is shipped with
Dynamic management views to ease the troubleshooting process.DMVs and functions have replaced many system
tables and system stored procedures. The information returned by DMVs and functions represents the internal state
data of the server. It gives us information about the health of that instance, helps us in diagnosing problems and
tuning the server accordingly.

DMVs and functions can have server or database scope. The DMVs can be addressed using two, three or four part
names.DM functions can be addressed using two or three part names. Both can be addressed using one part names.
The DMVs and functions exist in the sys schema. So when using the DMVs and functions, they must be prefixed with
sys.

There are around 70 DMVs and functions. Some examples of DMVs and functions are as follows:

The Best of SQLServerCentral – Vol. 5

 77

Database Related DMVs and functions

Sys.dm_db_file_space_usage : This gives information about the file space usage for each file in the tempdb
database. Some of the columns returned by this view are:

1. Database ID
2. File ID
3. Unallocated_extent_page_count - This gives information total number of pages in the unallocated extents
4. User_object_reserved_page_count - Information about the total number of pages allocated from uniform extents

for user objects. The user objects can be:
1. User defined tables and indexes
2. System tables and indexes
3. Global and local temporary tables
4. Table variables

5. Internal_object_reserved_page_count - This gives the total number of pages allocated from uniform extents to the
internal objects. The internal objects are applicable only to tempdb database. These objects can be temporary
tables used for cursor operations, work files used for hash joins and the temporary tables used for sort operations.

The sys.dm_db_file_space_usage can used to troubleshoot insufficient disk space in tempdb.To find the number of
unallocated pages in kb,we can use the sys.dm_db_file_space_usage DMV as follows:

 SELECT SUM(unallocated_extent_page_count) AS [free pages],

 (SUM(unallocated_extent_page_count)*8) AS [free space in KB]

 FROM sys.dm_db_file_space_usage

In the similar way one can find out the space used by internal objects and user objects.If there are lots of temporary
tables used,it affects the performance.So the user can keep a check on the temporary tables created by using
sys.dm_db_file_space_usage DMV.

Execution related DMVs and functions

Sys.dm_exec_sessions - This returns one row per authenticated session established with the SQL Server. Some of
the columns returned by dm_exec_sessions are:-

1. Session_ID
2. Login time
3. Host_name - Host name associated with the session.
4. Program_name - Program name associated with the session
5. Login_Name - SQL Login Name of the user of the session
6. Status: - Status of the session. Can be running, sleeping or Dormant
7. Memory_Usage - Memory usage by each session.
8. Transaction_Isolation_level - Isolation level of the transactions in that session. It can be anything from 0 to 5. 0 =

Unspecified, 1 = ReadUncomitted, 2 = ReadCommitted, 3 = Repeatable, 4 = Serializable, 5 = Snapshot

Example: To determine the number of sessions established by every login:

select

 login_name

 , count(session_id) as session_count

 from sys.dm_exec_sessions

The Best of SQLServerCentral – Vol. 5

 78

 group by login_name

Sys.dm_exec_cursors - Returns the cursors that are open in the databases.

SELECT * FROM sys.dm_exec_cursors(0)

The parameter that is supplied to this DMV is the session id.If 0 is specified, it means the open cursors in
all sessions.

Sys.dm_exec_connections - Returns information about the connections made to the instance of the SQL Server
and the details of each connection.

select a.session_id

 , b.login_name

 FROM sys.dm_exec_connections a ,sys.dm_exec_sessions b

 WHERE a.session_id=b.session_id

The above query gives the connections established by the user along with the session details and login
name.

Sys.dm_exec_cache_plans - Returns the query plans which are cached by the SQL Server. The SQL Server
caches the execution plans for faster processing of queries. With the help of this DMV,the user can know the memory
occupied by the cache objects,the type of the object in the cache,count of the number of cache objects accessing this
cache object,the number of times the cache object has been used.

select * from sys.dm_exec_cached_plans

Some of the columns returned by this query are:

1. BucketID: The ID of the hash bucket in which the plan is cached.
2. Refcounts: Number of cache objects accessing this cache object
3. Usecounts: Number of times this object has been used.
4. Size_in_bytes: The memory occupied by the cache object in bytes.

Index Related DMVs and Functions

sys.dm_db_index_physical_stats - This dynamic management function returns the size and fragmentation
information of the index of a specified table or view.It replaces the DBCC SHOWCONTIG statement.

Syntax:

sys.dm_db_index_physical_stats (

 {database_id | NULL | 0 | DEFAULT}

 , {object_id | NULL | 0 | DEFAULT}

 , {index_id | NULL | 0 | -1 | DEFAULT}

 , {partition_number | NULL | 0 | DEFAULT}

The Best of SQLServerCentral – Vol. 5

 79

 , {mode | NULL | DEFAULT}

)

Arguments:

Database_ID: The ID of the database. If NULL | 0 | DEFAULT is specified, then it considers all the databases in that
instance.
Object_ID: Object ID of the table or view to which the index belongs to.
Index_ID: ID of the index.
Partition_Number: Partition number in the object
Mode: Specifies the scan level. It can be DETAILED, SAMPLED, LIMITED, NULL or DEFAULT. LIMITED is the
fastest. It scans only the parent level pages of an index and not the leaf level pages. The SAMPLED mode returns
statistics based on a 1 percent sample of all the pages in the index or heap. If the index or heap has fewer than
10,000 pages, DETAILED mode is used instead of SAMPLED. The DETAILED mode scans all pages and returns all
statistics.

Example: To find the information about all the databases in the instance of that SQL Server:

select *

 from sys.dm_db_index_physical_stats(NULL,NULL,NULL,NULL,NULL)

Sys.dm_db_index_physical_stats helps in detecting the fragmentation percentage of the index. The
avg_fragmentation_in_percent column returned by Sys.dm_db_index_physical_stats determines the fragmentation
level of the index. It should be close to zero for maximum performance.The acceptable limits are between 0 and
10%.If the fragmentation percentage is less than 30%,consider reorganizing the index.If it is grater than 30%,rebuild
the index. For example:

select object_id

 , index_id

 , avg_fragmentation_in_percent

 from sys.dm_db_index_physical_stats(db_id(),object_id('dbo.databaselog'),NULL,NULL,NULL)

Now here the avg_fragmentation_in_percent is higher than 30% for index_id 0.So we need to rebuild the index.

Sys.dm_db_index_usage_stats - It returns the number of counts of the different operations like seeks, scans,
lookups, user updates etc. and the timings each type of operation was last performed.

The Best of SQLServerCentral – Vol. 5

 80

Operating System Related DMVs and functions

Sys.dm_os_memory_objects : Returns the memory objects that are currently allocated by SQL Server.

Sys.dm_os_performance_counters : This DMV makes it possible to query a view directly to capture the SQL
Server counters related to the instance.Some of the counters associated with SQL Server are:
MSSQL:Locks
MSSQL:Databases
MSSQL:Broker Statistics
MSSQL:Transactions
MSSQL:Memory Manager

This DMV can be used to obtain one SQL Server counters.For counters related to memory, physical disk the user has
to run the performance monitor.

Sys.dm_os_wait_stats : This gives information about the threads that waiting for resources in milliseconds. With the
help of this information the user can tune the applications for more concurrency and better performance. This DMV
can be used instead of DBCC SQLPERF('WAITSTATS'). The columns returned by this DMV are:

1. Wait_type - Name of the wait type
2. Waiting_tasks_count - The number of waiting threads of this wait type.
3. Wait_time_ms - Total time in milliseconds including the signal_wait_time
4. Max_wait_time_ms - Maximum wait time for this wait type
5. Signal_wait_time - Difference between the time the waiting thread was signaled and when it started running in

milliseconds

The threads can wait for a resource. Suppose the thread requests to access a resource which is being used by
another thread, then the thread has to wait. The waits can also be due to external events such as the SQL Server
thread is waiting for an extended stored procedure or linked server query to finish.

This DMV captures around 100+ wait types. They include backup, latches and locks, page latches, Distributed
Transactions, Checkpoints etc.

Sys.dm_os_sys_info : Returns information about the computer and the resources available and consumed by the
SQL Server. Some of the columns returned are:

1. CPU_count - Number of logical CPUs
2. Physical_memory_in_bytes
3. Virtual_memory_in_bytes
4. OS_Error_mode - The error mode for SQL Server processes
5. OS_priority_class - The priority class for SQL Server processes

Transaction Related DMVs and Functions

Sys.dm_tran_active_transactions : Returns information about the transactions in a SQL Server instance.Some of
the columns returned are:

1. Transaction_ID
2. Name
3. Transaction_begin_time
4. Transaction_type - It can be a read-only (2), read/write (1), system (3) or a distributed transaction (4)

Sys.dm_tran_current_transaction : Returns a single row which gives information about the current transaction in
the current session. Some of the columns returned are:

The Best of SQLServerCentral – Vol. 5

 81

1. Transaction_ID
2. Transaction_is_Snapshot - The value is 1 if transaction is started under snapshot isolation level, else 0.

Sys.dm_tran_database_transactions : Returns information about the transactions in that database.

Conclusion

Thus the user can make use of this powerful feature to capture real time metrics. For a complete listing of DMVs and
Functions, the user can refer to SQL Server 2005 Books Online.

Backing Up a Database with SMO
By Brandi Tarvin

Sure, as a SysAdmin, you can do backups via the Management Studio interface, but what if you've just shut down
SSMS for the day and someone comes begging you for a backup? Do you really want to wait for SSMS to pull itself
together and get connected to a DB so you can open object explorer or type up the T-SQL required?

Well, okay. Maybe I'm a lazy DBA. I certainly prefer saving code snippets to do all my backup / restores to retyping
them from scratch every time I need them. However, when I found out about the new SQL Server SMO object, I just
about jumped up and down for joy. Finally, a new toy I could have lots of fun with!

Searching the internet for information on the new SMO object for SQL Server 2005, I found lots of information on how
to use the SMO to backup local databases. Unfortunately, what I needed and couldn't find was information on how to
backup the databases remotely. After a lot of work, I finally found the solution to my problem and thought I would pass
it on to everyone else. Hopefully this will help someone else out. Just make sure the people you give this program to
actually have permission to backup the databases or the program will fail.

Important Note: Make sure to save your work intermittently or you may loose everything you're working on if there's
a power surge.

Start by creating a project for a new Visual Basic Windows Application. I called mine SMO_BackupDatabase. Okay,
so I'm not going to win awards for creative program names, but it gets the point across. @=)

Next, add References to the project by going to Project -> Add Reference. You can add them all at once by using
CTRL-Click. The references you need are listed below:

Microsoft.SqlServer.ConnectionInfo

Microsoft.SqlServer.Smo

Rename Form1 in properties and under the project / solution menu to ChooseEnvironment. Also, change the text on
the form to "Choose Environment" so the end users know what they are looking at. NOTE: I rename all my objects to
descriptive user-friendly names so when a bug occurs, I know exactly where to find it. (See Figure1)

Add a label, rename it to WelcomeLabel, and enter appropriate text as introduction to Program. I used the
following:

"Welcome to the SQL SMO Database Backup Program!

Please Select an Environment to get started."

The Best of SQLServerCentral – Vol. 5

 82

FIGURE 1

Add a GroupBox & as many Radio buttons as you have environments. (I use four, one each for Dev, Test, QC and
Production).

Make sure to change your names and the Text properties to something appropriate. I used ServerEnvironment,
Development, Test, QC, and Production for mine.

Lastly, add 2 buttons to the bottom of the form. Call the first one ChoseDBButton and set the Text as "Choose
Database(s)". Call the second one CancelExitProgramButton and set the Text as "Cancel / Exit" (See Figure 2)

FIGURE 2

Double-click the ChooseEnvironment form. Since it is the initial form you want to start with, set the following code.
The FormStartPosition tells the computer where on the monitor to place the form when the program runs.

Public Class ChooseEnvironment

 Private Sub ChooseEnvironment_Load(ByVal sender As System.Object _

The Best of SQLServerCentral – Vol. 5

 83

 , ByVal e As System.EventArgs) Handles MyBase.Load

 Me.StartPosition = FormStartPosition.CenterScreen

 End Sub

End Class

Double-click each radio button, the ChooseDBButton and the CancelExitProgramButton. You want to put in the
following code right above the "End Class" of the ChooseEnvironment code.

Editor’s Note: This code is available at www.sqlservercentral.com

When this code is created, there will be several underlines indicating that Visual Studio doesn't know what variables
and objects you're talking about. That's okay. We'll fix that in a moment.

Next, create a new code module called CreateInitialConnection. (Right click solution name -> Add -> Module). All
commented out code is used for debugging to verify I'm connecting to the correct servers. You can delete it if you
want to.

First, the following Import statements go above the module name:

Imports Microsoft.SqlServer.Management.Smo

Imports Microsoft.SqlServer.Management.Common

Imports System.Data.SqlClient

Then it's time to declare the objects and write the module code. You will need a Server object, a ServerConnection
object, and 2 Public string objects. I actually force the users to close the program if they want to choose a different
environment. You can change this to disconnect and reconnect to the server objects if you want to, but I'm currently
leaving it out of the scope of this discussion.

Editor’s Note: This code is available at www.sqlservercentral.com

Explanation: For each ServerInstance of the connection object, I set the ServerName and Port# manually. Replace
the above with your own ServerName, Port#. This is easier, and faster if you only have a few servers, to code than
enumerating your servers. However, if server names change, and they can, you'll have to edit your code and redeploy
your program as needed.

Once this code is completed, you will notice all the underlines from the ChooseEnvironment code MyEnv object will
disappear.

Add a new module. Call it CloseConnObjects. This code will reset all variables and close all objects when it is called. I
do not use the Me.Close() in this because it closes the program the instant I try to open it. Instead, I call this module
in my various Exit Program buttons.

Module CloseConnObjects

 Public Sub CloseObjects()

 ProdServer = Nothing

The Best of SQLServerCentral – Vol. 5

 84

 ProdConn = Nothing

 MyServerEnv = Nothing

 MyEnv = Nothing

 End Sub

End Module

Add a new form. Right click the solution name -> Add -> Windows Form. Call it BackupDatbase.

Drag a Listbox over to the new form and enlarge to a size where the user will be able to see all database names
easily. Call it DatabaseList.

Add 2 new buttons to BackupDatabase form. Call one BackupDatabaseButton and the other ExitProgramButton.
Change the text on the first to "Backup Database" and the text on the other to "Exit Program". Resize buttons as
needed. (See Figure 3)

FIGURE 3

Double-click the BackupDatabase form and it will take you to a new code window.

You will need to add the following import statements above your BackupDatabase form code:

ImportsMicrosoft.SqlServer.Management.Smo

Imports Microsoft.SqlServer.Management.Common

You will also need to append a last import statement, using the name of your solution and the new module. This will
make sure that your CreateInitialConnection actually connects.

Imports SMO_BackupDatabase.CreateInitialConnection

The Best of SQLServerCentral – Vol. 5

 85

The below code enumerates all the databases in the environment (or instance) that the user has selected. It does not
show Snapshots or system databases. (complete class at www.sqlservercentral.com)

'##### Add list database code here #####

 Dim db As Database

 For Each db In ProdServer.Databases

 If Not db.IsDatabaseSnapshot And Not db.Name = "tempdb" Then

 DatabaseList.Items.Add(db.Name)

 End If

 Next

 Try

BackupDatabaseButton_Click(DatabaseList.SelectedItem.ToString, e)

 Catch

 MyExeception As System.NullReferenceException

 'Call MsgBox("You must select a database to continue.")

 End Try

Above the "End Class", you'll need to add the Backup Database button code. It uses the dating format that SQL
Server's database maintenance plans use when backing up the databases. (complete class at
www.sqlservercentral.com)

Above the "End Class", but below the BackupDatabaseButton code, add the following code for the Exit Program
button.This code tells the user it is closing the program and closes all objects as it does so.

Private Sub ExitProgramButton_Click(ByVal sender As System.Object _

 , ByVal e As System.EventArgs) _

 Handles ExitProgramButton.Click

 MsgBox("Program terminating as requested.")

 CloseObjects()

 End

End Sub

Then verify in the ChooseEnvironment code that all the underlines have disappeared. If you've done everything
correctly, you should be good to go.

The Best of SQLServerCentral – Vol. 5

 86

Save the program, then go to Debug -> Start Debugging and test it on your servers. I recommend testing on Dev first.
It usually takes a moment for the database list to appear, so if you want to stick an additional message box in the
ChooseDBButton code that tells the end user to wait, that might help.

The most common error with debugging here is forgetting to substitute your real ServerName\InstanceName and Port
in the CreateInitialConnection and BackupDatabaseButton sections of code. So if you're running into connection
errors, those are the first two places you should look.

The way I've got this coded is that you can only backup 1 database at a time. However, you do not have to close the
program to backup another database in the same environment. Just keep choosing databases and clicking the
"Backup Database" button to your heart's content. When you're done playing with one environment, close the
program and re-open to switch to another environment.

Once you've debugged your code, it's time to create the program for distribution. This is a great opportunity to allow
Accounting to do a database backup before they run month end or the development team to backup a database
before they put in a release.

Building your application installation file

Please note, this is a brief summary intended for those (like myself) who have never done this before. The scope of
this article does not include all the possible variations or security options available to you.

Double-click My Project on Solution Explorer. Make sure the Application tab is highlighted and that the Startup Form
is listed as ChooseEnvironment.

Using the main menu in VS, navigate to File -> Add -> New Project -> Other Project Types -> Setup and Deployment.
The default name of the new project is Setup1 and it will bring up a new page in your project called File System. (See
Figure 4)

FIGURE 4

Click Setup1 in Solution Explorer. Look at the properties window. Here is where you will enter useful information such
as Author's name, version #, localization information and a description of the program. (See Figure 5)

The Best of SQLServerCentral – Vol. 5

 87

FIGURE 5

Right-click Setup1 and choose Properties. VS will bring up a window telling you the default location of where the .msi
file will be created. You can change this if you want, but don't change it too much. Keeping the .msi file with your
project will make finding it much easier at a later date. Click Cancel to exit.

Right-click the Application Folder and choose Add -> Project Output. A window will pop up asking what output. You'll
want to make sure Primary output and a configuration of Active are chosen. Click OK. (See Figure 6)

The Best of SQLServerCentral – Vol. 5

 88

FIGURE 6

Right-click the Primary Output and choose "Create Shortcut to Primary Output..." which will force a shortcut to be
created. (See Figure 7) Rename the shortcut to something appropriate and user-friendly. Drag the new item into
either the "User's Desktop" or "User's Program Menu" folders. Upon installation, a shortcut in the User's Start ->
Program Files menu and/or the User's desktop will be created. If you want one of each, you have to create 2
shortcuts to the application folder and drag them to the appropriate folder.

FIGURE 7

Right-click Setup1 and choose Build this time. This will build your .msi file for later distribution. If you left the defaults,
you'll find your .msi under SMO_BackupDatabase\Setup1\Debug. You can distribute it to whomever might need the
ability to backup the database. Double-clicking the .msi installs it automatically.

When all is said and done, this code should work perfectly for remotely backing up databases, as long as you have
permission do to so. I'm still learning VB .Net myself, so there's a lot of things missing from this version of my code
(error handling, re-initializing the server connection to switch environments, progress bars, etc.). If anyone has any
thoughts on how this could be improved, I'd be glad to hear them.

Having fun coding!

The Best of SQLServerCentral – Vol. 5

 89

Document Your Database
By Raj Vasant

Introduction

Documentation for the tasks related to a particular project is required for easy maintenance and quick reference.
Number of situations has been encountered where we all go through user-manuals or read-me files for getting
help/solutions. Most of the applications are having documents that provide in-depth description of the design, code
and maintenance related stuff. Most of these documents are for the development team but some of them are also
provided to the customers.

Consider a scenario:

You are currently involved in designing a database i.e., created tables, defined constraints, written various scripts,
jobs, etc. One fine day, you got an opportunity to work with Microsoft (Nice opportunity, isnt it!!!). The company for
which you are working has already hired your replacement. Doing transition or knowledge transfer becomes tuff and
boring. So, you try to get rid it as fast as possible and in turn making the life of your REPLACEMENT miserable.

There will be documents written when the database design was discussed and some of them include the database
design in detail. But, some way or the other we miss out on small things that are very crucial, specially the updates or
modifications to the database objects. Also, the documents that are created are not concentrated on the complete
database design. For example:

• Why a particular table is created?
• What is the need of a particular column?
• What is the use of XYZ stored procedures?
• What is done when is a particular job executed?

These are some mystery questions that will be un-answered. Unless the REPLACEMENT takes the initiative and start
digging in the database, the mystery would not be solved.

How to Document?

There are various tools available that can be used to document your database. The best is Microsoft Word. Instead of
writing the overview of the database and the storing the sql-scripts in the documents, it is a good practice to write
down the details about each tables, columns, stored procedures, views, jobs and other database objects. Still, this
method demands regular update of the documents as and when the design or functionality changes are made.

Extended properties can also be used to document individual database objects. There are various stored procedures
which allows to add and modify details.

Using SQL Server 2005 as your database will be useful, as it provides a good way to add description to all the
database objects when they are created. You can specify description for each column [also in SQL Server 2000]. In
SQL Server 2005, it is also possible to add description for tables, stored procedures and other database objects. It is
helpful because you can get the information instantly without searching a document.

There are tools available that will run through your database and give output as complied-html file or normal html
pages. The output is well categorized and contains all the database objects, with their descriptions. I have tried
ApexSQL Doc, and it is really helpful. It provides a good user-interface for selectively documenting various database
objects.

http://www.apexsql.com/sql_tools_doc.asp

The Best of SQLServerCentral – Vol. 5

 90

Conclusion

Documenting the database perfectly up to the column level is necessary and a good practice so that the design can
be better understood. Also, there are some instances when the designer of the database is not sure about the
existence of a particular table/column/script. Putting little extra effort by specifying descriptions for the database
objects will make life easier for everyone.

A Transactional Replication Primer
By Claudi Rego

Introduction

This tutorial intends to show as you can use a transactional replication without changing the initial snapshot, i.e.,
without carrying out the initial synchronization between the Publisher and Subscriber. It is presupposed you have
knowledge of the replication process, particularly of the configuration of a transactional type replication.

Sometimes it is not feasible to synchronize subscriptions during the transactional replication. For a while I tried to
carry out transactional replication but unsuccessfully. Actually, my DB was very heavy with large tables and low
network bandwidth.

For such cases there is a solution! It is possible to use copies of the published DB and restore the data in Subscriber.
This way we avoid the exchange of the initial snapshot over the network, which is in fact the heaviest part of the
process. The following transactions are much lighter.

However, configuring the transactional replication this way, some attention must be paid to the details. Focus on the
detailed explanation that will follow of how to carry out this configuration.

Before Starting

In the CLAUDIA server, which will act as Publisher, I have created a new DB. It is termed as cars and it will keep
information about cars. It is constituted by the Items table with the design presented in table 1.

Column Name Data Type Length Allow Nulls
Id int 4

Model char 10 ٧
Engine int 4 ٧
Fuel char 10 ٧
Price float 8 ٧

Table 1 Design Table Items

The field Id is defined as PK and as Identity (identity seed = identity increment = 1). Data was introduced in the table
and its aspect changed into the one presented in table 2.

Id Model Engine Fuel Price
1 Yaris 1350 Gas 10,95
2 Corolla 2500 Diesel 15,25

Table 2 Data present in Items Table

The Best of SQLServerCentral – Vol. 5

 91

Now the replication process should be configured.

Configure Transactional Replication

The transactional replication stores and directs to Subscriber transactions in a series. So that this becomes possible it
is necessary that the DBs in Subscriber and Publisher are synchronized. In the transactional replication, this
synchronization is done sending an initial snapshot to Subscriber.

Doing the synchronization manually, it is possible to reduce the time that the snapshot process takes to the time that
making the DB backup takes.

Distributor and Publisher

In this tutorial, the CLAUDIA server is expected to have been already configured as Publisher and Distributor.

Configure Publishing and Distribution

At this point we should indicate the DB which contains the information to be replicated and the destination server of
this information.

Figure 1 Configure Publishing and Distribution Wizard

Publication Databases

We should start by indicating that the new DB is available to be replicated. This way, using the wizard Configure
Publishing and Distribution, you enable the DB cars to do the transactional replication (Trans) in the Publication
Database tab. (see Figure 1)

Subscriber

In the same wizard, in the Subscribers tab the TORMENTAS server is qualified as Subscriber. (see Figure 2)

The Best of SQLServerCentral – Vol. 5

 92

Figure 2 Configure Publishing and Distribution Wizard

We should now indicate that we intend to replicate the data, i.e., to create a new publication.

Create and Manage Publications - New Publication

To create a new publication it was used the wizard Create and Manage Publications represented in figure 3.

Figure 3 Create Publication Wizard

The new publication was termed as cars_pub as it belongs to the transactional type and with a single article, the
Items table.

The Best of SQLServerCentral – Vol. 5

 93

Figure 4 New publication cars_pub

Assure synchronism between Publisher and Subscriber

The DB should be published in the Single User Mode in order to prevent its alteration. This way, it is guaranteed that
the Publisher will be synchronized with the Subscriber. Before carrying out the stored procedure sp_dboption all the
replication agents linked to the DB in question should be stopped. Otherwise this operation cannot be carried out. See
Figures 5 and 6.

Figure 5 Parando os agents da replicao

The mode of the DB cars should be changed into Single User:

Figure 6 Colocando a DB no Modo Single User atravs do Query Analyser

The Best of SQLServerCentral – Vol. 5

 94

After carrying out this operation with success the DB graphically indicates its new Mode. See Figure 7.

Figure 7 DB no Modo Single User

Backup

There are two methods to make the backup of the published DB. The first method uses the Transaction Log Backup
and it assumes that a DB's Full Backup has been already made. The second method uses the Full Backup of the
published DB. This is the favorite method when we work with a small DB or if the DB hasn't been configured for the
Full Recovery Mode.

Transaction Log

When this method is used, it takes less time for the DB to be in Single User Mode. It also takes less time to make a
backup of the Transaction Log than to make a full backup. To use this method, the DB must be using the Full
Recovery Mode. This method was not tested in this tutorial.

Full Backup

If the Full Backup is the method being used, a backup of the published DB should be made.

The Best of SQLServerCentral – Vol. 5

 95

Figure 8 Backup da BD

Figure 9 Indicando um backup complete da BD

Subscription - Push Subscription

At this point the data's addressee should be configured. For that a new subscription of the Push type was created,
indicating the TORMENTAS server as destination. The destination DB was created at the same as the subscription
and it is termed cars as well.

The Best of SQLServerCentral – Vol. 5

 96

Schedule Distribution Agent

Now the schedule set of the Distribution Agent. It is crucial to schedule it so that the whole conFiguretion process of
the replication without initial snapshot is concluded. This way, you should disable a continuous update and schedule
this agent. It is suggested that the initial date is tomorrow (15-08-2006). The Figures 10 and 11 show what has been
said before.

Figure 10 Create Push Subscription Wizard - Set Distribution Agent Schedule

Figure 11 Create Push Subscription Wizard - Edit Recurring Job Schedule

The Best of SQLServerCentral – Vol. 5

 97

Initialize Subscription

Another fundamental aspect is to indicate the source and destination, i.e., the Publisher and Subscriber are already
synchronized and ready for the replication and therefore, there is no need to apply the initial snapshot.

Therefore, on being asked about the initialization of the subscription, you should answer "No, the Subscriber already
has the schema and data". See Figure 12.

Figure 12 Create Push Subscription Wizard - Initialize Subscription

Replication Agents in Details Pane

Now, in the Details Pane, the following agents for the cars_pubs publications appear.

Figure 13 Details on car_pubs publication

Now the DB can be taken out of the Single User Mode as the process is configured and all the alterations will be
directed to the DB distribution.

The Best of SQLServerCentral – Vol. 5

 98

Figure 14 Retirar a BD do Modo Single User atravs das Propriedades

It is verified that now it gives error if you try to use the Query Analyzer.

Restore DB

It is not enough to indicate that the DBs are synchronized in order to obtain a transactional replication without
changing the initial snapshot. It is necessary to synchronize them effectively.

As it has been said before, it was made a (full) backup of the DB in question. Now it is necessary to send this file to
the Subscriber server machine.

Regarding this tutorial the machines are close to each other and therefore it was feasible only to do a Copy + Paste. If
the machines are far from each other, there is the possibility to record the backup in a disk and send it per airmail.

For that: Run

Figure 15 Enviar o ficheiro de backup para a mquina do Subscriber

Simply with a CTRL+C and CTRL+V you will move a copy of that backup file. In order to do the DB's restore, the
Distribution Agent should not be running. Otherwise it gives an error.

The Best of SQLServerCentral – Vol. 5

 99

Figure 16 Restore Database no Subscriber

Figure 17 Restore DB as cars

The wizard showed in Figure 17 will appear. It is important to indicate that the restore will be carried out from the disk
(Device); afterwards the path to the backup file will be indicated and it should be shown that it is a full backup.

After receiving the message the restore is successfully done you can confirm that in the destination, TORMENTAS
server, it was created an Items table, which contains the same information. This way the synchronism between the
Publisher and Subscriber will be obtained. It is to highlight that the DB in Subscriber may appear in the Single User
Mode. Therefore that should be altered back to multi-user.

The Best of SQLServerCentral – Vol. 5

 100

Stored Procedures

In a transactional replication, during the initial snapshot, 3 stored procedures per article are generated, one for each
type of transaction. Particularly in this tutorial, there is the Items article, and the following stored procedures would be
generated:

• sp_MSins_Items (inserts);
• sp_MSdel_Items (deletes);
• sp_MSupd_Items (updates).

As the synchronization process is being done manually, we also have to write the stored procedures or generate
them. Fortunately there is already a stored procedure to generate them.

Script custom stored procedures at Publisher

Now it is necessary to create the procedures of Insert, Update and Delete that are used during the replication. For
that, in case we are working with a SQL Server 2000 (without immediate updating and queued Subscribers) we only
need to run the stored procedure sp_scriptpublicationcustomprocs in Publisher. This stored procedure should be
carried out in the published DB.

Figure 18 Gerar os precedures Insert, Update e Delete com o stored procedure
sp_scriptpublicationcustomprocs

It created the code showed in Figure 19.

The Best of SQLServerCentral – Vol. 5

 101

Figure 19 Cdigo gerado com sp_scriptpublicationcustomprocs

Applying scripts at Subscriber

To apply the created scripts to the Subscriber we should paste the code created previously in Query Analyzer and
execute it on the subscriber. Figure 20 shows this operation. It should be highlighted that this should be carried out
over the DB in question.

Figure 20 Executando os stored procedures no Subscriber

And that's all! Now all the alterations carried out over the published DB will be reflected in the correspondent DB in
the Subscriber.

Last Note

The field Id of the Items table had the enabled Identity property, i.e., yes. As the Items table is precisely equal it will
also possess that enabled property. This is due to the method that is being used (backup+restore). It is important to
highlight that if there is the delivery of the initial snapshot to the Subscriber, the objects of the DB are not transferred
to the Subscriber.

The Best of SQLServerCentral – Vol. 5

 102

However, The Identity property to Yes, causes error during the replication. See Figure 21.

Figure 21 Erro gerado pela propriedade Identity

It is necessary to disable that property in Subscriber.

Testing

The following some captures for testing. Three types of transactions carried out in Publisher and reflected in
Subscriber will be presented.

Replication Insert

The Figure 23 shows the insert of a row in the Items table in Publisher.

Figure 23 Insert on Publisher

Automatically, the replication agents identify the insert. (see Figure 24)

Figure 24 Agentes da replicao detectam o insert

The Best of SQLServerCentral – Vol. 5

 103

And in the Subscriber, the insert is reflected. (See Figure 25)

Figure 25 Insert reflected on the Subscriber

Replication delete and update

The following figures show the other two possibilities, a delete and the update. If you delete (row with Id=1) and
update as in Figure 26.

Figure 26 Delete and Update on the Publisher

Figure 27 Agentes da replicao detectam o delete e o update

The Best of SQLServerCentral – Vol. 5

 104

Figure 28 Delete and Update reflected on the Subscriber

Conclusion

The experience tells me that the transactional replication is an excellent process to keep one (or more) synchronized
copy of a certain DB . With little effort (there is the possibility to configure the whole process resorting to wizards only)
it is possible to make the replication work.

However, when it concerns a DB with a considerable dimension or/and the network that links the Publisher and
Subscriber has a reduced BW, it becomes complicated to pass the initial snapshot through it. The process showed in
this tutorial gets round this situation. Through an easy and quick way we can initiate a replication without submitting
the initial synchronization.

Nevertheless source and destination have to be synchronized. This way a manual synchronization is done. For that,
the backup of the transaction log or of the DB itself can be used and then applied in the destination. Now we can
avoid the network and resort, for instance, to a USB disc. Or even use the network and resort, for example, to the ftp.
It is to highlight that despite the fact the ftp is over the network, the backup of a DB can be softer than its snapshot, as
this includes, besides the data (.bcp), the schemas (.sch) and constraints (.idx).

The Best of SQLServerCentral – Vol. 5

 105

T-SQL

The T-SQL language used to be the primary way in which we worked with all aspects of SQL Server. The addition of
the CLR, complex scripting to SSIS, and more, may change that, but it seems to me that a strong knowledge of T-
SQL is still required for the time being.

This section contains a series of articles that cover some of the more interesting aspects of this query language,
including some rather hotly contested ones. A few of these articles are controversial, but that should not prevent you
from making your own decisions on what you believe.

In all cases, the code presented here should be considered untested and you should use it at your own risk.

Keyword Searching in SQL Server.. 106
Recursive Queries in SQL: 1999 and SQL Server 2005 ... 113
Serializing Procedure Calls Without Unnecessary Blocking.. 134
The Truth Table ... 137
Introduction to Bitmasking in SQL Server 2005... 142
Self Eliminated Parameters ... 151
Finding Primes... 152
CTE Performance.. 155
The Effect of NOLOCK on Performance ... 160
Converting Hexadecimal String Values to Alpha (ASCII) Strings.. 163
A Refresher on Joins ... 166
Using CLR integration to compress BLOBs/CLOBs in SQL Server 2005 172
When To Use Cursors ... 175
Everybody Reports to Somebody.. 177
Not In v Not Equal ... 179
Full Control Over a Randomly Generated Password .. 183
Performance Effects of NOCOUNT... 187
Passing a Table to A Stored Procedure .. 191
New Column Updates.. 195
The T-SQL Quiz .. 200
Practical Methods: Naming Conventions... 205
Large Object Data ... 208
Row-By-Row Processing Without Cursor.. 210
Beauty is in the Eye of the Beholder ... 211

The Best of SQLServerCentral – Vol. 5

 106

Keyword Searching in SQL Server
By Michael Ahmadi

Introduction

As the concept of search continues to grow in scope, I tend to find myself eschewing multiple levels of categorization
in favor of larger groups. I'll give you two examples of what I mean.

Think of your inbox. I used to have folders for different systems, folders for different clients, folders for different
colleagues, and so on. Now I tend to leave everything in my inbox and use the various search features of my mail
client or other search applications to retrieve messages as I need them. I'm not sure if this is due to the fact that the
searching capabilities of these applications are better than they used to be or if I'm just more prone to searching for
things since that's what all the hip kids are doing these days.

Think of a data driven web site. A retail site possibly. As you drill down into the categories of goods, you'll usually
have a breadcrumb trail somewhere on the page. Do we really drill that far down nowadays or do we immediately go
to the search box and type in what we're looking for? If it's the latter case, what's the point of having a bunch of piddly
little categories like Electronics > Digital Cameras > Memory Cards > 512MB? Why not just dump everything in one
big category and let the search functionality take care of the process of finding something?

I like to be able to find something on the fly when necessary and I don't want to have to remember how I originally
categorized it. What's the login info for that FTP site? Categorization is tedious at best, and often times the same
person will choose different categorizations for a given item at different times. The following is a simple way to
implement basic keyword search functionality using SQL Server and nothing but.

Here are our objects we'll end up with:

• LogEntries (Table)
• Keywords (Table)
• LogEntry_Keyword (Table)
• sp_logentry (Sproc)
• sp_search (Sproc)

Setting up our tables

I'm no cognitive scientist, so I can't tell you exactly how our brains keep track of bits of information. But the things that
we need to remember are often very fragmented and defy categorization. I'd venture a guess that our brains are like
logs and we make entries into that log. So let's have a table called LogEntries. The most basic column is the actually
entry itself - LogEntry varchar(8000):

"Remember that you increased the budget for the Razzmatazz account by $10K."

And when we make that mental note, it would be nice to remember when we made it - DateEntered datetime:

'YYYY-MM-DD hh:mm:ss'

But when we remember it, do we actually think of the exact phrase we originally thought of? Probably not. We
probably remember something more like "razzmatazz account budget increased". So now we have some keywords
(or tags) associated with our entry. Tags varchar(200):

'increased budget account'

The Best of SQLServerCentral – Vol. 5

 107

CREATE TABLE LogEntries

(

 EntryId int IDENTITY(1,1) NOT NULL,

 Entry varchar(8000) NOT NULL,

 Tags varchar(200) NOT NULL,

 DateEntered datetime NOT NULL DEFAULT (GETDATE()),

 CONSTRAINT PK_LogEntries PRIMARY KEY CLUSTERED (EntryId ASC)

)

Each of the individual tags within the Tags column is a keyword describing the data in the LogEntry. So let's have a
Keywords table.

CREATE TABLE Keywords

(

 KeywordId int IDENTITY(1,1) NOT NULL,

 Keyword varchar(50) NOT NULL,

 CONSTRAINT PK_Keywords PRIMARY KEY CLUSTERED (KeywordId ASC)

)

CREATE UNIQUE NONCLUSTERED INDEX IX_Keywords ON Keywords

(

 Keyword ASC

)

When we make an entry into our log, we'd like to also make inserts into a LogEntry_Keyword table - a table used to
calculate the number of occurrences of a keyword or set of keywords in a given entry.

CREATE TABLE LogEntry_Keyword

(

 EntryId int NOT NULL,

 KeywordId int NOT NULL,

 Hits int NOT NULL,

 CONSTRAINT PK_LogEntry_Keyword PRIMARY KEY CLUSTERED

 (

 EntryId ASC,

The Best of SQLServerCentral – Vol. 5

 108

 KeywordId ASC

)

)

Now for the trigger

In most cases, we'd probably prefer to process the tags of our entries by using another application. The String.Split
function comes to mind. Then we'd hash the keywords where the hash value is the number of occurrences and we'd
later do our insert into the LogEntry_Keyword table. But we're keeping it simple and want to make everything self
contained. Here's how the trigger does that.

CREATE TRIGGER trgInsertLogEntry

ON LogEntries FOR INSERT

AS

-- Declarations --

DECLARE @tags AS varchar(200) -- This will hold the tags string (e.g. 'increase budget such
'n' such account')

DECLARE @keyword AS varchar(50) -- An individual keyword from the tags string (e.g.
'increase')

DECLARE @keywordId AS int -- The keyword id from the keywords table

DECLARE @found AS int -- Whether or not the keyword wAS already in the keywords
table

DECLARE @entryId AS int -- The entry id of the logentry being inserted (@@identity)

-- Temp table for current keyword data for the newly inserted LogEntry --

CREATE TABLE #kw

(

 kwid int PRIMARY KEY, -- The id from the Keywords table

 hits int -- The number of occurrences of this keyword

)

The Best of SQLServerCentral – Vol. 5

 109

-- Data from the newly inserted LogEntry --

SET @entryId = @@identity -- Get the newly inserted logentry id

SET @tags = (SELECT tags FROM INSERTED) -- Get the newly inserted tag

SET @tags = LTRIM(RTRIM(@tags)) + ' xyz' -- Add a fake keyword to the end that won't get
inserted

-- While there are still keywords in the newly inserted LogEntry's tag --

WHILE (CHARINDEX(' ', @tags) > 0)

BEGIN

 -- Get the next keyword from the tags string

 SET @keyword = SUBSTRING(@tags, 0, CHARINDEX(' ', @tags))

 -- Get the KeywordId from the Keywords table

 SELECT @keywordid = (SELECT KeywordId FROM Keywords WHERE Keyword = @keyword)

 -- Insert the keyword if necessary

 IF (@keywordId IS NULL)

 BEGIN

 INSERT INTO Keywords VALUES (@keyword)

 SET @keywordId = @@identity

 END

 -- See if the keyword id is in the temp table yet

 SELECT @found = (SELECT COUNT(*) FROM #kw WHERE kwid = @keywordId)

The Best of SQLServerCentral – Vol. 5

 110

 -- If not found insert it

 IF (@found = 0)

 INSERT INTO #kw VALUES (@keywordId, 1)

 -- If found update the hit count

 IF (@found != 0)

 UPDATE #kw SET hits = hits + 1 WHERE kwid = @keywordId

 -- Update the tags by lopping off the keyword just processed

 SET @tags = substring(@tags, charindex(' ', @tags) + 1, len(@tags) - charindex(' ', @tags))

END

-- End while --

-- Insert the keywords and their occurrences into the LogEntry_Keyword table --

INSERT INTO logentry_keyword

SELECT @entryid, kwid, hits

FROM #kw

So that takes care of everything we need to implement our project. Now let's add a few things to make
inserting entries easier and finding things easier.

Getting the data in there

The whole purpose behind this exercise is to be able to associate a piece of data with string identifiers. When creating
the data we want to be able to say (to ourselves):

Okay, I need to remember that at today's meeting we discussed ways of improving communication within the
company. The first way was to blah blah blah...

The Best of SQLServerCentral – Vol. 5

 111

And then say it more succinctly in keyword form:

meeting ways improve communication within company

That's two things. Two arguments for our sp_logentry function:

CREATE PROC sp_logentry(@entry AS varchar(8000), @tags AS varchar(200)) AS

INSERT INTO LogEntries (Entry, Tags)

VALUES (@entry, @tags)

sp_logentry 'Okay, I need to remember...blah blah blah...', 'meeting ways improve communication within
company'

Getting the data out of there

And now, the last thing we need to do is write our sproc to retrieve our data. This will look quite familiar.

CREATE PROC sp_search(@keywords AS varchar(50)) AS

DECLARE @kws as varchar(50)

DECLARE @kw as varchar(50)

DECLARE @kwid as int

-- Temp table for current keyword data --

CREATE TABLE #kw

(

kwid int PRIMARY KEY

)

-- Add a fake keyword that won't get inserted

SET @kws = LTRIM(RTRIM(@keywords)) + ' xyz'

-- While there are still keywords --

The Best of SQLServerCentral – Vol. 5

 112

WHILE (CHARINDEX(' ', @kws) > 0)

BEGIN

 SET @kw = SUBSTRING(@kws, 0, CHARINDEX(' ', @kws)) -- Get the tag from the
string

 SELECT @kwid = (SELECT keywordid FROM keywords WHERE keyword = @kw) -- Find the keyword id

 IF (@kwid IS NOT NULL) -- If found insert the id
into the temp table

 INSERT INTO #kw VALUES (@kwid)

 SET @kws = SUBSTRING(@kw, CHARINDEX(' ', @kws) + 1, LEN(@kws) -- Update the keywords

 - CHARINDEX(' ', @kws) - 1)

END

SELECT le.EntryId, Entry, Tags, DateEntered, SUM(Hits) h

FROM LogEntries le

JOIN LogEntry_Keyword lek ON lek.EntryId = le.EntryId

JOIN #kw tkw ON tkw.kwid = lek.keywordid

GROUP BY le.EntryId, Entry, Tags, DateEntered

ORDER BY h DESC

sp_search 'company meeting'

Conclusions

Yes, this is probably more of an exercise than something you'll put into practice. But the basic idea is straightforward
and useful when expounded upon. If you decide to do more with it here are some ideas as well as some things to look
out for.

• Hook it up to a basic UI for a popup notepad.
• Take care to validate your tags string to make sure it's a space delimited string.
• I might also suggest adding a having count(le.EntryId) >= (select count(*) from #kw) clause into the search sproc

in the event you want to only include entries featuring all of the searched keywords.
• With a little more validation, you can get rid of the Tags column and process the LogEntry column by itself.

The Best of SQLServerCentral – Vol. 5

 113

Recursive Queries in SQL: 1999 and SQL Server 2005
By Frédéric Brouard

Everybody has at one time in his life, had experience with recursion. When I was young, I was on leave in Paris in an
old building in which the corridor had two mirrors facing each other. When I passed between these mirrors my body
was reflected ad infinitum, and I was very proud, joyfully admiring my image and having a concrete view of what is the
infinite. That is it recursion, a process which is able to reproduce itself for some period of time.

In mechanical situations, we do not accept infinite recursion. In the real world, we must have a stopping point
because our universe is closed. Waiting for the end of an infinite process, which in fact is eternity, is a hard job! As
Woody Allen says: "eternity is really long, especially near the end ..."

In computer management, recursion is a special technique that is able, sometimes, to treat complex algorithms with
an elegant coding style: a few lines will do a complete job. But recursion has some perverse effects: the resources to
do the job are maximized by the fact that every call of the embedded process needs to open a complete environment
space, which has the effect of using a large volume of memory. A mathematician, whose name I cannot recall, says
that every recursive algorithm can be reduced to an iterative one by the use of a stack!

But our purpose in this article is to speak about RECURSIVE QUERIES in SQL, regarding the ISO standard and what
MS SQL Server 2005 has done with it.

The ISO SQL: 1999 standard

Here is the short syntax of a RECURSIVE QUERY:

WITH [RECURSIVE] <query_alias_name> [(<column_list>)]

AS (<select_query>)

<query_using_query_alias_name>

Simple! Isn't it? In fact, all the mechanics are inside the <select_query>. We will show first simple, but not recursive
queries, and when we understand what we can do with the keyword WITH, we will tear down the curtain to see how
sexy recursion is in SQL.

A simple CTE

The use of only the WITH clause (without the keyword RECURSIVE), is to build a Common Table Expression (CTE).
In a way CTE is a view build especially for a query and used in one shot: each time we execute the query. In one
sense it can be called a "non persistent view".

The basic use of a CTE is to make clear some expression that contains a query twice or more in a complex query.
Here is a basic example:

-- if exists, drop the table we need for the demo

IF EXISTS (SELECT *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_SCHEMA = USER

 AND TABLE_NAME = 'T_NEWS')

 DROP TABLE T_NEWS

The Best of SQLServerCentral – Vol. 5

 114

GO

-- create the table

CREATE TABLE T_NEWS

(NEW_ID INTEGER NOT NULL PRIMARY KEY,

 NEW_FORUM VARCHAR(16),

 NEW_QUESTION VARCHAR(32))

GO

-- population

INSERT INTO T_NEWS VALUES (1, 'SQL', 'What is SQL ?')

INSERT INTO T_NEWS VALUES (2, 'SQL', 'What do we do now ?')

INSERT INTO T_NEWS VALUES (3, 'Microsoft', 'Is SQL 2005 ready for use ?')

INSERT INTO T_NEWS VALUES (4, 'Microsoft', 'Did SQL2000 use RECURSION ?')

INSERT INTO T_NEWS VALUES (5, 'Microsoft', 'Where am I ?')

-- the traditionnal query :

SELECT COUNT(NEW_ID) AS NEW_NBR, NEW_FORUM

FROM T_NEWS

GROUP BY NEW_FORUM

HAVING COUNT(NEW_ID) = (SELECT MAX(NEW_NBR)

 FROM (SELECT COUNT(NEW_ID) AS NEW_NBR, NEW_FORUM

 FROM T_NEWS

 GROUP BY NEW_FORUM) T)

-- the result :

NEW_NBR NEW_FORUM

----------- ----------------

3 Microsoft

This query is one that is very popular in many forums, that is, the one that often has the most of number of questions.
To build the query, we need to make a MAX(COUNT(... which is not allowed, and so it must be solved through the
use of sub-queries. But in the above query, there are two SELECT statements, which are exactly the same:

SELECT COUNT(NEW_ID) AS NEW_NBR, NEW_FORUM

FROM T_NEWS

The Best of SQLServerCentral – Vol. 5

 115

GROUP BY NEW_FORUM

With the use of a CTE, we can now make the query more readable:

WITH

 Q_COUNT_NEWS (NBR, FORUM)

 AS

 (SELECT COUNT(NEW_ID), NEW_FORUM

 FROM T_NEWS

 GROUP BY NEW_FORUM)

SELECT NBR, FORUM

FROM Q_COUNT_NEWS

WHERE NBR = (SELECT MAX(NBR)

 FROM Q_COUNT_NEWS)

In fact, we use the non persistent view Q_COUNT_NEWS introduced by the WITH expression, to write a more
elegant version of the solution of our problem. Like a view, you must name the CTE and you can give new names to
columns that are placed in the SELECT clause of the CTE, but this is not an obligation.

Note the fact, that you can use two, three or more CTE to build a query... Let us see an example:

WITH

 Q_COUNT_NEWS (NBR, FORUM)

 AS

 (SELECT COUNT(NEW_ID), NEW_FORUM

 FROM T_NEWS

 GROUP BY NEW_FORUM),

 Q_MAX_COUNT_NEWS (NBR)

 AS (SELECT MAX(NBR)

 FROM Q_COUNT_NEWS)

SELECT T1.*

FROM Q_COUNT_NEWS T1

 INNER JOIN Q_MAX_COUNT_NEWS T2

 ON T1.NBR = T2.NBR

The Best of SQLServerCentral – Vol. 5

 116

This gives the same results as the two prior versions! The first CTE, Q_COUNT_NEWS, is used as a table in the
second and the two CTEs are joined in the query to give the result. Note the comma which separates the two CTEs.

3 - Two Tricks for Recursion

To do recursion, the SQL syntax needs two tricks:

FIRST: you must give a starting point for recursion. This must be done by a two part query. The first query says
where to begin, and the second query says where to go to next step. These two queries are joined by a UNION ALL
set operation.

SECOND: you need to make a correlation between the CTE and the SQL inside the CTE (Inside out, outside in, was
a popular disco song ... isn't it ?) to progress step by step. That is made by referencing the <query_alias_name>
inside the SQL that builds the CTE.

4 - First example: a simple hierarchy

For this example, I have made a table which contains a typology of vehicles :

-- if exists, drop the table we need for the demo

IF EXISTS (SELECT *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_SCHEMA = USER

 AND TABLE_NAME = 'T_VEHICULE')

 DROP TABLE T_VEHICULE

-- create it

CREATE TABLE T_VEHICULE

(VHC_ID INTEGER NOT NULL PRIMARY KEY,

 VHC_ID_FATHER INTEGER FOREIGN KEY REFERENCES T_VEHICULE (VHC_ID),

 VHC_NAME VARCHAR(16))

-- populate

INSERT INTO T_VEHICULE VALUES (1, NULL, 'ALL')

INSERT INTO T_VEHICULE VALUES (2, 1, 'SEA')

INSERT INTO T_VEHICULE VALUES (3, 1, 'EARTH')

INSERT INTO T_VEHICULE VALUES (4, 1, 'AIR')

INSERT INTO T_VEHICULE VALUES (5, 2, 'SUBMARINE')

INSERT INTO T_VEHICULE VALUES (6, 2, 'BOAT')

INSERT INTO T_VEHICULE VALUES (7, 3, 'CAR')

INSERT INTO T_VEHICULE VALUES (8, 3, 'TWO WHEELES')

INSERT INTO T_VEHICULE VALUES (9, 3, 'TRUCK')

The Best of SQLServerCentral – Vol. 5

 117

INSERT INTO T_VEHICULE VALUES (10, 4, 'ROCKET')

INSERT INTO T_VEHICULE VALUES (11, 4, 'PLANE')

INSERT INTO T_VEHICULE VALUES (12, 8, 'MOTORCYCLE')

INSERT INTO T_VEHICULE VALUES (13, 8, 'BYCYCLE')

Usually a hierarchy must be schematized with an auto reference, which is the case here: a foreign key references the
primary key of the table. Theses data can be viewed as:

ALL

|--SEA

| |--SUBMARINE

| |--BOAT

|--EARTH

| |--CAR

| |--TWO WHEELES

| | |--MOTORCYCLE

| | |--BYCYCLE

| |--TRUCK

|--AIR

 |--ROCKET

 |--PLANE

Now let us construct the query. We want to know where the MOTORCYCLE comes from. In other words, what are all
the ancestors of "MOTORCYCLE". We must start with the data of the row which contain the motorbike:

SELECT VHC_NAME, VHC_ID_FATHER

FROM T_VEHICULE

WHERE VHC_NAME = 'MOTORCYCLE'

We need to have the father ID to go to next step. The second query, which does the next step, must be written like
this:

SELECT VHC_NAME, VHC_ID_FATHER

FROM T_VEHICULE

As you see, there is no difference between the two queries, except that we do not specify the filter WHERE to go to
next step. Remember that we need to join those two queries by a UNION ALL, which will specify the stepping
method:

SELECT VHC_NAME, VHC_ID_FATHER

The Best of SQLServerCentral – Vol. 5

 118

FROM T_VEHICULE

WHERE VHC_NAME = 'MOTORCYCLE'

UNION ALL

SELECT VHC_NAME, VHC_ID_FATHER

FROM T_VEHICULE

Now let us place this stuff in the CTE:

WITH

 tree (data, id)

 AS (SELECT VHC_NAME, VHC_ID_FATHER

 FROM T_VEHICULE

 WHERE VHC_NAME = 'MOTORCYCLE'

 UNION ALL

 SELECT VHC_NAME, VHC_ID_FATHER

 FROM T_VEHICULE)

Now we are close to the recursion. The last step is to make a cycle to execute the stepping techniques. This is done
by using the CTE name as a table inside the SQL of the CTE. In our case, we must join the second query of the CTE
to the CTE itself, by the chain made with tree.id = (second query).VHC_ID. This can be realized like this:

WITH

 tree (data, id)

 AS (SELECT VHC_NAME, VHC_ID_FATHER

 FROM T_VEHICULE

 WHERE VHC_NAME = 'MOTORCYCLE'

 UNION ALL

 SELECT VHC_NAME, VHC_ID_FATHER

 FROM T_VEHICULE V

 INNER JOIN tree t

 ON t.id = V.VHC_ID)

SELECT *

FROM tree

There is nothing more to do other than make the select as simple as possible to show the data. Now, if you press the
F5 button to execute... You will see this:

data id

The Best of SQLServerCentral – Vol. 5

 119

---------------- -----------

MOTORCYCLE 8

TWO WHEELES 3

EARTH 1

ALL NULL

Now have a look back at the relationships that do the stepping, in a graphic view:

 correlation

 | |

 v |

WITH tree (data, id) |

AS (SELECT VHC_NAME, VHC_ID_FATHER |

 FROM T_VEHICULE |

 WHERE VHC_NAME = 'MOTORCYCLE' |

 UNION ALL |

 SELECT VHC_NAME, VHC_ID_FATHER |

 FROM T_VEHICULE V |

 INNER JOIN tree t <---------------

 ON t.id = V.VHC_ID)

SELECT *

FROM tree

By the way, what stopped the recursive process? The fact that no more chains are possible when arriving with a
"NULL" value id, which is the case in this example when we reach "ALL".

Now, you get the technique. Notice that for obscure reasons, MS SQL Server 2005 does not accept the RECURSIVE
key word following the WITH introducing CTE. But 2005 is a beta version actually, so we can expect that this will be
solved in the final product.

5 - Hierarchical indentation

One more important thing with trees structured data is to view the data as a tree... which means a hierarchical
indentation when retrieving the data. Is this possible? Yes, of course. The order need to knows the path, the level for
placing space characters and the id or the timestamp of the row in case of rows of similar tree placement (multileaves
data). This can be done by calculating the path inside the recursion. Here is an example of such a query:

WITH tree (data, id, level, pathstr)

AS (SELECT VHC_NAME, VHC_ID, 0,

The Best of SQLServerCentral – Vol. 5

 120

 CAST('' AS VARCHAR(MAX))

 FROM T_VEHICULE

 WHERE VHC_ID_FATHER IS NULL

 UNION ALL

 SELECT VHC_NAME, VHC_ID, t.level + 1, t.pathstr + V.VHC_NAME

 FROM T_VEHICULE V

 INNER JOIN tree t

 ON t.id = V.VHC_ID_FATHER)

SELECT SPACE(level) + data as data, id, level, pathstr

FROM tree

ORDER BY pathstr, id

data id level pathstr

-------------------- ----------- ----------- --------------------------------

ALL 1 0

 AIR 4 1 AIR

 PLANE 11 2 AIRPLANE

 ROCKET 10 2 AIRROCKET

 EARTH 3 1 EARTH

 CAR 7 2 EARTHCAR

 TRUCK 9 2 EARTHTRUCK

 TWO WHEELES 8 2 EARTHTWO WHEELES

 BYCYCLE 13 3 EARTHTWO WHEELESBYCYCLE

 MOTORCYCLE 12 3 EARTHTWO WHEELESMOTORCYCLE

 SEA 2 1 SEA

 BOAT 6 2 SEABOAT

 SUBMARINE 5 2 SEASUBMARINE

To do this, we have use a new data type in SQL 2005 which is called VARCHAR(MAX), because we do not know the
maximum of chars that will result in an operation a concatenation of a VARCHAR(16) in a recursive query that can be
very deep. Notice that it is not a good idea to construct the path with VARCHAR because it can result in some
boundaries effects such as concatenating words like 'LAND' and 'MARK' as level 2 of the tree which can be confused
as 'LANDMARK' as level 1 in another branch of the same tree, so you must preserve blank space in the concatened
path to avoid such problems. This can be done by casting VHC_NAME as a CHAR SQL data type.

The Best of SQLServerCentral – Vol. 5

 121

6 - Trees without recursion

But I must say that hierarchical data is not very interesting! Why? Because there are other ways to treat the data.
Remember that I told you that a mathematician may say "you can avoid recursion by using a stack". Is this possible in
our case?

Yes!

Just put the stack inside the table. How? By using two new columns: RIGHT_BOUND and LEFT_BOUND...

ALTER TABLE T_VEHICULE

ADD RIGHT_BOUND INTEGER

ALTER TABLE T_VEHICULE

ADD LEFT_BOUND INTEGER

Now, like a magician, I will populate this new column with some tricky numbers:

UPDATE T_VEHICULE SET LEFT_BOUND = 1 , RIGHT_BOUND = 26 WHERE VHC_ID = 1

UPDATE T_VEHICULE SET LEFT_BOUND = 2 , RIGHT_BOUND = 7 WHERE VHC_ID = 2

UPDATE T_VEHICULE SET LEFT_BOUND = 8 , RIGHT_BOUND = 19 WHERE VHC_ID = 3

UPDATE T_VEHICULE SET LEFT_BOUND = 20, RIGHT_BOUND = 25 WHERE VHC_ID = 4

UPDATE T_VEHICULE SET LEFT_BOUND = 3 , RIGHT_BOUND = 4 WHERE VHC_ID = 5

UPDATE T_VEHICULE SET LEFT_BOUND = 5 , RIGHT_BOUND = 6 WHERE VHC_ID = 6

UPDATE T_VEHICULE SET LEFT_BOUND = 9 , RIGHT_BOUND = 10 WHERE VHC_ID = 7

UPDATE T_VEHICULE SET LEFT_BOUND = 11, RIGHT_BOUND = 16 WHERE VHC_ID = 8

UPDATE T_VEHICULE SET LEFT_BOUND = 17, RIGHT_BOUND = 18 WHERE VHC_ID = 9

UPDATE T_VEHICULE SET LEFT_BOUND = 21, RIGHT_BOUND = 22 WHERE VHC_ID = 10

UPDATE T_VEHICULE SET LEFT_BOUND = 23, RIGHT_BOUND = 24 WHERE VHC_ID = 11

UPDATE T_VEHICULE SET LEFT_BOUND = 12, RIGHT_BOUND = 13 WHERE VHC_ID = 12

UPDATE T_VEHICULE SET LEFT_BOUND = 14, RIGHT_BOUND = 15 WHERE VHC_ID = 13

And here is the magic query, giving the same result as the complex hierarchical recursive query:

SELECT *

FROM T_VEHICULE

WHERE RIGHT_BOUND > 12

The Best of SQLServerCentral – Vol. 5

 122

 AND LEFT_BOUND < 13

VHC_ID VHC_ID_FATHER VHC_NAME RIGHT_BOUND LEFT_BOUND

----------- ------------- ---------------- ----------- -----------

1 NULL ALL 26 1

3 1 EARTH 19 8

8 3 TWO WHEELES 16 11

12 8 MOTORCYCLE 13 12

The question is: what is the trick?

In fact we realize a stack by numbering the data slices. I make a picture of it:

The only thing I do is to numerate continuously beginning by 1, from the right to the left bounds of all stacks made by
each piece of data. Then to obtain the above query, I just take the bounds of the MOTORCYCLE, which are LEFT 12
and RIGHT 13, and place it in the WHERE clause asking for data that have a RIGHT BOUND over 12 and a LEFT
BOUND under 13.

By the way, my graphic will be much more clear to understand if we rotate it:

The Best of SQLServerCentral – Vol. 5

 123

Do you see the stacks? This representation of trees is well known in specialized database literature, especially
writings by Joe Celko. You will find every thing you want in his famous book "Trees and Hierarchies" in "SQL for
smarties", Morgan Kaufman ed. Another resource if you can read French is to go to my web site in which stored procs
are written for MS SQL Server to do all jobs relative to this model:
http://sqlpro.developpez.com/cours/arborescence/

Last, can we reproduce the hierarchical indentation as seen in the last query ? Yes of course. This will be much
easier by introducing a new column 'LEVEL' to indicate the level of the node. This can be very simple to calculate,
because when inserting in the tree, the first node is the root, so the level is 0. Another point to insert in a tree had a
level that can simply be calculated with the parent's data : if the point is to insert as a son, the level is the parent level
+ 1. To insert as a brother, the level is the same as the brother. Here are the ALTER and UPDATE statements that
place the levels in the table for our purpose:

ALTER TABLE T_VEHICULE

ADD LEVEL INTEGER

UPDATE T_VEHICULE SET LEVEL = 0 WHERE VHC_ID = 1

UPDATE T_VEHICULE SET LEVEL = 1 WHERE VHC_ID = 2

UPDATE T_VEHICULE SET LEVEL = 1 WHERE VHC_ID = 3

UPDATE T_VEHICULE SET LEVEL = 1 WHERE VHC_ID = 4

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 5

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 6

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 7

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 8

http://sqlpro.developpez.com/cours/arborescence/

The Best of SQLServerCentral – Vol. 5

 124

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 9

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 10

UPDATE T_VEHICULE SET LEVEL = 2 WHERE VHC_ID = 11

UPDATE T_VEHICULE SET LEVEL = 3 WHERE VHC_ID = 12

UPDATE T_VEHICULE SET LEVEL = 3 WHERE VHC_ID = 13

Now, the indentation query is:

SELECT SPACE(LEVEL) + VHC_NAME as data

FROM T_VEHICULE

ORDER BY LEFT_BOUND

data

ALL

 SEA

 SUBMARINE

 BOAT

 EARTH

 CAR

 TWO WHEELES

 MOTORCYCLE

 BYCYCLE

 TRUCK

 AIR

 ROCKET

 PLANE

Much more simple, isn't it ?

FIRST IMPRESSIONS ...

The only thing to say about these two ways of navigating through hierarchical data, is that the interval model is much
more efficient and performs better than the one using the SQL: 1999 RECURSIVE query technique. In fact,
RECURSIVE queries are not so interesting this way... But another way?... Yes!

7 - Second example: a complex network (a much more sexy query!)

Perhaps you never go to France. So you may be interested by the fact that in Paris, there are beautiful girls, and in

The Best of SQLServerCentral – Vol. 5

 125

Toulouse a famous dish called cassoulet, and a small plane constructor call Airbus. So the problem is to go by car
from Paris to Toulouse using the speedway network. I just simplify for you (if you are lost and you do not know the
pronunciation to ask people your way to Toulouse, it is simple. Just say "to loose"...):

 PARIS

 |

 | | |

 385 420 470

 | | |

NANTES CLERMONT FERRAND LYON

 | | |

 | | 335 305 | 320

 | ---------- -----------------

 | | | |

 375 | MONTPELLIER MARSEILLE

 | | |

 ---------------------- 205

 | 240 |

 TOULOUSE NICE

-- if exists, drop the table we need for the demo

IF EXISTS (SELECT *

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_SCHEMA = USER

 AND TABLE_NAME = 'T_JOURNEY')

 DROP TABLE T_JOURNEY

-- create the table :

CREATE TABLE T_JOURNEY

(JNY_FROM_TOWN VARCHAR(32),

 JNY_TO_TOWN VARCHAR(32),

 JNY_MILES INTEGER)

-- populate :

http://www.airbus.com/

The Best of SQLServerCentral – Vol. 5

 126

INSERT INTO T_JOURNEY VALUES ('PARIS', 'NANTES', 385)

INSERT INTO T_JOURNEY VALUES ('PARIS', 'CLERMONT-FERRAND', 420)

INSERT INTO T_JOURNEY VALUES ('PARIS', 'LYON', 470)

INSERT INTO T_JOURNEY VALUES ('CLERMONT-FERRAND', 'MONTPELLIER', 335)

INSERT INTO T_JOURNEY VALUES ('CLERMONT-FERRAND', 'TOULOUSE', 375)

INSERT INTO T_JOURNEY VALUES ('LYON', 'MONTPELLIER', 305)

INSERT INTO T_JOURNEY VALUES ('LYON', 'MARSEILLE', 320)

INSERT INTO T_JOURNEY VALUES ('MONTPELLIER', 'TOULOUSE', 240)

INSERT INTO T_JOURNEY VALUES ('MARSEILLE', 'NICE', 205)

Now we will try a very simple query, giving all the journeys between towns :

WITH journey (TO_TOWN)

AS

 (SELECT DISTINCT JNY_FROM_TOWN

 FROM T_JOURNEY

 UNION ALL

 SELECT JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

TO_TOWN

CLERMONT-FERRAND

LYON

MARSEILLE

MONTPELLIER

PARIS

NANTES

The Best of SQLServerCentral – Vol. 5

 127

CLERMONT-FERRAND

LYON

MONTPELLIER

MARSEILLE

NICE

TOULOUSE

MONTPELLIER

TOULOUSE

TOULOUSE

TOULOUSE

NICE

MONTPELLIER

MARSEILLE

NICE

TOULOUSE

MONTPELLIER

TOULOUSE

TOULOUSE

This query is not very interesting because we do not know from which town we came. We just know the towns where
we can go, and the fact that we have probably different ways to go to same place. Let us see if we can have some
more information... First, we want to start from Paris:

WITH journey (TO_TOWN)

AS

 (SELECT DISTINCT JNY_FROM_TOWN

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

The Best of SQLServerCentral – Vol. 5

 128

FROM journey

TO_TOWN

PARIS

NANTES

CLERMONT-FERRAND

LYON

MONTPELLIER

MARSEILLE

NICE

TOULOUSE

MONTPELLIER

TOULOUSE

TOULOUSE

We have probably three ways to go to Toulouse. Can we filter the destination? Sure!

WITH journey (TO_TOWN)

AS

 (SELECT DISTINCT JNY_FROM_TOWN

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

WHERE TO_TOWN = 'TOULOUSE'

TO_TOWN

The Best of SQLServerCentral – Vol. 5

 129

TOULOUSE

TOULOUSE

TOULOUSE

We can refine this query by calculating the number of steps involved in the different ways:

WITH journey (TO_TOWN, STEPS)

AS

 (SELECT DISTINCT JNY_FROM_TOWN, 0

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN, departure.STEPS + 1

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

WHERE TO_TOWN = 'TOULOUSE'

TO_TOWN STEPS

-------------------------------- -----------

TOULOUSE 3

TOULOUSE 2

TOULOUSE 3

The cherry on the cake will be to know the distances of the different ways :

WITH journey (TO_TOWN, STEPS, DISTANCE)

AS

 (SELECT DISTINCT JNY_FROM_TOWN, 0, 0

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

The Best of SQLServerCentral – Vol. 5

 130

 SELECT JNY_TO_TOWN, departure.STEPS + 1,

 departure.DISTANCE + arrival.JNY_MILES

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

WHERE TO_TOWN = 'TOULOUSE'

TO_TOWN STEPS DISTANCE

----------------------- ----------- -----------

TOULOUSE 3 1015

TOULOUSE 2 795

TOULOUSE 3 995

The girl in the cake will be to know the different towns we visit by those different ways:

WITH journey (TO_TOWN, STEPS, DISTANCE, WAY)

AS

 (SELECT DISTINCT JNY_FROM_TOWN, 0, 0, CAST('PARIS' AS VARCHAR(MAX))

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN, departure.STEPS + 1,

 departure.DISTANCE + arrival.JNY_MILES,

 departure.WAY + ', ' + arrival.JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

WHERE TO_TOWN = 'TOULOUSE'

The Best of SQLServerCentral – Vol. 5

 131

TO_TOWN STEPS DISTANCE WAY

----------------- ----------- ----------- ---

TOULOUSE 3 1015 PARIS, LYON, MONTPELLIER, TOULOUSE

TOULOUSE 2 795 PARIS, CLERMONT-FERRAND, TOULOUSE

TOULOUSE 3 995 PARIS, CLERMONT-FERRAND, MONTPELLIER, TOULOUSE

And now, ladies and gentleman, the RECURSIVE QUERY is proud to present to you how to solve a very complex
problem, called the travelling salesman problem. (One of the operational research problems on which Edsger Wybe
Dijkstra found the first efficient algorithm and received the Turing Award in 1972):

WITH journey (TO_TOWN, STEPS, DISTANCE, WAY)
AS
 (SELECT DISTINCT JNY_FROM_TOWN, 0, 0, CAST('PARIS' AS VARCHAR(MAX))
 FROM T_JOURNEY
 WHERE JNY_FROM_TOWN = 'PARIS'
 UNION ALL
 SELECT JNY_TO_TOWN, departure.STEPS + 1,
 departure.DISTANCE + arrival.JNY_MILES,
 departure.WAY + ', ' + arrival.JNY_TO_TOWN
 FROM T_JOURNEY AS arrival
 INNER JOIN journey AS departure
 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)
SELECT TOP 1 *
FROM journey
WHERE TO_TOWN = 'TOULOUSE'
ORDER BY DISTANCE

TO_TOWN STEPS DISTANCE WAY
------------------ ----------- ----------- ---------------------------------
TOULOUSE 2 795 PARIS, CLERMONT-FERRAND, TOULOUSE

By the way, TOP n is a non standard SQL... Dislike it... Enjoy CTE!

WITH

 journey (TO_TOWN, STEPS, DISTANCE, WAY)

 AS

 (SELECT DISTINCT JNY_FROM_TOWN, 0, 0, CAST('PARIS' AS VARCHAR(MAX))

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN, departure.STEPS + 1,

 departure.DISTANCE + arrival.JNY_MILES,

 departure.WAY + ', ' + arrival.JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN),

The Best of SQLServerCentral – Vol. 5

 132

 short (DISTANCE)

 AS
 (SELECT MIN(DISTANCE)
 FROM journey
 WHERE TO_TOWN = 'TOULOUSE')
SELECT *
FROM journey j
 INNER JOIN short s
 ON j.DISTANCE = s.DISTANCE

WHERE TO_TOWN = 'TOULOUSE'

8 - What more can we do?
In fact, one thing that is limiting the process in our network of speedways, is that we have made routes with a single
sense. I mean, we can go from Paris to Lyon, but we are not allowed to go from Lyon to Paris. For that, we need to
add the reverse ways in the table, like:

JNY_FROM_TOWN JNY_TO_TOWN JNY_MILES

-------------- ------------ ---------

LYON PARIS 470

This can be done, by a very simple query :

INSERT INTO T_JOURNEY

SELECT JNY_TO_TOWN, JNY_FROM_TOWN, JNY_MILES

FROM T_JOURNEY

The only problem is that, previous queries won't work properly:

WITH journey (TO_TOWN)

AS

 (SELECT DISTINCT JNY_FROM_TOWN

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN)

SELECT *

FROM journey

The Best of SQLServerCentral – Vol. 5

 133

TO_TOWN

PARIS

NANTES

CLERMONT-FERRAND

LYON

...

LYON

MONTPELLIER

MARSEILLE

PARIS

Msg 530, Level 16, State 1, Line 1

The statement terminated. The maximum recursion 100 has been exhausted before statement
completion.

What happened? Simply, you are trying all ways including cycling ways like Paris, Lyon, Paris, Lyon, Paris... ad
infinitum... Is there a way to avoid cycling routes? Maybe. In one of our previous queries, we have a column that gives
the complete list of stepped towns. Why don't we use it to avoid cycling? The condition will be: do not pass through a
town that is already in the WAY. This can be written as:

WITH journey (TO_TOWN, STEPS, DISTANCE, WAY)

AS

 (SELECT DISTINCT JNY_FROM_TOWN, 0, 0, CAST('PARIS' AS VARCHAR(MAX))

 FROM T_JOURNEY

 WHERE JNY_FROM_TOWN = 'PARIS'

 UNION ALL

 SELECT JNY_TO_TOWN, departure.STEPS + 1,

 departure.DISTANCE + arrival.JNY_MILES,

 departure.WAY + ', ' + arrival.JNY_TO_TOWN

 FROM T_JOURNEY AS arrival

 INNER JOIN journey AS departure

 ON departure.TO_TOWN = arrival.JNY_FROM_TOWN

 WHERE departure.WAY NOT LIKE '%' + arrival.JNY_TO_TOWN + '%')

SELECT *

The Best of SQLServerCentral – Vol. 5

 134

FROM journey

WHERE TO_TOWN = 'TOULOUSE'

TO_TOWN STEPS DISTANCE WAY

-------------- ----------- ----------- ---

TOULOUSE 3 1015 PARIS, LYON, MONTPELLIER, TOULOUSE

TOULOUSE 4 1485 PARIS, LYON, MONTPELLIER, CLERMONT-FERRAND, TOULOUSE

TOULOUSE 2 795 PARIS, CLERMONT-FERRAND, TOULOUSE

TOULOUSE 3 995 PARIS, CLERMONT-FERRAND, MONTPELLIER, TOULOUSE

As you see, a new route occurs. The worst in distance, but perhaps the most beautiful!

CONCLUSIONS

A CTE can simplify the expression of complex queries. RECURSIVE queries must be employed where recursivity is
needed. If you make a bad query with MS SQL Server, don't be afraid, the cycles of recursions are limited to 100. You
can overcome this limit by fixing OPTION (MAXRECURSION n), with n as the value you want. The OPTION clause
must be the last one in a CTE expression. But remember one thing: MS SQL Server 2005 is actually a beta version!

Last but not least, ISO SQL:1999 had some more syntax options that can allow you to navigate in the data DEPTH
FIRST or BREADTH FIRST, and also to all the data contained in the steps (in an ARRAY of ROW which must be of
"sufficient" in dimension to cover all cases!).

Serializing Procedure Calls Without Unnecessary Blocking
By Robert Cary

Introduction

There are several situations where you might want to marshal calls to a particular PROC. For me, the most common
situation is where we have several instances of an application, running in parallel, that need to work with distinct data
sets supplied by a stored procedure. These solutions are also useful in any situation where you occasionally
encounter race-conditions but do not want to block other processes by acquiring restrictive locks on the objects in use
or using a SERIALIZABLE transaction isolation level. Below are various approaches to this problem and reasons why
using sp_getapplock is usually the most preferable.

One approach that I’ve seen used in the past is to create a surrogate locking table that is only referenced by the
PROC you wish to marshal. By acquiring an exclusive table lock on the surrogate table within in the proc, you are
ensuring that only one instance of that proc can run at a time. Subsequent calls are effectively queued and thereby
serializing execution of the PROC.

 /************** Create Table **************/

 CREATE TABLE dbo.SurrogateLockTable

 (

The Best of SQLServerCentral – Vol. 5

 135

 ID INT PRIMARY KEY CLUSTERED

)

 GO

 INSERT INTO dbo.SurrogateLockTable(ID)

 VALUES(1)

 GO

 /************** Proc Code **************/

 CREATE PROC dbo.LockingTest

 AS

 BEGIN TRAN

 SELECT ID

 FROM SurrogateLockTable WITH(HOLDLOCK,TABLOCKX)

 /*your code goes here*/

 COMMIT

This technique can be extended to lock an individual key, allowing either greater granularity when marshalling calls or
to allowing multiple PROCs to utilize the same lock table and thus avoiding a lock table for every PROC you wish you
marshal.

 /************** Create Table **************/

 CREATE TABLE dbo.SurrogateLockKeyTable

 (

 KeyVal VARCHAR(200) PRIMARY KEY CLUSTERED -- VARCHAR for flexibilty, but could be anything

 -- depending on what your keys will be

)

 GO

 /************** Proc Code **************/

 CREATE PROC dbo.KeyLockingTest

 AS

The Best of SQLServerCentral – Vol. 5

 136

 /* CREATE Record in table if it doesn't already exist */

 IF NOT EXISTS(SELECT 1

 FROM SurogateLockKeyTable WITH(NOLOCK) --NOLOCK hint allows you to read the table

 -- without being blocked

 WHERE KeyVal = @KeyVal)

 BEGIN

 INSERT INTO SurogateLockKeyTable(KeyVal)

 VALUES(@KeyVal) -- This can cause a race condition, if two identical calls

 -- are made simultaniuosly.

 END

 BEGIN TRAN

 SELECT @rand = Id

 FROM [SurogateLockKeyTable] WITH (HOLDLOCK,ROWLOCK,XLOCK)

 WHERE KeyVal = @KeyVal

 /*Code goes here*/

 COMMIT

This allows for higher concurrency by only blocking calls that would affect the same key. Naturally, key could be a
proc name, a table key, a table etc.

An alternative and more favorable approach would be to utilize sp_getapplock and sp_releaseapplock.
SP_getapplock is a wrapper for the extened procedure XP_USERLOCK. It allows you to use SQL SERVERs locking
mechanism to manage concurrency outside the scope of tables and rows. It can be used you to marshal PROC calls
in the same way the above solutions with some additional features.

• By using sp_getapplock, you do not need to create and manage a surrogate table. Sp_getapplock adds locks
directly to the server memory. Also, if you look at the second example, there is a flaw where a race-condition
could still occur. Sp_getapplock removes this danger.

• Second, you can specify a lock timeout without needing to change session settings. In cases where you only want
one call for a particular key to run, a quick timeout would ensure the proc doesnt hold up execution of the
application for very long.

• Third, sp_getapplock returns a status which can be useful in determining if the code should run at all. Again, in
cases where you only want one call for a particular key, a return code of 1 would tell you that the lock was granted
successfully after waiting for other incompatible locks to be released, thus you can exit without running any more
code (like an existence check, for example).

The synax is as follows:

The Best of SQLServerCentral – Vol. 5

 137

 sp_getapplock [@Resource =] 'resource_name',

 [@LockMode =] 'lock_mode'

 [, [@LockOwner =] 'lock_owner']

 [, [@LockTimeout =] 'value']

An example using sp_getapplock that is equivalent to the second example:

 /************** Proc Code **************/

 CREATE PROC dbo.GetAppLockTest

 AS

 BEGIN TRAN

 EXEC sp_getapplock @Resource = @key, @Lockmode = 'Exclusive'

 /*Code goes here*/

 EXEC sp_releaseapplock @Resource = @key

 COMMIT

Conclusions

All the approaches described will allow you to marshal calls to a proc in situations where you don't want to simply
acqurie exclusive locks on the tables you are using. Overall, I believe using sp_getapplock is cleaner, more elegant,
and more flexible for most situations.

I know it goes without saying, but when using this or any of the other of the locking examples, always wrap them in a
transaction with XACT_ABORT on, or checks in code to ensure a ROLLBACK where required.

The Truth Table
By Yousef Ekhtiari

Background

As we all know, we use a logical operator in a WHERE clause. It means each of us are consciously or unconsciously
familiar with propositional logic. In propositional logic, we only have two values for each variable: True or False (1 or
0), therefore, any logic statement can be analyzed using a table which lists all possible values of the variable: a Truth
Table. Since each variable can take only two values, a statement with "n" variables requires a table with 2^n rows
which is difficult to construct when the number of variables are more than 4.

The Best of SQLServerCentral – Vol. 5

 138

Truth Table

In this article I will show you how SQL can help to construct the Truth Table. In order to construct the
Truth Table I wrote a stored procedure:

create PROC Usp_BuildTruthTable (@variables xml,

 @expressions xml)

AS

DECLARE @docHandle int,

 @SELECT varchar(8000),

 @FROM varchar(8000),

 @SQL nvarchar(4000)

EXEC sp_xml_preparedocument @docHandle OUTPUT, @variables

SELECT @FROM=isnull(@FROM +char(13)

 +' cross join (select cast(0 as bit)union all

 select cast(1 as bit)) as '+value+'('+value+')'+char(13)

 , ' (select cast(0 as bit) union all select cast(1 as bit)) as'

 +value+'('+value+')')

FROM OPENXML(@docHandle, N'/Variables/var')

with (value char(1))

EXEC sp_xml_removedocument @docHandle

--constructing the Select Clause

EXEC sp_xml_preparedocument @docHandle OUTPUT, @expressions

SELECT @SELECT=isnull(@SELECT+' ,['+col+']='+col, '['+col+']='+col)

 FROM OPENXML(@docHandle, N'/expressions/exp')

WITH (col VARCHAR(8000) '@val')

 SET @SQL='select *,'+@SELECT+ ' from '+char(13) +@FROM

 EXEC(@SQL)

The Best of SQLServerCentral – Vol. 5

 139

EXEC sp_xml_removedocument @docHandle

As you can see it accepts two parameters which are declared as XML data type that is new to SQL Server 2005. If
you are not familiar with the XML procedure which I used in the Usp_BuildTruthTable, you can refer to BOL
documentations.

The main core of stored procedure is the statement "(select cast(0 as bit)union all select cast(1 as bit))", which
assigns all the possible values to the variables and the CROSS JOIN that is used to produce all possible
combinations of variables. The @SELECT will evaluate the expression, and the logic behind this is simple: SQL
Server has a bitwise operator, so it can evaluate bitwise expressions. This is the reason that I converted zero and one
to the bit data type. There are 4 bitwise operators in SQL SERVER:

Operator Meaning

~ NOT

& AND

| INCLUSIVE OR

^ EXCLUSIVE OR

Now I want to show you how to use these bitwise operators in logical connectives:

Logical
operator Expression Bitwise

Not P ~P

And P AND Q P & Q

The Best of SQLServerCentral – Vol. 5

 140

Inclusive or P OR Q P | Q

Exclusive or P XOR Q P ^ Q

Implies P IMP Q ~P | Q

Equivalence
P EQU Q ==(P
IMP Q) & (Q IMP
P)

(~P | Q) &
(~Q | P)

You have to pass variables and expressions with the following format:

<Variables>

<var value="VAR1" />

.

.

.

<var value=" VARn" />

</Variables>

<expressions>

<exp val="EXP1" />

.

.

.

<exp val="EXPn" />

</expressions>

Note: you have to use "& amp;" (remove th space between the & and amp) instead of & or else you get the following
error:

.Net SqlClient Data Provider: Msg 9421, Level 16, State 1, Procedure Usp_BuildTruthTable,

Line 0

XML parsing: line 3, character 15, illegal name character

The Best of SQLServerCentral – Vol. 5

 141

To test the stored procedure, run the following snippet:

exec usp_BuildTruthTable '<Variables>

<var value="a" />

<var value="b" />

</Variables>' ,

'<expressions>

<exp val="~a" />

 <exp val="a & amp; b" />

<exp val="(a | b)" />

<exp val="(a ^ b)" />

<exp val="(~a | b)" />

<exp val="(~a | b)& amp; (~b | a)" />

</expressions> '

Note: Remove the space between the & and amp in the code.

Here is the result:

a b ~a a & b (a | b) (a ^ b) (~a |b) (~a | b)& (~b | a)

----- ----- ----- ----- ------- ------- ------- ------------------

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

Let's check a complicated expression:

((P imp Q) and (Q imp R)) imp (P imp R) == ~ ((~P |Q) & (~Q | R)) | (~P | R)

We have three variables and an expression, so we invoke the stored procedure as follows:

exec usp_BuildTruthTable

'<Variables>

<var value="P" />

<var value="Q" />

<var value="R" />

The Best of SQLServerCentral – Vol. 5

 142

</Variables>' ,

'<expressions>

<exp val="~((~p |Q) & amp; (~Q |R)) | (~P|R)" />

</expressions> '

And here is the result:

P Q R ~((~p |Q) & (~Q |R)) | (~P|R)

----- ----- ----- ------------------------------

0 0 0 1

0 1 0 1

1 0 0 1

1 1 0 1

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 1

Introduction to Bitmasking in SQL Server 2005
By Lee Everest

Bitmasking and bitwise operations are low level programming techniques used for turning bits off and on - the
manipulation of bits provides a way to make representations in a computer. The goal of bitmasking in SQL Server
2005 is to combine two or more attributes, normally stored into a single column in a table, into one hexadecimal value
to make representations as well. Achieving this goal has many possibilities, as we will discover later, and introduces
many computer science concepts into the relational database. Part 1 of this series is an introduction to counting and
bitmasking in SQL Server. In Part 2, we will discover its practical application in SQL Server. Finally, in Part 3, we will
explore programmability using bitmasking techniques.

Why Bitmask?

Suppose, for instance, that you have been assigned to capture 50 Request.Browser properties (Figure 1) from your
website and maybe 50 keys in the Request.ServerVariables collection off of the web to store in SQL Server. Are you
going to create 100 columns in a table to hold these values? Sure, you can and that will work very well, but
bitmasking several values to one value is a cleaner, neater, and more efficient approach in my opinion.

The Best of SQLServerCentral – Vol. 5

 143

Figure 1: A Request.Browser property (c#)

Figure 1 shows one of many different attributes that you can pluck out of a user's visit to a website, important
information that many companies capture. Here, a web developer writes code to capture the Boolean value of a
browser's cookie status. Before we get into an example, we must review numbers, counting, base 10, base 2, and
hexadecimal notation.

(If you are already familiar with these concepts, please skip this part). You will need to understand these terms and
associated techniques to begin masking multiple values to single values.

A Review of Bits, Numbers and Counting

The basic and lowest level of a computer's representation of anything is a bit. A bit has two values as most of us know
on and off. While you expected me to say 1 and 0, one only has to look at a half a dozen different ANSI applications
to find that on and off are represented a half dozen different ways. For this article, we will use 0 and 1; don't be
surprised, however, to find other values, highly inconsistent might I add, even in platforms and applications that are
written by the same company, no less. Generally speaking, we associate 1 to be equal to on; 0 to represent off, but if
you wanted to you could reverse this representation I suppose. Table 1 defines a table for some of our terminology.
Four bits are a nibble and two nibbles are a byte. A WORD is 2 bytes, or 16 bits, and 32 DWORD. A nibble will be a
very important term to grasp as we begin mapping bits.

The Best of SQLServerCentral – Vol. 5

 144

Table 1: Bit terminology

Numbers can be represented via a series of bits in combinations that are either on or off. Your computer represents
things as numbers as well, such as memory locations, printer ports, devices, etc. When you think about it in this
context, we can certainly represent things with numbers of our choosing if we are inclined to in the relational database
- permissions, cities, states, hair color, gender can be assigned a numerical value. And by doing such, we are
representing entities, objects, or things just as your computer does. Let us now look at Base 10 and Base 2 notation.
This will allow us to become acquainted with numbers and their representations. We'll first pick an easy number, and
then a larger one as our working examples. If you remember from mathematics, our numbering system is centered on
the Decimal System, or Base 10. Let's look at some Base 10 representations of our numbering system.
Understanding the following is critical to bitmasking in SQL Server 2005.

Base 10

Check out Table 2 for a refresher on simple Base 10 counting. We will build off of this concept later. Remember that
we can count numbers in a variety of ways. Follow each line in the graphical representation to get (re)acquainted with
counting numbers in this manner. At this point, a calculator might be handy to verify some of what I am deriving.

Table 2: Counting numbers with Base 10

We certainly could have expanded line 11 in our table even further, but I think you get the point. The number 10 is the
base value of our final calculation here, and we can express final results based on 10 raised to a power times another
value.

Base 2

As Base 10 is synonymous with the Decimal system, so is Base 2 to the Binary System.

Because bits are used to represent numbers in a computer, we find it easier to translate our numbering to
bit notation (we previously pointed out that the core of computing is based on only two values). Rather
than using Base 10, we will use a Base 2, as it provides to us a much easier way to represent our values.

The Best of SQLServerCentral – Vol. 5

 145

A very important concept, Base 2 allows us to translate from hexadecimal to decimal and back very
easily. Mapping values using base two is much easier than trying to keep up with counting all of the
zeroes and ones when using Base 10.

Table 3: Base2 mapping

The above table first shows us that one nibble and one byte, all zeros, has a value of zero. A byte, all 1's (all bits
turned on) has a value of 255. How did we come up with this?

1 1 1 1 1 1 1 1

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 =255

+ + + + + +

128 64 32 16 8 4 2 1 =255

+ + + + + +

240 15 = 255

Let's break this down piece by piece. Don't worry all of this will come together for you soon. Each bit position
represents an ordinal position within a byte. Starting from right to left (we could have started from left to right it's
personal preference), position 0 is represented by two to the zero power, which equals one. Moving to the left one
position, we find two to the first power, or 2^ 1, which gives us the value of two. (Notice the increasing value of the
exponent by one, starting at zero, each iteration). Again using base two, our Base 2 value next is raised to the second
power, and then two raised to the third power, etc. Since all the bits are on in the first nibble of this byte, what is the
value of the sum of the first four numbers? Fifteen, you are correct!

Now let's examine our value of 15 further, and place it in our windows scientific calculator. Make sure that you enter
15 and that it is reading in Dec, short for decimal notation. Now, change it to Hex, short for Hexadecimal notation.

The Best of SQLServerCentral – Vol. 5

 146

What the heck? Our value is F. Where did this come from? Remember that our visual representation is easily
changed to Hex from Base 2.

Display 1: Our value 15 as Hexadecimal

Review Table 4. This mapping allows us to successfully convert our numbering scheme from base two to Hex
notation. This final representation of numbers is what we will actually use in our masking far easier than trying to
convert base 10 or base 2 to something visual that we can work with.

Decimal Bin Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 4: A conversion table for bits

Study this concept for a moment, and try to come up with some values of your own. For practice, jot down a few
numbers between 0 and 20 and try to figure out their binary value representation.

The Best of SQLServerCentral – Vol. 5

 147

Let's look at another example, this one is more difficult. Let's attempt to map the hex value of our previous, 4458.
Before we can do this, we have to calculate its value in Base2. We must first figure out how to get there. Here is what
I come up with:

4458 = 2^12 + 2^8 + 2^6 + 2^5 + 2^3 + 2^1

= 4096 + 256 + 64 + 32 + 8 + 2

If we now map each nibble, we end up with the following:

Notice how each set of 4 bits translates nicely into our first beginning value of Base2 exponential notation. Let's look
at it again:

We treat each nibble as if they were stand alone the first nibble is the sum of 2 + 8, since the second and forth bits
are on, giving us a value of 10 (or the value A!). For the second nibble, the second and third bits are on, summing to
give a value of.6(2 + 4). Yes you got it!

Again, review this concept carefully before moving on. Pick a few numbers larger than, say, 100, and come up with 1)
its binary representation and 2) its hex representation. Understanding this exercise, converting from decimal to binary
to hexadecimal, is critical to successful bitmasking. Let's now begin with a fictitious problem and solve it via
bitmasking.

Our Problem

Given our refresher, we are ready for a challenge. We have been tasked to bitmask 3 values that are generated each
time a visitor comes to our website. We are to record 1) the operating system, 2) the browser used, and 3) whether or
not cookies are turned on in the client environment. We wish to combine these three values into 1 bitmasked value
and store this in the database.

Preparing to code our mask

Before we begin coding T-SQL, I first find it easy to mask values into a single value by creating a key, or legend, that
will guide me to the correct bit placement of my values. Below is a useful way to prepare a legend as a map to 1)

The Best of SQLServerCentral – Vol. 5

 148

Define the number of bytes needed, 2) Keep track/calculate bit values, and 3) Position of the bytes where you wish to
store your values. Simply add one of these as a comment in your code so that you have a reference to go back
whenever you like to remind yourself of the mask positions for your values. Examine the key in Figure 1 and study the
explanation of the key carefully.

Figure 2: Creating a key to map bitmask values

Explanation of the key

In our example, we will use only 1 byte to represent three columns. (If you were masking several columns, you would
need more bytes for storage). First, I assign the placeholders for the bit values: 2 bits for the operating system, 3 bits
for the browser type, and 1 bit to notify if cookies are turned on or off. The second portion of the key outlines the
assignment for your mask. We are using 1 byte which has 8 bit positions. Each position will be assigned bit values.
For O (operating system), I previously defined in the key that we will allow three values, so I'll need 2 bytes. For
Browser B storage, I'll need 3 bits (Remember why 3 bits allows for 7 storage values? If you forgot, go back and
review counting numbers. You'll get it!), and for Cookie C values just 1 bit. Note that I map them in the Mask line
above, each of the 6 bits that I'm using assigned to a corresponding value for my mask. This is very important, since
you will actually be placing numerical representations of your data within these bits. It does not matter than I do not
use all 8 bits that I have allocated in our example we can leave the remaining bits zero without disrupting our storage
or retrieval process.

Coding the Mask

Below is the code that will mask our values. Review this script, and then look a the explanation below.

The Best of SQLServerCentral – Vol. 5

 149

Figure 3: Code to mask our data into one value

Let’s briefly review the above steps for coding the mask.

Steps to mask values

Step 1) Binary data type at this point, you choose the binary or varbinary data type that you will use. The more values
that you have, the larger the data type necessary to store values. I use a varbinary (1) data type for no reason other
than I normally use varbinary instead of binary (length 1 doesn't vary, obviously).

Step 2) Assign Mask Values values that we wish to mask. They could come from a web page, a rich client, web
service, or whatever. For this initial demo, we're just running a script, so hard-coded values are adequate.

Step 3) Assign the shift values these variables store the multiplier to allow you to shift, within the byte or bytes, the
beginning point for you storage attributes. For example, the first variable, @BitshiftBrowser=4, will allow us to skip the
first two bits (our designated holding spot for the operating system) in order to get to the location where we are going
to store our browser settings.

Step 4) Assign code to values in order to store our values, remember back to our previous paragraph on object
representations in the computer. Here we simply assign a number to our value via the CASE statement.

The Best of SQLServerCentral – Vol. 5

 150

Step 5) Mask the values use the bitwise OR operator to place the integer value that represents our textual value
inside of the binary data type at the outlined location. (For further reading, see
http://en.wikipedia.org/wiki/Bitwise_OR#OR).

Step 6) Masked value our end result. We have successfully collapsed 3 attributes into 1 value (Figure 3); we could
have put hundreds of them into one value. A powerful concept? I agree!

Figure 4: Bitmasked value final result

Decoding the Mask

Just as we code the mask, similarly we must decode the hexadecimal value (Figure 5). Let's look at the steps to
accomplish this.

Figure 5: Decode the masked value

Steps to decode mask values

Step 1) Unmask value using integer representation This is a simple decode. The values that you previously assigned
to your textual representation are reversed. For the first bit, you perform a bitwise AND
(http://en.wikipedia.org/wiki/Bitwise_AND#AND) to recapture the values.

Step 2) Shift using & and division As we shifted to the right to place the values into the mask, we must divide by the
same bitshift variable to decode the second and subsequent values out of the mask. The mask value/shift integer
anded with the storage value assigned in the code mask steps is found again by the CASE statement.

http://en.wikipedia.org/wiki/Bitwise_OR#OR
http://en.wikipedia.org/wiki/Bitwise_AND#AND

The Best of SQLServerCentral – Vol. 5

 151

Step 3) Display final result

Figure 6: Final decoded value

Conclusion

Bitmasking in SQL Server is fun, powerful, and a neat way to store data in a relational database. While it shouldn't be
used to overpower or overcomplicate solving a particular task, as it is with every tool in our SQL Server toolkit
arsenal, there is a time and a place for everything. Keep this technique in mind next time you have to store many
attributes into a table. In Part 2, we will look at how you might build objects in the database that will allow
implementation of this concept. We'll also look at some queries and indexing the bitmasked value, and look at
performance implications for a bitmasked value in SQL Server.

About the Author

Lee Everest is a Sr. Consultant for Software Architects, and a part-time SQL instructor at North Lake College in Irving,
Texas. He can be reached at tsql-northlake@dcccd.edu.

Self Eliminated Parameters
By Alex Grinberg

There are many common tasks that require parameters which may be optional. One common example is a search
that has many different ways to locate the data such as name, age, address, gender, etc. Another example is
selecting groups of data via filtering. Again, this task can have multiple criteria to select the data to be presented.

In both cases, not all of the criteria would be specified each time the procedure is called. Coding a SQL statement
with one or more parameters missing in the WHERE clause causes a problem. A common solution is the dynamic
SQL and IF statement which allows the building of a filter based on passing values, or in the case of fewer
parameters using an IF statement to call a query which a statically predefined filter where a specific parameter has
value.

In this article I would like to show a different technique, lets call it a smart filter, which means - the WHERE clause
skips empty parameter(s) and excludes them from the query by themselves.

If you are not familiar with how the EXEC() and sp_executesql procedures work, which are the dynamic SQL options,
I would recommend you read an article written by Erland Sommarskog The Curse and Blessings of Dynamic SQL.
This article has a comprehensive explanation for dynamic SQL. It can be found at:
http://www.sommarskog.se/dynamic_sql.html.

Now lets focus on the issue of how to avoid dynamic SQL for this case. We need to let the WHERE
clause know when the parameter equals the default value do not use this as a filter condition.

mailto:tsql-northlake@dcccd.edu

The Best of SQLServerCentral – Vol. 5

 152

To do that, you must use this syntax: (COLUMN_NAME = @PARAM_NAME OR @PARAM_NAME =
DEFAULT_VALUE)

Below I have provided you with a code sample based on the Northwind database. Lets take one line from
the sample and see how the filter works.

The filter line is (Products.ProductName = @prodname OR @prodname Is Null). Break filter line down in
two parts. The first part would be "Products.ProductName = @prodname attempt to retrieve rows from
result set and filter by ProductName." The second part would be "If the value in the row does not match
then parameter equal to default which is always true." This way if the parameter remains as the default
value filter, look at the second part and exclude all parameter(s) with the default values from the WHERE
clause.

Note: In my coding techniques I tried to limit my usage of the OR operator as much as possible, the dynamic SQL
would not be the better choice from the possibilities that are given. In the final analysis, this technique could be one
more choice for you to use.

Code samples: Code is available at www.sqlservercentral.com

Finding Primes
By Kathi Kellenberger

Introduction

I do not get a chance to read much popular literature, but my daughter recently gave me the book The Curious
Incident of the Dog in the Night-Time by Mark Haddon. Once I start reading a novel, I get so involved that I just
keep reading until the book is finished. Luckily, this book contained just over 200 pages, and I completed the entire
book one Sunday.

The interesting thing about this book is that the narrator and protagonist of the story is a 15 year old
autistic boy. He is extremely gifted in math and physics but is unable to understand most human emotions
or connect with the people close to him in the ways one would normally expect. The premise of the story
is that the young hero is writing the book himself about solving the murder of a neighbor's dog.

Because the teen is so obsessed with math, he decides to number the chapters with prime numbers. A
prime number is only evenly divisible by itself and one. He brings up prime numbers and the search for
new prime numbers several times throughout the story. Since I am so passionate about SQL Server, I
wondered how difficult it would be to create a list of prime numbers using T-SQL and how efficient the
algorithm would be.

How to find prime numbers

The author described the search for primes as listing all possible numbers in order and then eliminating the numbers
divisible by two, then by three, then by four, then by five, then by six, etc. I knew that I would only have to check to
see if a prime number candidate was divisible by other prime numbers. For example, why check to see if a number is
divisible by six? If a number is not divisible by two or three, then it will not be divisible by six, either.

I also needed to determine the maximum divisor to check for each prime number candidate to avoid doing extra work.
My first thought was that I could stop testing divisors at one-third the value of the prime number candidate. My
reasoning was that I would only consider odd numbers, and the first divisor to consider was three. When dividing by

http://www.amazon.com/Curious-Incident-Dog-Night-Time/dp/1400032717/sr=8-2/qid=1166645563/ref=pd_bbs_sr_2/002-9923767-1757619?ie=UTF8&s=books
http://www.amazon.com/Curious-Incident-Dog-Night-Time/dp/1400032717/sr=8-2/qid=1166645563/ref=pd_bbs_sr_2/002-9923767-1757619?ie=UTF8&s=books

The Best of SQLServerCentral – Vol. 5

 153

three I was also effectively testing one-third of the prime number candidate. After doing a bit of research about how
to determine small prime numbers, I found that I could stop at the square root of the prime number candidate.
This made sense to me when I realized that as the divisor increased, the quotient decreased. The two numbers would
meet at the square root of the dividend. Consider the example in Listing 1.

Operation Result

149 / 2 74 r 1

149 / 3 49 r 2

149 / 5 29 r 4

149 / 7 21 r 6

149 / 11 13 r 6

149 / 13 11 r 6

149 / 17 8 r 13

Listing 1: Division operations to determine if 149 is prime

Notice that the quotient decreases in value as the divisor increases. At the point that the divisor reaches 13, the
quotients are now in the range of divisors that have already been checked. The square root of 149 is between 12 and
13 so it is unnecessary to test additional divisors past 13. Since none of the remainders are zero, 149 is prime.

The modulo operator (%) returns the remainder from a division operation. When a zero is returned from a modulo
operation, the dividend is evenly divided by the divisor. Conversely, if a non-zero value is returned from a modulo
operation, the dividend is not evenly divided by the divisor. For a number to be prime, all modulo operations must
return zero. If a non-zero value is returned by each and every modulo operation for a particular number, that number
is prime.

The T-SQL Solution

The first step in my solution is to create a table (Listing 2) to hold the prime numbers and populate it with the first two
primes: two and three.

CREATE TABLE [dbo].[Primes](

 [Prime] [int] NOT NULL,

CONSTRAINT [PK_Prime] PRIMARY KEY CLUSTERED

(

 [Prime] ASC

)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]

http://primes.utm.edu/prove/prove2_1.html
http://primes.utm.edu/prove/prove2_1.html

The Best of SQLServerCentral – Vol. 5

 154

) ON [PRIMARY]

Insert into Primes (Prime) values (2)

Insert into Primes (Prime) values (3)

Listing 2: The Prime table

The script, a stored procedure called usp_FindPrimes, determines the first number to check: two more than the
maximum prime number in the table. Another variable is used to control how many prime numbers to locate each time
the proc runs.

Because SQL Server works best with sets of data, I believed it would be more efficient to write a query comparing the
current prime number candidate against the list of prime numbers already discovered. Each time through the loop, the
prime candidate is incremented by two so that only odd numbers are considered. If all of the modulo operations return
0, the number is inserted into the prime table.

Editor’s Note: The code is available at www.sqlservercentral.com

I was surprised at how quickly the proc ran, in about two seconds, on my laptop. Because the script always begins
with a number two more than the maximum prime number in the table, running the proc additional times continues to
build the prime number list. The duration increased very slowly as the table grew in size.

Is the solution accurate?

Even though I had an efficient stored procedure that seemed to work, I wondered if it was really accurate. By
importing the list of the smallest 1000 known prime numbers and comparing them to my first set of results, I was
able to verify that my result set matched the first 1000 known prime numbers. My table contained 1002 rows after
running the procedure once (remember it was seeded with two and three) and 1000 rows were returned when I joined
on the table of known primes. The KnownPrime table is included in the downloadable file. Listing 4 shows the query
which returned 1000 rows.

select Prime, KnownPrime

from Primes join KnownPrimes
on Prime = KnownPrime

Listing 4: Checking the results

What about a cursor?

I was curious to see if there would be a big loss of performance by using a cursor based approach. To test the idea, I
created a second stored procedure, usp_FindPrimes_Cursor. This procedure uses a cursor to perform each modulo
operation individually instead of all of them at once for each prime number candidate. Maybe I should not have been
surprised when the cursor method took 15 seconds the first time it ran on my laptop. Subsequent trials took even
longer as more rows were added to the Primes table and the cursor had more rows to loop through. Once again, the
set based approach consistently performed much better than a cursor. The code for usp_FindPrimes_Cursor is also
included in the download file.

Conclusion

T-SQL is a very rich language that can be used to solve many interesting problems besides retrieving and
manipulating data. While this example will not help discover any previously unknown prime numbers, the largest
known prime numbers are thousands of digits long and some mathematicians devote their careers to the task, it

http://primes.utm.edu/lists/small/1000.txt
http://www.sqlservercentral.com/columnists/kKellenberger/primes.txt

The Best of SQLServerCentral – Vol. 5

 155

demonstrates a creative approach to solving a problem that would be difficult to solve manually. It also demonstrates
that SQL Server typically performs best when operating on sets of data versus the use of a cursor.

CTE Performance
By Peter He

Hierarchy structures are widely used in data model and SQL Server implementation for real world entities like
manageremployee relation, organizational structures, regional structures etc. In order to get all the descendants for a
node in the hierarchy, we need to recursively query the children of the node, and the children of the children, and so
on until we reach the leaf level. In SQL Server 2000, this is achieved by loops traversing all the levels under the node.
SQL 2005 provides the new feature Common Table Expression (CTE), which can be used to solve this request.

Introduction

When CTE is used in recursive query, it consists of at least one anchor member and one recursive member, e.g., in
the following sample that gets all the employees under the "Vice President of Production",

• [1] is the anchor member that queries the record for "Vice President of Production";
• [2] is the recursive member by referencing the CTE name AllEmps;
• [3] is the execution of the CTE;

USE AdventureWorks;

GO

WITH AllEmps (ManagerID, EmployeeID, ManagerTitle, EmpTitle, [Level])

AS

(

--[1]

SELECT E.ManagerID, E.EmployeeID, F.Title, E.Title, 0 AS [Level]

FROM HumanResources.Employee AS E,HumanResources.Employee AS F

WHERE E.Title='Vice President of Production' AND E.ManagerID=F.EmployeeID

UNION ALL

--[2]

SELECT E.ManagerID, E.EmployeeID, A.EmpTitle, E.Title, A.Level + 1

FROM HumanResources.Employee AS E

INNER JOIN AllEmps AS A ON E.ManagerID = A.EmployeeID

)

The Best of SQLServerCentral – Vol. 5

 156

-- [3]

SELECT ManagerID, EmployeeID, ManagerTitle, EmpTitle, [Level]

FROM AllEmps

ORDER BY [Level],ManagerTitle,EmpTitle

GO

Though CTE provides a simple and neat solution for recursive queries in SQL 2005, we need to know its performance
implication before we migrate existing code.

Performance Test

Hierarchy structures can be level intensive, i.e. the tree has many levels with fewer children under each node, or sub-
node intensive, i.e. the tree has fewer levels with many children under each node. Tests are performed for these two
extreme scenarios.

Test Environment

• Hardware: Desk top PC with P4 1.60GHz CPU, 1GB RAM, 200GB IDE hard drive without software or
hardware RAID.

• Software: SQL server 2005 developer edition with SP2 on Windows 2003 Standard Edition;
• Table schema and the stored procedures (script):

The script creates one table and stored procedures used by the test. The table schema is as follow:

CREATE TABLE dbo.Groups

 (GroupID int identity NOT NULL,

 GroupName nvarchar(100),

 ParentGroupID int NULL,

 [Description] nvarchar(150)

)

ALTER TABLE dbo.Groups ADD CONSTRAINT PK_Groups PRIMARY KEY CLUSTERED (GroupID)

CREATE INDEX IX_Groups_ParentGroupID ON dbo.Groups (ParentGroupID)

The stored procedures used for descandants queries are dbo.GetDescendantsCTE and
dbo.GetDescendantsLoop, which query all the descandant groups for a given group by CTE and loop
respectively.

The stored procedures used for ancestors queries are dbo.GetAncestorsCTE and dbo.GetAncestorsLoop,
which query all the ancestor groups for a given group by CTE and loop respectively.

http://www.sqlservercentral.com/columnists/phe/CTETestSchema.txt

The Best of SQLServerCentral – Vol. 5

 157

Test Case Design

Tests to query descendants:

 Script to populate data Root
s

Childre
n

Tota
l
level
s

Total
recor
ds

Tes
t 1

CTETestPopulateData1.t
xt

2 2 10 2046

Tes
t 2

CTETestPopulateData2.t
xt

2 3 10 5904
8

Tes
t 3

CTETestPopulateData3.t
xt

2 12 4 3770

For each test case, nodes of different levels in the tree are selected and its descendants are queried by the two
stored procedures respectively.

Test to query ancestors:

 Script to populate data Root
s

Childre
n

Tota
l
level
s

Total
recor
ds

Tes
t 5

CTETestPopulateData2.t
xt

2 3 10 5904
8

Test Results

Results are shown in the following table and chart.

Tests Levels Rows
Retu
rned

ByCTE(ms) ByLoop(ms) CTE:Loop

10 1023 359 214 1.6776

9 511 317 166 1.9096Test 1
6 63 90 63 1.4286

9 9841 3743 1601 2.3379

8 3280 1136 703 1.6159

7 1093 467 306 1.5261

6 364 291 203 1.4335

4 40 125 46 2.7174

Test 2

3 13 <3 <3 1.0000

http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData1.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData1.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData3.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData3.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt

The Best of SQLServerCentral – Vol. 5

 158

4 1885 2526 255 9.9059
Test 3

3 157 258 77 3.3506

The results indicate that CTE is much slower than loop. When the number of children increases under each node, the
performance of CTE gets worse quickly.

The following images are the actual execution plans of the recursive part for both methods. The plans do not give any
clue to their performance difference. However, both plans have expensive key lookup operator due to the index seek
operator in the plans.

To investigate whether key lookup on CTE and loop recursive queries has different behavior, I created two new
stored procedures (dbo.GetDescendantsCTE2 and dbo.GetDescendantsLoop2) to keep only the key column

The Best of SQLServerCentral – Vol. 5

 159

GroupID of the index and [Level] in the CTE and the table variable. Other output columns are retrieved by join the
CTE (table variable) with the table in the select statement, where clustered index seek is used:

SELECT G.GroupID, G.ParentGroupID, G.GroupName, P.GroupName AS ParentGroupName, D.[Level]

FROM Descendants D INNER JOIN dbo.Groups G ON D.GroupID=G.GroupID

LEFT JOIN dbo.Groups P ON G.ParentGroupID=P.GroupID

ORDER BY [Level],ParentGroupID,GroupID

Run CTETestPopulateData2.txt to populate test data, and run the "Test4" in both
CTETestByCTE.txt and CTETestByLoop.txt – all available from sqlservercentral.com. The following
is the new recursive part execution plan for CTE. Both plans for CTE and loop eliminated the key lookup operator.

The results are showed below. The performance of both methods is improved by removing the key lookup.

Levels Rows
Retu
rned

Test# ByCTE(ms) ByLoop(ms) CTE:Loop

Test2 3743 1601 2.3379

Test4 2056 1402 1.4669 9841
Improvements 82% 14%

Test2 1136 703 1.6159

Test4 823 547 1.50468 3280
Improvements 38% 28%

In the query ancestor test, run CTETestPopulateData2.txt to populate the data, and run the "Test5" in
both CTETestByCTE.txt and CTETestByLoop.txt. The result shows that performance of CTE is as
good as, if not better than, traditional loop methods. I didnt test trees with more than 10 levels.

Tests Levels Rows
Retu
rned

ByCTE(ms) ByLoop(ms) CTE:Loop

Test 5 10 10 <3 <3 1.0

A test (script not included) to query descendants on a 10 level tree with one child per node shows that the
performance of CTE and loop is also comparable.

http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt
http://www.sqlservercentral.com/columnists/phe/CTETestByCTE.txt
http://www.sqlservercentral.com/columnists/phe/CTETestByLoop.txt
http://www.sqlservercentral.com/columnists/phe/CTETestPopulateData2.txt
http://www.sqlservercentral.com/columnists/phe/CTETestByCTE.txt
http://www.sqlservercentral.com/columnists/phe/CTETestByLoop.txt

The Best of SQLServerCentral – Vol. 5

 160

Conclusion

CTE is a neat way to implement recursive queries. However its performance is generally more than 50% slower than
the recursive query by the traditional loop method if recursive part of the query returns more than 1 record for each
node like the query for descendants of a node in a tree. When the number of children under a node is increasing, the
performance of CTE degrades even more quickly in the mentioned scenario.

If the recursive part returns one record for each node, e.g. queries for ancestors of a node in a tree, the performance
of CTE is comparable as loop method.

In the recursive part of a CTE or loop method, if index seek is used in the execution plan, only including columns
covered by indexes of the tables involved in the recursive query can improve performance.

Before migrating the recursive queries to CTE in your database, you need to understand the scenarios how data is
queried and how heavy the recursive query load is in your system. In a busy OLTP system, 10ms degradation for
highly concurrent calls can become bottleneck of the whole server.

The Effect of NOLOCK on Performance
By Wayne Fillis

Updated with an author's note

When this article was first published, it produced some lively debate. It was believed by some that the article misled
readers into thinking that NOLOCK should be a tool for performance tuning, which it is not. There is a divided opinion
on the appropriate use of NOLOCK, and therefore I am adding this foreword to my article in an effort to clarify
matters.

NOLOCK is a query optimizer hint. It has advantages, and disadvantages, and it potentially breaks one of the
fundamental rules of databases â€“ data integrity through the use of a locking mechanism. In a nutshell, NOLOCK
does not take locks on the data it reads. This provides benefits for concurrency and performance, but data integrity
suffers.

I can't speak for Microsoft or the MVP's, but if Microsoft offers an ISOLATION LEVEL which does the same thing as
NOLOCK, then there must be an appropriate place for the use of NOLOCK. We've discussed the advantages of
NOLOCK, so let's take a look at some of the disadvantages.

Firstly, when reading with NOLOCK you are reading uncommitted data. This means the data has not been committed
to the database, and could be rolled back (undone) after you have read it. So, you may find your application is
processing invalid data. This is not so much of a problem with Name and Address data, but is particularity problematic
with Accounts, Finance and Sales data. This is where your data integrity would suffer.

Secondly, as noted by one of the SQLServerCentral.com forum posters, Itzik Ben-Gan demonstrated to the UK SQL
Server User Group that NOLOCK can return duplicate rows when reading data. To quote the forum posting: "Tony
Rogerson's blog has code which demonstrates this.
http://sqlblogcasts.com/blogs/tonyrogerson/archive/2006/11/16/1345.aspx ".

This article was intended as a clinical approach to the effect of NOLOCK on performance, without advocating you use
NOLOCK in an attempt to speed up your queries. If you do decide to use it that way, I would like you to know the
risks.

That's all I have to add, folks. I hope you read on and enjoy the article!

The Best of SQLServerCentral – Vol. 5

 161

Cheers, Wayne Fillis

Introduction - How locking works

Using the NOLOCK query optimiser hint is generally considered good practice in order to improve concurrency on a
busy system. When the NOLOCK hint is included in a SELECT statement, no locks are taken when data is read. The
result is a Dirty Read, which means that another process could be updating the data at the exact time you are reading
it. There are no guarantees that your query will retrieve the most recent data.

The advantage to performance is that your reading of data will not block updates from taking place, and updates will
not block your reading of data. This means that you will have improved concurrency on your system, and more tasks
can be performed at the same time. Without NOLOCK each access to the database results in a lock being made on
the row being read, or the page on which the data is located. SELECT statements take Shared (Read) locks. This
means that multiple SELECT statements are allowed simultaneous access, but other processes are blocked from
modifying the data. The updates will queue until all the reads have completed, and reads requested after the update
will wait for the updates to complete. The result to your system is delay, otherwise known as Blocking.

Blocks often take milliseconds to resolve themselves, and this is not always noticeable to the end-user. At other
times, users are forced to wait for the system to respond. Performance problems can be difficult to diagnose and
resolve, but blocking is often easily resolved by the use of NOLOCK.

One solution to blocking is to place the NOLOCK query optimiser hint on all select statements where a dirty read is
not going to cause problems for your data integrity. You would generally avoid this practice in your Finance stored
procedures, for example.

Faster reading of data with NOLOCK

Logically, a select using NOLOCK should return data faster than without, as the taking of locks invokes an overhead.
Ever curious, I decided to investigate the impact of NOLOCK on the performance of a SELECT query. In order to
prove this I needed data - lots of it. The following example shows code I ran to create two tables: Products and
Orders, and populate them with 5 million rows each.

You will need to create a database called NOLOCKPerformanceTest, and I recommend you allocate 400MB of initial
space for the data file. This code could take over an hour to complete, depending on your system. I am running this
on an Intel Dual Core 2Ghz laptop, with a 7200rpm SATA drive and 2GB RAM. The database edition is SQL Server
2005 Developer, with SP1 and hotfix 2153 installed.

I decided to use very large tables, as the longer it takes my test to run, the more noticeable any differences.

Editor’s Note: The code is available at www.sqlservercentral.com

I started the exercise by running a simple join query between the two tables, while checking the runtime with
NOLOCK, and without NOLOCK. I flush the data buffer before each execution, and I drew an average over 5
executions.

The Results

The results for execution times are listed below. It takes a while to run, as 310,001 rows are returned. If you are
running these queries, execution times will vary depending on the specification of your server. The format for these
results is hh:mm:ss.nnn, where nnn is milliseconds.

Without NOLOCK:

Run1: 00:00:29.470

The Best of SQLServerCentral – Vol. 5

 162

Run2: 00:00:30.467

Run3: 00:00:28.877

Run4: 00:00:29.123

Run5: 00:00:29.407

Average: 00:00:29:469

With NOLOCK:

Run1: 00:00:25.060

Run2: 00:00:25.157

Run3: 00:00:25.107

Run4: 00:00:25.140

Run5: 00:00:25.893

Average: 00:00:25:271

This test shows the average execution time is less when using NOLOCK. The average time saved is 00:00:04.197,
which equates to a saving in elapsed time of approximately 14%.

My next step was to check the amount of CPU and IO used in both queries. I added the following code immediately
before the first SELECT in examples 3 and 4, and ran both queries again:

SET STATISTICS IO ON

SET STATISTICS TIME ON

The execution times were the same as before, and the results for the SET STATISTICS options were as follows:

Without NOLOCK:

Table 'Orders'. Scan count 3, logical reads 27266, physical reads 10, read-ahead reads 24786, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Products'. Scan count 3, logical reads 27119, physical reads 78, read-ahead reads 24145,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

SQL Server Execution Times:

CPU time = 13844 ms, elapsed time = 27480 ms.

With NOLOCK:

Table 'Orders'. Scan count 3, logical reads 24845, physical reads 0, read-ahead reads 24826, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

The Best of SQLServerCentral – Vol. 5

 163

Table 'Products'. Scan count 3, logical reads 24711, physical reads 0, read-ahead reads 24689,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.

SQL Server Execution Times:

CPU time = 13813 ms, elapsed time = 24999 ms.

While not being an expert at IO, I nevertheless noticed lower physical and logical reads for the NOLOCK version. I
ran both queries several times, and noticed the same pattern. Using NOLOCK definitely results in lower IO.

The CPU time is similar between the versions, though you can see that once again the elapsed time is lower when
using NOLOCK.

Changing the date in the WHERE clause (see examples 3 and 4) to "01 Dec 2006" results in no rows being returned.
However, the execution time for the without NOLOCK example shows an average of about 24 seconds. With
NOLOCK it runs for approximately 22 seconds each time the query is run.

Conclusion

This article has hopefully proven that using NOLOCK when querying data results in lower IO and faster response
times. I have executed these queries at least a dozen times each over several weeks, and the expected result is
always the same.

If you can suggest any additional queries I can put to the test, please don't hesitate to contact me on
wfillis@gmail.com. I would be happy to test your scenarios, and present the results in a future article.

Converting Hexadecimal String Values to Alpha (ASCII) Strings
By Stephen Lasham

Overview

On investigating some data, I came across a text column containing hexadecimal string information.A hexadecimal
string consists of consecutive pairs of data written in base-16, with the symbols 09 and AF, where A equals 10, B
equals 11, etc, up to F equals 15, i.e. "416E6E656C6F75697361".

It is possible to take each pair, convert it to decimal, and then to its ASCII character equivalent.Simple mathematics
allows the conversion to decimal.As it is base-16, multiply the second column in from the right (sixteenths column) by
16, remembering A to F equals 10 to 15, and add on the value of the column on the right (unit column).

6E = (6 * 16) + 14 = 110

6F = (6 * 16) + 15 = 111

Next convert the decimal value to its ASCII equivalent using a conversion table, or in SQL the operation CHAR.

Select CHAR(110) = n

Select CHAR(111) = o

The Best of SQLServerCentral – Vol. 5

 164

My string data consisted of ten pairs of hex data per row, which I required to convert to ASCII to make it readable in
English.Investigating the Internet showed ways to convert character data to hexadecimal but not a lot the other way.I
considered going through the string character pair by character pair and execute the above maths, but thought
perhaps there may be a better way.

The online examples happily showed me information for converting a single hex character, where the hexadecimal
two-character string is preceded by a 0x and is defined with a type of varbinary.

select char(cast(0x57 as varbinary)) -- = "W"

Unfortunately, the above example shows the hex pair as a constant not a variable, and on attempting to set a variable
into the select statement, it failed as shown below.

Declare @pair as char(2)

Set @pair = '57'

select char(cast('0x' + @pair as varbinary)) -- = null

The only way I could see round this was to build the select into a statement string and execute it.

Declare @stmt nvarchar(500)

Declare @pair as char(2)

Set @pair = '57'

Set @stmt = 'select char(cast(0x' + @pair + ' as varbinary))'

execute sp_executesql @stmt -- = "W"

This actually works, but handling only one character (hex pair) at a time, thus I needed to do a pass of my sample
table, and then do a character-by-character conversion of each string.The resulting code follows.

My Solution

As this is an example, it uses a sample table created below.This table contains three columns, a record id to
sequence the row, the hex string to be converted, and an alpha string to hold the converted results.This is loaded with
some sample data for conversion, and then follows the code to convert it.

Editor’s Note: Code available at www.sqlservercentral.com

If all is well, you will have a list of names following execution of this script.

Some Analysis

The biggest pain of this is to extract the characters one at a time. This required the need to create a temporary table
(#result) to hold a record for each character in the string. Now my knowledge of SQL is sadly lacking, as I would have
preferred to have only a single record or even a variable to hold the resulting string to which I could just concatenate
each new successive character.

i.e. instead of

The Best of SQLServerCentral – Vol. 5

 165

Set @stmt = 'insert into #result values(char(cast(0x' + @pair + ' as varbinary)))'

I would have preferred the result column to be 10 characters long and apply a statement as follows

Set @stmt = 'update #result set result = result + '

 + 'values(char(cast(0x' + @pair + ' as varbinary)))'

This however did not work, and if anyone can enlighten me as to why, I would love to know.

Instead, my code generates a #result table for each hex string, which looks like this.

For hex string 416E6E61737461736961

1, A

2, n

3, n

4, a

5, s

6, t

7, a

8, s

9, i

10, a

In this form, it is of little use and needs joining back into a single string. I used the unique identifier along with the max
and case operations to concatenate the row values into a single string.

Update #HexToAlpha

 set alphastring = (Select max(case when recordid = 1 then result else '' end)

 + max(case when recordid = 2 then result else '' end)

 + max(case when recordid = 3 then result else '' end)

 + max(case when recordid = 4 then result else '' end)

 + max(case when recordid = 5 then result else '' end)

 + max(case when recordid = 6 then result else '' end)

 + max(case when recordid = 7 then result else '' end)

 + max(case when recordid = 8 then result else '' end)

 + max(case when recordid = 9 then result else '' end)

 + max(case when recordid = 10 then result else '' end)

The Best of SQLServerCentral – Vol. 5

 166

 from #result) where recordID = @recordcount

This provided me with the desired result, in this case "Annastasia". An obvious problem presents itself with this
solution, in that it is limited to fixed length hexadecimal strings, in this case 20 characters of hex into 10 characters of
text. Increasing this means adding lines to the max/case statements above. My logic only needed to cater for the
above lengths so this suited me fine.

Conclusion

I enjoyed the excursion away from the daily coding routines I normally work with and hope this code proves useful to
others. I look forward to seeing alternative methods, including ones that can handle variable length strings. If you only
have one string to convert, a good online translator is available at http://www.defproc.co.uk/toys/hex.php

A Refresher on Joins
By Jambu Krishnamurthy

In this article we will look at JOINS. We will primarily focus towards beginners, but this may be a refresher for the
experienced. We will see how each type of JOIN works. Specifically we will discuss these: INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN , SELF JOIN and then wind up with CROSS JOINS.

Note there are so many other terminologies used, like equi join, non-equi join, inner join etc, but there are only the 6
types of joins as mentioned above.

Let's start by creating the tables/data required to understand JOINS.

Step - 1

Use the following script to create the table and data. You can just cut and paste this code into Query Analyzer and
execute it. (Editor’s note: The code is at www.sqlservercentral.com)

You will now have data like this in the three tables. Please note that the empty spaces in rows are only to show a
pictorial mapping. There are only 10 records in t1, 10 records in t2 and 5 records in t3 (no empty rows or NULL values
in any field).

t1 t2 t3

f1 f1 f1

-- -- --

1

2 2

3 3

4

5

6 6 6

7 7

http://www.defproc.co.uk/toys/hex.php

The Best of SQLServerCentral – Vol. 5

 167

8 8

9 9

10 10

 11

 12 12

 13 13

 14

 15

Step - 2

Try these queries

select * from

t1 JOIN t2

on t1.f1 = t2.f1

select * from

t1 INNER JOIN t2

on t1.f1 = t2.f1

select * from

 t1,t2

where

 t1.f1 = t2.f1

All the three queries above are essentially the same. The last one is referred to as the equi-join. What if you want all
rows in t1 that are not in t2 (non-equi joins?). Will this query work?

select * from

 t1,t2

where

 t1.f1 <> t2.f1

It did not quite do what you expected, huh? Here is one way to achieve this:

select * from t1

The Best of SQLServerCentral – Vol. 5

 168

where t1.f1 not in (select t2.f1 from t2)

Step - 3 - LEFT OUTER JOIN

Now suppose you want all the records from t1, whether they have a corresponding entry in t2 or not. Why will we ever
want to do this? A simple situation could be that, you want a list of all the departments (t1) whether there are
employees or not in that department (t2). For this example assume t1.f2 holds department ids, and t2.f1 as
department ids fk'd into t1.f1. Here is the query

select t1.f1, t2.f1

from t1 LEFT OUTER JOIN t2

on (t1.f1 = t2.f1)

This is exactly similar in functionality to the above.

select t1.f1, t2.f1

from t1 LEFT JOIN t2

on (t1.f1 = t2.f1)

t1.f1 t2.f1

===== =====

1 NULL

2 NULL

3 NULL

4 NULL

5 NULL

6 6

7 7

8 8

9 9

10 10

Step - 4 - RIGHT OUTER JOIN

Ok, now the reverse, assume we want all the employees, whether or not they have been assigned to any
departments. Both the queries below are similar again

select t1.f1, t2.f1

from t1 RIGHT OUTER JOIN t2

on (t1.f1 = t2.f1)

The Best of SQLServerCentral – Vol. 5

 169

select t1.f1, t2.f1

from t1 RIGHT JOIN t2

on (t1.f1 = t2.f1)

t1.f1 t2.f1

===== =====

6 6

7 7

8 8

9 9

10 10

NULL 11

NULL 12

NULL 13

NULL 14

NULL 15

Step - 5

JOINS make much sense between two tables, but can obviously be extended to more than two tables. However, just
to demonstrate, as to how complicated/confusing they can become, here is a FULL OUTER JOIN example between
t1, t2 and t3.

select a.f1, b.f1, c.f1

from t1 a

FULL OUTER JOIN t2 b on (a.f1 = b.f1)

FULL OUTER JOIN t3 c on (a.f1 = c.f1)

t1.f1 t2.f1 t3.f1

===== ===== =====

6 6 6

7 7 NULL

8 8 NULL

9 9 NULL

The Best of SQLServerCentral – Vol. 5

 170

10 10 NULL

NULL 11 NULL

NULL 12 NULL

NULL 13 NULL

NULL 14 NULL

NULL 15 NULL

5 NULL NULL

4 NULL NULL

3 NULL 3

2 NULL 2

1 NULL NULL

NULL NULL 13

NULL NULL 12

Observe the query and output carefully...and then see if you can get the following output, which you will agree makes
more sense.

t1.f1 t2.f1 t3.f1

===== ===== =====

6 6 6

7 7 NULL

8 8 NULL

9 9 NULL

10 10 NULL

NULL 11 NULL

NULL 12 12

NULL 13 13

NULL 14 NULL

NULL 15 NULL

5 NULL NULL

4 NULL NULL

3 NULL 3

2 NULL 2

The Best of SQLServerCentral – Vol. 5

 171

1 NULL NULL

That's it for OUTER JOINS for now.

Step - 6 - SELF JOINS

When the same table is used in a query with two different aliases, such a join is referred to as a self-join. Let us see
this case with an example. Create the following table and data.

create table jk_Workers(Worker int, Manager int)

insert into jk_Workers values(111,NULL)

insert into jk_Workers values(222,111)

insert into jk_Workers values(333,222)

insert into jk_Workers values(444,222)

insert into jk_Workers values(555,222)

insert into jk_Workers values(666,111)

insert into jk_Workers values(777,111)

insert into jk_Workers values(888,333)

insert into jk_Workers values(999,222)

All the workers with their respective managers are stored in this table. And if we wish to list out the managers and the
workers working under them, we could use a query similar to the following.

select b.Manager,b.Worker

from jk_Workers a, jk_Workers b

where a.Worker = b.Manager

or b.manager is null and a.Manager is null

order by b.Manager

Manager Worker

NULL 111

111 222

111 666

111 777

222 999

222 333

The Best of SQLServerCentral – Vol. 5

 172

222 444

222 555

333 888

Step - 7 - CROSS JOINS

A cross join is referred to as a Cartesian product, which means, for each element in set-A pick all the values from set-
B

select t1.f1, t2.f1

from t1 cross join t2

select t1.f1, t2.f1

from t1,t2

Both the above queries are same. The output of this query will be 100 rows. This is because, for each row in t1, all
the rows in t2 would be matched. Unless you know what you are doing, you got to be careful in building your queries,
to ensure you are not working on Cartesian products.

I am not sure of a real business need for a Cartesian product (I can be wrong as ever), but I know mathematically it is
valid to have the same y values for different values of x (m=0), basically a horizontal line on the Cartesian plane.
Joins could be as complicated/confusing in real world scenarios, but if your fundamental understanding of how they
behave is clear, you should be able to handle any situation.

Thankz for reading!

Using CLR integration to compress BLOBs/CLOBs in SQL Server
2005
By Yoel Martinez

Introduction

Manipulating Binary Large Objects (BLOBs) and Character Large Objects (CLOBs) has always been difficult in SQL
Server. The new SQL Server 2005 provides new data types (NVARCHAR(MAX), VARCHAR(MAX) and
VARBINARY(MAX)) for large object storage (up to 2 GB) allowing better manipulation as well as the ability to process
these data types using CLR procedures and functions.

This article shows how to create CLR functions to seamlessly compress and decompress large data objects with
minimum performance impact using compression algorithms included in.NET Framework 2.0. Code samples included
in this article can be used in any database implementation but do not cover all possible scenarios. For large
implementations or mission critical applications consider using third party products like SQLCompres.NET (it is
free).

http://www.sqlcompress.net/

The Best of SQLServerCentral – Vol. 5

 173

The new data types

SQL Server 2005 provides three new data types to store and manipulate large objects. VARCHAR(MAX) can store
CLOBs, NVARCHAR(MAX) does the same but allows Unicode characters and VARBINARY(MAX) can store BLOBs.
Books Online states that max indicates that the maximum storage size is 2^31-1 bytes. These new data types can be
used with a wide range of T-SQL commands and behave much like traditional VARBINARY(n), VARCHAR(n) and
NVARCHAR(N).

The new data types should replace the TEXT and IMAGE types from previous versions. As per SQL Server Books
Online TEXT and IMAGE columns should not be used in new development and legacy applications should be
changed to use the new types.

These new types, as opposed to TEXT and IMAGE, can be used as variables and function parameters and can be
returned by CLR (or T-SQL) scalar-value functions. These new characteristics make them great candidates for
compression. Previous attempts to add CLOB and BLOB compression to SQL Server involved using extended
procedures, a difficult and risky business. Using the CLR integration capabilities introduced with SQL Server 2005
makes such implementation more secure and stable (and sometimes faster than their extended procedure
counterparts).

CLRs procedures and functions parameters can receive and process these data types as SQLChars and SQLBytes.
SQLChars can be used to pass VARCHAR(MAX) and NVARCHAR(MAX) parameter while SQLBytes is used to
pass VARBINARY(MAX) types. CLR uses only Unicode characters and passing VARCHAR(MAX) as a parameter
implies converting it to Unicode before parameters are passed.

Get the code from www.sqlservercentral.com

Compressing a BLOB

SQL Server 2005 allows CLR code to be registered as functions and stored procedure. Developers can now extend
SQL Servers functionality using a broad array of programming languages from managed C++ to Visual Basic. How
the CLR is hosted inside SQL Server goes beyond the scope of this article. For those who worry about enabling CLR
integration, suffice to say that Microsoft has made a conscious effort to keep this integration as safe and secure as
possible.

Lets use VARBINARY(MAX) for simplicity sake, since data can be converted between BLOB and CLOB types this
articles code can be extended using T-SQL functions. Listing 1 contains a function to compress BLOBs in SQL
server, the function receives a VARBINARY(MAX) or IMAGE as a SQLBytes and compresses it using the
DeflateStream class provided in .NET Framework 2.0. SQLBytes represents a mutable type that wraps either an
array or a stream. We are going to assume it wraps an array to avoid complicated code, and get the data from the
Buffer property. Using this property might fail with larger BLOBs causing the CLR to throw an out of memory
exception (but dont worry, unlike extended procedures errors, CLR exceptions should not crash your SQL Server).

Listing 1: Compression function – Available at www.sqlservercentral.com

Compressing a BLOB in SQL Server 2005 is as easy as passing a SQLBytes parameter, reading its
content and writing it to a compression stream. The compression stream writes to a MemoryStream that is
later used to create a new SQLBytes object that can be returned to SQL Server applications or directly to
the client. There is only one caveat: Microsofts implementation of DeflateStream requires the stream to be
closed before it writes the last compressed bytes, flushing is not enough.

Listing 2 loads an assembly in SQL Server (a process called cataloging where assemblies are verified for security
and reliability) and creates the compression function. Listing 3 shows how to use the function in a T-SQL update. This
usage makes compressing columns a seamless process that would require only server side adjustments.

http://www.sqlservercentral.com/

The Best of SQLServerCentral – Vol. 5

 174

Listing 2: Loading assembly and creating CLR function

CREATE ASSEMBLY [BlobCompression]

 FROM 'D:\Development\BlobCompression.Dll'

 WITH PERMISSION_SET = SAFE

CREATE FUNCTION [fn_decompress] (

 @compressedBlob varbinary(MAX))

 RETURNS varbinary(MAX)

 AS EXTERNAL NAME [BlobCompression].[UserDefinedFunctions].[fn_decompress];

Listing 3: Compressing data

create table #temp (

 blob_col varbinary(max));

insert into #temp

values(convert(varbinary(max), 'To run your project, please edit the Test.sql file in your
project. This file is located in the Test Scripts folder in the Solution Explorer.'));

drop table #temp;

Decompressing a BLOB

Listing 4 contains a function to decompress a BLOB. This function follows the same principles used in compression
but now reads from a stream returning a decompressed block that can be used to create and return a decompressed
SQLBytes object.

Listing 4: Decompression function – Available at www.sqlservercentral.com

Listing 5 loads an assembly and creates a compression and decompression CLR function. Compression
and decompression can be tested using listing 6, it creates a table and add some values to it, a
compression update is run followed by a select statement that returns uncompressed data.

Listing 5: Loading assembly and creating CLR functions

CREATE ASSEMBLY [BlobCompression]

 FROM 'D:\Development\BlobCompression.Dll'

 WITH PERMISSION_SET = SAFE

CREATE FUNCTION [fn_decompress] (

The Best of SQLServerCentral – Vol. 5

 175

 @compressedBlob varbinary(MAX))

 RETURNS varbinary(MAX)

 AS EXTERNAL NAME [BlobCompression].[UserDefinedFunctions].[fn_decompress];

CREATE FUNCTION [fn_compress](

 @blob varbinary(MAX))

 RETURNS varbinary(MAX)

 AS EXTERNAL NAME [BlobCompression].[UserDefinedFunctions].[fn_compress];

Listing 6: Testing functionality

create table #temp (

 blob_col varbinary(max));

insert into #temp

values(convert(varbinary(max), 'To run your project, please edit the Test.sql file in your
project. This file is located in the Test Scripts folder in the Solution Explorer.'));

update #temp

set blob_col = master.dbo.fn_compress(blob_col);

select convert(varchar(1000), master.dbo.fn_decompress(blob_col))

from #temp;

drop table #temp;

Limitations

The code included in this article allows column level compression in SQL Server 2005 but it lacks functions for
consistency check and will not work very well with large objects (5 MB or more depending on configuration). It is
intended to show how to use CLR integration in SQL Server to extend the engines functionality and provides an
overview on what can be done with the new BLOB/CLOB data types.

When To Use Cursors
By Andy Warren

The Best of SQLServerCentral – Vol. 5

 176

Most DBA's will tell you that cursors are bad, or worse. That stems from developers in the early days of SQL using
cursors to accomplish tasks the same way they did in the programming language of their choice - looping. My
standard line is that you should try to solve the problem in a set based way first and reserve cursors for these
situations:

• Multiple database maintenance type tasks, where you need to run through many (or at least more than one)
databases

• You just cannot figure out a set based solution. That may sound simple and/or lame, but we get paid to solve
problems. If you (and your DBA) can't figure out a set based solution in 30 minutes, use the cursor. That solves
the problem and often you gain a deeper understanding of the problem that may lead you back to a set based
solution.

• You want to leverage logic you've already encapsulated in a stored procedure.

I hope you'll agree with the first point, imagine you'll vilify me for the second point, and maybe scratch your head
about the third. The goal today is to get you to rethink your views on cursors and if enough interest, I may follow up
with a deeper discussion. We'll focus on the third point as a starting place.

First, some background. I believe in using stored procedures for all data access with the exception of things that
intrinsically require dynamic SQL like searches. I also believe that putting some business logic in a stored procedure
is worth doing if it reduces round trips to the client machine. The limiting factor to stored procedures is that it's hard to
pass in the equivalent of an array so that you can use that encapsulated logic for one record (request) or for many.

One example from my background required parsing a string containing order information (for books, shirts, etc) and
splitting it into parent/child tables. Orders were received via an HTTP post, each post containing all the information
relevant to the order. The post was inserted as a single string into a table so that it completed quickly, then a job ran
frequently to process the new records. It was an ugly bit of parsing and I fell back on point #2 above, using a cursor to
handle the parsing because there were some special cases I needed to handle. So, in pseudo code, I had something
like this:

create proc usp_ParseOrder @WebOrderID

as

begin trans

some ugly cursor stuff here

commit trans

Possibly I could have solved it set based, but for the sake of discussion let's say that it performed well enough and
had the advantage of being easy to understand if maintenance was needed that no further effort was warranted. For
the purposes of this discussion it's how I solved the problem inside the stored procedure but rather that it was
complicated to express.

So the job that processed new records looked something like this (again, pseudo code):

open cursor

for each record in cursor

 exec usp_ParseOrder @WebOrderID

next

close cursor

The Best of SQLServerCentral – Vol. 5

 177

That's the flaw of building procedures designed to handle a single request (think of users adding/editing records, etc).
They are fast and clean, but if you want to reuse the logic you either call the procedure repeatedly, refactor the
procedure to handle 1 to unlimited records, or you duplicate the logic for batch processing.

The flaws are offset by a some nice wins:

• Duration of each transaction should be short compared to a large batch
• Growth of the log file has less chance of getting out of hand. Logging 100 small transactions provides the chance

for the log to roll over where doing one big transaction may require the log to grow
• That complex logic is in one place and is pretty easy to work with
• If something goes wrong you roll back one very small transaction

Those potentials wins should also be considerations when you're coding. It's easy to think batch when you're
processing 100 records or even a 1000, but what about 10k? 100k? Ever roll back a million record transaction?

I think looping to call a stored procedure multiple times to leverage logic is a valid and useful technique. Be practical
and pragmatic about it's application and you'll do well. I look forward to the discussion!

Everybody Reports to Somebody
By Craig Hatley

Have you ever thought about the logistics of the organizational structure of a company? Do you know how many
layers of management exist from the top to the bottom? I was recently forced to consider these very questions to
support a new application that required managers to be able to access data associated with any subordinate
employee. This could be an employee that directly reports to the manager or an employee that is several layers below
the manager in the overall organizational structure.

For example, if my function received Bob's User ID, it should return the following people based on the sample
organizational chart (See Figure 1) . . .

• Bob
• Sue
• Todd
• Mary
• Sandy
• Megan
• Randy

The Best of SQLServerCentral – Vol. 5

 178

 Figure 1

The table that stores our employee data (see figure 2) includes a 'User ID' field which is the primary key for the table
and a 'Manager User ID' field which contains the User ID of the manager that each employee directly reports to
(everybody reports to somebody philosophy). If Bob has a User ID of '2' in our sample above, Sue, Todd, and Mary
would all have a value of '2' in their 'Manager User ID' field indicating that they report directly to Bob (see figure 3).

 Figure 2

 Figure 3

Now for the tricky part . . . One of the objectives of our stored procedure is that it should not assume any

The Best of SQLServerCentral – Vol. 5

 179

foreknowledge of the organizational structure including the number of management layers. As I started this project I
knew that my code would be required to perform some type of recursion, so I found a great article on the Microsoft
web site that discussed recursion in SQL. After spending a little time reading the article, I discovered a couple of
potential significant limitations in that SQL recursion is limited to 32 loops (to prevent infinite loop conditions) and
most of the examples for passing data back up through the recursive loop chain used a data type that was restricted
by a maximum length. Although our company doesn't currently have 32 layers of management hierarchy, I simply
didn't want to settle for a 'work around' solution because I suspected it would eventually be an issue for us.

This caused me to start looking for alternatives which after much prayerful consideration yielded the following stored
procedure . . . (Editor’s Note: The code is at www.sqlservercentral.com)

The stored procedure basically starts off by returning a list of the User IDs that report directly to the specified
manager User ID. It then runs in a loop checking for User IDs that report to the list of User IDs that were returned in
the previous loop until no more User IDs are found. The User IDs returned from each successive loop are added to
the temporary table called #Result which is ultimately used to return a list of User ID values representing the
subordinate employees.

We typically use the User ID list returned from the previous stored procedure in conjunction with another stored
procedure (see below) to return a list representing the employees that report to the specified manager either directly
or indirectly.

CREATE PROCEDURE select_subordinate_names_by_manager

 @UserID int

As

Create Table #Subordinates (UserID int)

Insert Into #Subordinates (UserID)

Exec ('dbo.select_subordinates_by_manager ' + @UserID)

Select e.UserID, e.FirstName, e.LastName

 From Test..Employee as e

 Join #Subordinates as s on s.UserID = e.UserID

 Order By e.FirstName, e.LastName

After looking at the code and the extensive use of temporary tables you may be concerned about how well this
solution will perform. As a baseline, I measured the overall execution time of this technique in a test environment (see
environment details below) with a single organizational structure branch that represents 50 layers of management
and more than 4500 employees. Needless to say I was pleasantly surprised to discover that the overall execution
time was only 64 ms.

Test Environment

• SQL Platform : Microsoft SQL Server 2000 (Developer Edition)
• Hardware Platform : Workstation Class PC (Single Pentium 4 3.2Ghz/3GB RAM)

Not In v Not Equal
By Ken Johnson

The Best of SQLServerCentral – Vol. 5

 180

A coworker recently asked me which was "more efficient - a bunch of <> or a NOT IN clause?" The answer, I
assumed, like almost all things relating to databases, is "it depends." The nice thing about that answer is that it not
only camouflages my vast stores of ignorance, it is also quite often true.

This time, however, I thought I'd do some investigation to see if, in fact, we should prefer one method over the other in
this case. The answer this time was a bit unexpected. It turns out that they are actually the same query, and it should
make absolutely no difference. This is because SQL is a declarative language, meaning: you tell the computer what
you want, not how to get it [1].

The query engine takes both of these queries and performs them with the exact same sequence of
events. In actuality, I did find that one of the queries typically outperformed the other. I also discovered
several other methods (written by people much smarter than myself) that were significantly quicker then
either of the two methods I set out to test (the quickest method I tested was a full 35% faster than the
quicker of the original two).

With all that in mind, let's set off to find out if NOT IN is quicker than a "bunch of <>" and see a few
methods that improve in their performance. The original question was accompanied by a snippet of a
WHERE clause evaluating the inequality of a column and four integer values:

 s.Status_SV <> 214

 and

 s.Status_SV <> 215

 and

 s.Status_SV <> 216

 and

 s.Status_SV <> 217

Now that we know we're dealing with integer data, we'll set up a table with an integer column, then we'll set up a
timing and iteration framework for tracking our query times over multiple executions. Just to make our queries lengthy
enough to be nicely measurable, I arbitrarily chose to insert 1,000,000. The test results were less conclusive at
10,000 rows (with one notable exception), but the trends we see at 1,000,000 rows are clearly discernable by the time
we have 100,000 rows.

Let's set up our table: (Code at www.sqlservercentral.com)

Now we'll write two queries to exercise our original question (NOT IN vs. <>). We'll start with the NOT IN query, then
follow up with the AND <> query:

 SELECT @results = count(filterCriterion_sv)

 FROM tbl_IN_VS_AND

 WHERE filterCriterion_sv NOT IN (214, 215, 216, 217)

 SELECT @results = count(filterCriterion_sv)

 FROM tbl_IN_VS_AND

 WHERE filterCriterion_sv <> 214

The Best of SQLServerCentral – Vol. 5

 181

 AND filterCriterion_sv <> 215

 AND filterCriterion_sv <> 216

 AND filterCriterion_sv <> 217

The NOT IN() certainly wins for conciseness. Before running a lot of iterations, let's look at snippets of the query plan
text so we know SQL is doing the same thing under the covers for each query.

NOT IN():

 |--Compute Scalar(DEFINE:([Expr1003]=CONVERT_IMPLICIT(int,[globalagg1005],0)))

 |--Stream Aggregate(DEFINE:([globalagg1005]=SUM([partialagg1004])))

 |--Parallelism(Gather Streams)

 |--Stream Aggregate(DEFINE:([partialagg1004]=Count(*)))

 |--Clustered Index

Scan(OBJECT:([master].[dbo].[tbl_IN_VS_AND].[PK__tbl_IN_VS_AND__3B4BBA2E]),

 WHERE:([master].[dbo].[tbl_IN_VS_AND].[filterCriterion_sv]<>(214) AND

 [master].[dbo].[tbl_IN_VS_AND].[filterCriterion_sv]<>(215) AND [

AND <>:

 |--Compute Scalar(DEFINE:([Expr1003]=CONVERT_IMPLICIT(int,[globalagg1005],0)))

 |--Stream Aggregate(DEFINE:([globalagg1005]=SUM([partialagg1004])))

 |--Parallelism(Gather Streams)

 |--Stream Aggregate(DEFINE:([partialagg1004]=Count(*)))

 |--Clustered Index

Scan(OBJECT:([master].[dbo].[tbl_IN_VS_AND].[PK__tbl_IN_VS_AND__3B4BBA2E]),

WHERE:([master].[dbo].[tbl_IN_VS_AND].[filterCriterion_sv]<>(214) AND

[master].[dbo].[tbl_IN_VS_AND].[filterCriterion_sv]<>(215) AND [

It turns out that SQL likes the AND <> so much, it converts the NOT IN() clause into a series of AND <> clauses. After
100 executions of each query, it seems that execution times for the AND <> query tend to be lower than those for the
NOT IN query (conversion overhead, maybe?):

 Beginning first test run...

 "NOT IN" ET: 46170 ms

 Beginning second test run...

 "AND <>" ET: 42326 ms

The Best of SQLServerCentral – Vol. 5

 182

I ran the same series of tests on another occasion and the NOT IN query consistently outperformed the AND <>
query. The results regularly go back and forth, much like the heads and tails of a coin toss. So, I have managed to
convince myself that, despite the two execution times listed above, these two queries are, indeed, the same query as
far as SQL Server is concerned -- at least on this day, on this server, for these queries (I still gravitate toward the
comforting ambiguity of "it depends").

I mentioned earlier that there were several queries that outperform our basic AND <> and NOT IN queries (on this
server on this day). Let's take a look at some of those queries and their execution results. The first alternative
technique doesn't use a WHERE clause to filter out our integer values. It places the integer values into a UNION
query and does a LEFT OUTER JOIN against that to filter out unequal rows. Here is what that query looks like:

 SELECT @results = count(filterCriterion_sv)

 FROM tbl_IN_VS_AND

 LEFT OUTER JOIN (

 SELECT 214 AS filterValue_val UNION

 SELECT 215 UNION

 SELECT 216 UNION

 SELECT 217) AS tbl

 ON tbl_IN_VS_AND.filterCriterion_sv = tbl.filterValue_val

 WHERE tbl.filterValue_val IS NULL

It definitely feels odd, placing things you would normally put in a WHERE clause into a derived table then looking for
absent values, but the performance benefit gives us a compelling reason to consider doing this. On this test run of
100 executions, this odd query was consistently outperforming the quicker of our original two queries by about 19%:

 Beginning fourth test run...

 "derived UNION table LEFT OUTER JOIN" ET: 34360 ms

Our last query happened to be our best performing (on this server, on this day). Like the previous query, this one
uses a derived table. However, it takes it one step further and nests that inside an IF NOT EXISTS(). Let's take a look
at it:

 SELECT @results = count(filterCriterion_sv)

 FROM tbl_IN_VS_AND

 WHERE NOT EXISTS(SELECT * FROM

 (

 SELECT 214 AS filterValue_val UNION ALL

 SELECT 215 UNION ALL

 SELECT 216 UNION ALL

 SELECT 217) AS tbl

 WHERE tbl.filterValue_val = tbl_IN_VS_AND.filterCriterion_sv)

The Best of SQLServerCentral – Vol. 5

 183

And here is the time it took for 100 executions:

 Beginning seventh test run...

 "NOT EXISTS from derived UNION table" ET: 27920 ms

On this day, on this server, this query runs a full 35% faster than the quicker of our two original queries. Are there
even faster ways to run this query? I would say the odds are pretty good that there are. However, I must admit that
we have exhausted the current depth of my knowledge and experience, and that was only thanks to the derived table
and NOT EXISTS techniques I discovered in some old newsgroup postings [2] [3]. I hope you'll be able to successfully
adapt these techniques to your environment and always remember to do a little experimenting and draw performance
conclusions based on testing with your servers and your data.

Full Control Over a Randomly Generated Password
By Peter Larsson

Every DBA needs to generate passwords for various purposes and here is a stored procedure you can use to
generate customized passwords. It is very easy to change to include more character groups or lessen the present
characters in a group. The default is 4 groups of characters; Upper case, Lower case, Numbers and Special
characters.

You call the stored procedure with the number of characters you want from each group with a parameter. There is an
extra feature built-in the code! If you do not want duplicate characters from a group but still want three characters
from Numbers, use a negative parameters with the value of -3.

Full control over a customized random-generated password seems a contradiction, but it is not. With this stored
procedure you have full control over the creation process with no effort!

Let us go through how this procedure works. First of all, create the stored procedure header.

CREATE PROCEDURE dbo.uspCreatePassword

(

 @UpperCaseItems SMALLINT,

 @LowerCaseItems SMALLINT,

 @NumberItems SMALLINT,

 @SpecialItems SMALLINT

)

AS

The stored procedure accepts four parameters, one for each group of significant characters. In this stored procedure I
have included UpperCase items, LowerCase items, Number items and Special items. You can, if you want to, change
these groups to other items to better fit your purposes.

The reason these parameters are SMALLINTs is that you can pass the value 2, as well as -2. If you pass a positive
value of 2, you will get 2 characters from that group. You will have no control over if duplicate characters are output,
such as double E. If you do not want duplicate characters from a group, pass a negative value such as -2. Then a
double E combination is not possible.

The Best of SQLServerCentral – Vol. 5

 184

Next, we tell SQL Server to not output the number of affected rows

SET NOCOUNT ON

Now we need some local variables. We need four variables to hold the groups of significant characters to use. We
also need to declare a temporary variable to hold the selected characters from each group as well as a loop
counter(@i) and a character variable (@c) and a position variable (@v).

DECLARE @UpperCase VARCHAR(26),

 @LowerCase VARCHAR(26),

 @Numbers VARCHAR(10),

 @Special VARCHAR(13),

 @Temp VARCHAR(8000),

 @Password VARCHAR(8000),

 @i SMALLINT,

 @c VARCHAR(1),

 @v TINYINT

With these variables set, we now need to set the default characters for each group. We also initialize the @Temp and
@Password variable to an empty string.

-- Set the default items in each group of characters

SELECT @UpperCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',

 @LowerCase = 'abcdefghijklmnopqrstuvwxyz',

 @Numbers = '0123456789',

 @Special = '!@#$%&*()_+-=',

 @Temp = '',

 @Password = ''

If, for some reason, the wanted number of characters for a group is set to a very high number, limit the number to a
maximum.

-- Enforce some limits on the length of the password

IF @UpperCaseItems > 20

 SET @UpperCaseItems = 20

IF @LowerCaseItems > 20

 SET @LowerCaseItems = 20

The Best of SQLServerCentral – Vol. 5

 185

IF @NumberItems > 20

 SET @NumberItems = 20

IF @SpecialItems > 20

 SET @SpecialItems = 20

We need to do the selection for UpperCase items. Since the parameter can be either positive or negative, set the loop
counter to the absolute value of characters wanted from that group.

-- Get the Upper Case Items

 SET @i = ABS(@UpperCaseItems)

As long as the loop counter is greater than zero, loop. But only as long as there are characters left to choose from!

This second condition is only needed for negative values, because this insures that no duplicate characters can be
chosen.

WHILE @i > 0 AND LEN(@UpperCase) > 0

 SELECT @v = ABS(CAST(CAST(NEWID() AS BINARY(16)) AS BIGINT)) % LEN(@UpperCase) + 1,

 @c = SUBSTRING(@UpperCase, @v, 1),

 @UpperCase = CASE WHEN @UpperCaseItems < 0 THEN

STUFF(@UpperCase, @v, 1, '') ELSE @UpperCase END,

 @Temp = @Temp + @c,

 @i = @i - 1

The first SELECT gets a random number with the help of NEWID() function. A NEWID() value returns a signed 128-
bit binary number, formatted with hexadecimal numbers. We need to CAST that value to binary and then CAST again
to BIGINT in order to do calculations with it.

What we do next is to take the absolute value with ABS function and take the modula value with the MOD function
denoted with % in SQL Server! The reason for taking the modula value for the random number is that it returns a
value between 0 and the length of the numbers available in that group. And we add 1 to that value since strings of
characters in SQL Server begins with position 1. The second SELECT is to get the character selected.

The third SELECT is the trick! If a negative number is passed to the stored procedure, we now need to discard the
selected character with the STUFF function, so that the character can not be chosen again.

The fourth SELECT simply concatenates the @Temp variable with the chosen character. The fifth and last SELECT
is to decrease the loop counter.

For the next group of characters, Lower Case items, do exactly as with the Upper Case items.

-- Get the Lower Case Items

SET @i = ABS(@LowerCaseItems)

The Best of SQLServerCentral – Vol. 5

 186

WHILE @i > 0 AND LEN(@LowerCase) > 0

 SELECT @v = ABS(CAST(CAST(NEWID() AS BINARY(16)) AS BIGINT)) % LEN(@LowerCase) + 1,

 @c = SUBSTRING(@LowerCase, @v, 1),

 @LowerCase = CASE WHEN @LowerCaseItems < 0 THEN STUFF(@LowerCase, @v, 1, '') ELSE @LowerCase
END,

 @Temp = @Temp + @c,

 @i = @i - 1

For the next group of characters, Number items, do exactly as with the Upper Case items.

-- Get the Number Items

SET @i = ABS(@NumberItems)

WHILE @i > 0 AND LEN(@Numbers) > 0

 SELECT @v = ABS(CAST(CAST(NEWID() AS BINARY(16)) AS BIGINT)) % LEN(@Numbers) + 1,

 @c = SUBSTRING(@Numbers, @v, 1),

 @Numbers = CASE WHEN @NumberItems < 0 THEN STUFF(@Numbers, @v, 1, '') ELSE @Numbers END,

 @Temp = @Temp + @c,

 @i = @i - 1

For the next group of characters, Special items, do exactly as with the Upper Case items.

-- Get the Special Items

SET @i = ABS(@SpecialItems)

WHILE @i > 0 AND LEN(@Special) > 0

 SELECT @v = ABS(CAST(CAST(NEWID() AS BINARY(16)) AS BIGINT)) % LEN(@Special) + 1,

 @c = SUBSTRING(@Special, @v, 1),

 @Special = CASE WHEN @SpecialItems < 0 THEN STUFF(@Special, @v, 1, '') ELSE @Special END,

 @Temp = @Temp + @c,

 @i = @i - 1

The drawback right now with this algorithm is that all the Upper Case items are first, Lower Case items are second,
Number items are third and Special items are fourth.

The Best of SQLServerCentral – Vol. 5

 187

Now we need to reposition these chosen characters. This is done with the code above. First get a random character
from the @Temp string and add that to the @Password string. Next, remove the selected character and repeat the
process until there are no more characters to reposition!

-- Scramble the order of the selected items

WHILE LEN(@Temp) > 0

 SELECT @v = ABS(CAST(CAST(NEWID() AS BINARY(16)) AS BIGINT)) % LEN(@Temp) + 1,

 @Password = @Password + SUBSTRING(@Temp, @v, 1),

 @Temp = STUFF(@Temp, @v, 1, '')

The last thing to do, is to output the randomly generated password

SELECT @Password

The complete stored procedure is available at www.sqlservercentral.com

Performance Effects of NOCOUNT
By David Poole

Although I have known that there was a performance benenfit in using SET NOCOUNT ON and qualifying objects
with their owners I had never actually established benchmarks against either of these two practices. SET NOCOUNT
ON gives a performance boost to action queries by suppressing the "(n row(s) affected) message that results from
running a query.

Qualifying an object with it's owner boosts performance because SQL does not have to work out where if
there is a user specific version of the same object. It also gives benefits in the caching of execution plans.
For more details on the affects of not qualifying and object with its owner. see Chris Hedgate's article from the
"Worst Practices" series.

Andy Warren and Steve Jones also contriubted articles and I recommend reading all the articles in the series.

• Encrypting Data
• Making on the fly changes
• Not using Primary Keys and Clustered Indexes
• Blank passwords
• Assigning user rights
• Depending on the GUI
• Connection Strings and SysProcesses
• Sorting by ordinal
• Spaces in object names
• Case sensitivity
• Bad comments

This brief article describes my experiments with each of these two settings.

http://www.sqlservercentral.com/
http://www.sqlservercentral.com/columnists/chedgate/worstpracticenotqualifyingobjectswiththeowner.asp
http://www.sqlservercentral.com/columnists/sjones/wp_encryption.asp
http://www.sqlservercentral.com/columnists/sjones/worstpracticesmakingalivechange.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticesnotusingprimarykeysandclusteredindex.asp
http://www.sqlservercentral.com/columnists/sjones/worstpractivesblankpasswords.asp
http://www.sqlservercentral.com/columnists/sjones/wp_userrights.asp
http://www.sqlservercentral.com/columnists/sjones/wp_gui.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticebadconnectionstringsandbadinfoinsyspr.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticesortingbyordinal.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticespacesinobjectnames.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticesmakingdatabasescasesensitiveoranythi.asp
http://www.sqlservercentral.com/columnists/awarren/worstpracticebadcomments.asp

The Best of SQLServerCentral – Vol. 5

 188

.

Lies, damn lies and statistics

The ability to provide an experiment that can be repeated and produce similar results is the corner stone to a good
scientific method.

As there are many criteria for measuring SQL performance and each have their positive and negative points I am
including my methodology to enable you to test my results in your own environement. One thing you will observe is
that any set of benchmarks should not be taken at face value and must be tested in your own particular environment
to determine their relevance to your set up.

When I first tried to create a set of benchmarks against SQL Server,
not just for this article, I assumed that repeating a particular action
would result in times for those actions would fall in the classic bell
shaped curve with the average time forming the top of the bell. This
is known as the central limit theorem.

I quickly found that this wasn't the case and that although the
performance generally fell within a range of values there appeared
to be no particular pattern to the results

Methodology

My experiment was carried out on a stand-alone server using
SQL2000. There was no network connectivity to that server and the experiments were carried out using SQL
Management Studio. My first task was to set up two tables with separate stored procedures to populate them as
followsas follows:

CREATE TABLE dbo.TestTable(

 TestId int IDENTITY(-2147483648,1) NOT
NULL

 CONSTRAINT PK_TestTable
PRIMARY KEY CLUSTERED,

 TestDesc varchar(50) NOT NULL

)

GO

CREATE TABLE dbo.TestTable2(

 TestId int IDENTITY(-2147483648,1) NOT
NULL

 CONSTRAINT PK_TestTable2
PRIMARY KEY CLUSTERED,

 TestDesc varchar(50) NOT NULL

)

GO

CREATE PROC dbo.AddTestWithNodbo

 @TestDesc VARCHAR(50)

AS

SET NOCOUNT ON

INSERT INTO TestTable(TestDesc)

VALUES (@TestDesc)

CREATE PROC dbo.AddTestWithdbo

 @TestDesc VARCHAR(50)

AS

INSERT INTO dbo.TestTable2(TestDesc)

VALUES (@TestDesc)

The Best of SQLServerCentral – Vol. 5

 189

RETURN @@ROWCOUNT

GO

RETURN @@ROWCOUNT

GO

CREATE PROC dbo.AddTestWithNoCount

 @TestDesc VARCHAR(50)

AS

SET NOCOUNT ON

INSERT INTO TestTable(TestDesc)

VALUES (@TestDesc)

RETURN @@ROWCOUNT

GO

CREATE PROC dbo.AddTestWithoutNoCount

 @TestDesc VARCHAR(50)

AS

INSERT INTO dbo.TestTable2(TestDesc)

VALUES (@TestDesc)

RETURN @@ROWCOUNT

GO

As you can see the procedures are virtually identical differing only in whether they use SET NOCOUNT ON or
whether they qualify objects with their owners.

All generate identical execution plans.

My next task was to set up a script that would execute a fixed number of itterations of each stored procedure and
measure the time taken to carry out those itterations.

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

TRUNCATE TABLE dbo.TestTable

TRUNCATE TABLE dbo.TestTable2

GO

DECLARE @StartTime1 DATETIME ,

 @EndTime1 DATETIME

@Loop INT ,

@MaxLoop INT

SET @Loop=0

SET @MaxLoop=10000

SET @StartTime1=GETDATE()

WHILE @Loop<@MaxLoop

The Best of SQLServerCentral – Vol. 5

 190

 BEGIN

 exec dbo.AddTestWithNoCount 'AAAA'

 SET @Loop=@Loop+1

 END

SET @EndTime1=GETDATE()

SELECT DATEDIFF(ms,@StartTime1,@EndTime1) AS TestEnd

I ran the script above 10 times recording the execution time in milliseconds each time. I then replaced exec
dbo.AddTestWithNoCount 'AAAA' with exec dbo.AddTestWithoutNoCount 'AAAA' and reran the script a further 10
times.

The results are shown in the graph below. As you can see SET NOCOUNT OFF is consistently slower than SET
NOCOUNT ON. All in all results for this experiment reveal a 3% performance advantage in having SET NOCOUNT
ON.

I repeated the experiment several times, sometimes starting with itterations of exec dbo.AddTestWithoutNoCount
'AAAA', sometimes with itterations of exec dbo.AddTestWithNoCount 'AAAA' to ensure that I was not introducing bias
into the experiment. Overall the performance advantage remained around the 3% margin.

Points to consider

The performance boost is due to the few bytes of information that make up the "(1 row(s) affected)" message not
being transmitted to the client application.

With this in mind I should consider the following points

• Communication between the database and the client application on a stand-alone machine will be as fast as it is
possible to get. If your front end application had it's own clock and you recorded the time from submitting the

The Best of SQLServerCentral – Vol. 5

 191

query to the time when the client finally received the full results I would expect that transmitting results across a
network to be slower.

• In this experiment we are carrying out a single simple insert statement. If your procedure carries out multiple
operations the performance boost will be more pronounced.

• For queries that retrieve data the performance boost will be less simply because the size of the "(1 row(s)
affected)" message is small compared to the volume of data being returned.

• In .NET applications an ExecuteNonQuery command returns the number of records affected by the operation. Set
NOCOUNT ON means that the value that this call returns is always zero.

Qualified objects vs non-qualified objects

For my experiment to compare qualified and non-qualified objects I used the same methodology that I used for my
SET NOCOUNT experiment however I explicitly logged onto my server with a non-dbo user with rights to execute
both stored procedures.

When calling the dbo.AddTestWithNodbo stored procedure I deliberately ran
exec AddTestWithNodbo
rather than
exec dbo.AddTestWithNodbo.

My initial results showed a performance improvement of 0.3% when qualifying an object with an owner. Given the non
commital results I reran the experiment several times. In some cases the difference in performance was virtually
nothing, in others there was a slight bias towards qualified objects and once the unqualified procedure ran slightly
faster.

In short my personal view is that qualifying objects with their owner is something that should be done for reasons of
being explicit in what you are asking SQL to do rather than for performance reasons.

Conclusions

When considering qualifying objects with their owners the main point to consider is how many different logins access
objects in your database. In my experiment I had a single non-dbo user, but a more realistic environment may have
multiple users.

Chris's article mentions benefits gained by accessing cached execution plans. With multiple users hitting the system I
suspect that the benefits of this would be more pronounced.

In my SET NOCOUNT experiment the difference in performance between SET NOCOUNT ON/OFF over 10,000
itterations was measurable in milliseconds rather than seconds. If your system is not busy then this is small beer
however in highly stressed systems every millisecond consumed by one process is a resource denied to another. As I
said earlier, my results were gained by measuring multiple itterations of a single operation. The performance gain on
more complicated procedures may be more pronounced.

Passing a Table to A Stored Procedure
By Jacob Sebastian

Introduction

Most of us would be very specific in designing the database code (Stored procedures, functions, views etc) in a re-
usable and manageable manner. It is particularly important when the application is large. Code for common
functionalities should be identified and moved to a function that can be called from different parts of the application.

The Best of SQLServerCentral – Vol. 5

 192

The same may be done with views, stored procedures etc. Designing the code in such a manner increases the
manageability of the code as well as provides greater re-usability, and thus better productivity and lesser bugs.

Some times, while attempting to achieve the above, we would come across certain hurdles due to the limitations of
TSQL. At times we feel that TSQL does not really give us enough freedom like other application development
platforms. In this article, I am trying to present such a case where a re-usable function is created to which a table can
be passed as an argument.

The Problem

Let us say, we are working on an Inventory Management System. When a transaction (sales order, invoice, receipt of
goods, inventory adjustment etc) takes place, we need to update the available inventory of the items affected by the
transaction. We already have a stored procedure to save/update each transaction. Each of those stored procedures
needs to update the inventory of all the items affected by the current transaction.

Please note that, the word 'Transaction' above, does not refer to Database Transactions. They refer to the various
Inventory Operations supported by the application.

Since the inventory needs to be updated from different places, it makes sense to move that part of the code to a
separate stored procedure. Then this new stored procedure needs to be called from different places from where the
inventory is to be updated. So far it looks simple. But the difficult part is to pass the items to be updated.

A TABLE variable would look to be the ideal solution. If we could pass a TABLE variable containing the list of items to
be updated, then the complexity can be reduced to a great extend. But SQL Server does not allow to pass a TABLE
variable as a parameter to a stored procedure. So what is the next option?

In this article, I am trying to present a solution to the above scenario by using XML as the format to pass a table to a
stored procedure. The CALLER can transform the table (Query result) to an XML variable and pass to the stored
procedure. The CALLEE can either convert the XML parameter back to a TABLE variable or directly use XQuery on
the XML variable.

The Caller

The CALLER should transform the table to an XML variable. The DATA may come from a table or a query. The
following example shows how to create an XML variable from the results of a query.

 1 /*
 2 Let us first create sample table.
 3 */
 4
 5 CREATE TABLE [dbo].[OrderDetails](
 6 [OrderDetailID] [int] IDENTITY(1,1) NOT NULL,
 7 [ItemNumber] [varchar](20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 8 [Qty] [int] NULL
 9) ON [PRIMARY]
 10
 11 /*
 12 Populate the sample table with values
 13 */
 14 INSERT INTO OrderDetails(ItemNumber, Qty)
 15 SELECT 'A001', 10
 16 UNION SELECT 'A002', 20
 17 UNION SELECT 'A003', 30
 18 /*
 19 The query below returns the results in XML format.
 20 */
 21
 22 SELECT ItemNumber, Qty FROM OrderDetails FOR XML RAW('item'), ROOT('items')
 23

http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt1.txt

The Best of SQLServerCentral – Vol. 5

 193

 24 /*
 25 OUTPUT:
 26
 27 <items>
 28 <item ItemNumber="A001" Qty="10" />
 29 <item ItemNumber="A002" Qty="20" />
 30 <item ItemNumber="A003" Qty="30" />
 31 </items>
 32 */

In the article Advanced XML Processing - II, I have presented a few detailed examples which demonstrate
the different ways to generate and format query results as XML.

Now, let us assign the resultant XML value to an XML variable. [code]

 1 -- Declare the variable
 2 DECLARE @x XML
 3
 4 -- store the results of the Query to XML variable
 5 SET @x = (SELECT ItemNumber, Qty FROM OrderDetails FOR XML RAW('item'), ROOT('items'),
TYPE)
 6
 7 -- select the values from the XML variable (to make sure that we did it correctly)
 8 SELECT
 9 x.item.value('@ItemNumber[1]', 'VARCHAR(20)') AS ItemNumber,
 10 x.item.value('@Qty[1]', 'INT') AS Qty
 11 FROM @x.nodes('//items/item') AS x(item)

At this stage, we have an XML variable ready, which we could pass to a child procedure/function. The XML variable
contains the values that we want the child procedure/function to process/update. The child procedure can either
transform the XML variable back to a TABLE or it can directly read the values from the XML variable.

The Callee

So far, we have seen how to create an XML variable from the results of a query. This XML variable can be passed to
another stored procedure which can update the inventory data based on the item information passed to the
procedure. The simplest way is to create a wrapper view around the XML variable and use it as if it is a table.

Let us create another sample table, Inventory, which will be updated with the information passed through the XML
parameter. The following script will create the sample table.

 1 CREATE TABLE [dbo].[Inventory](
 2 [InventoryID] [int] IDENTITY(1,1) NOT NULL,
 3 [ItemNumber] [varchar](20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 4 [Stock] [int] NULL
 5) ON [PRIMARY]
 6
 7 INSERT INTO Inventory (ItemNumber, Stock)
 8 SELECT 'A001', 0
 9 UNION SELECT 'A002', 0
 10 UNION SELECT 'A003', 0

The following sample code shows the implementation needed at the side of the 'callee'.

 1 CREATE PROCEDURE [dbo].[UpdateInventory1]
 2 (
 3 @x XML
 4)
 5 AS
 6
 7 SET NOCOUNT ON

http://www.sqlservercentral.com/columnists/jSebastian/2982.asp
http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt2.txt
http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt4.txt
http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt3.txt

The Best of SQLServerCentral – Vol. 5

 194

 8
 9 /*
 10 The code below creates a wrapper view around the XML variable and updates the
 11 "inventory" table with the information.
 12 */
 13
 14 UPDATE Inventory SET
 15 stock = stock + v.Qty
 16 FROM Inventory inv
 17 INNER JOIN (
 18 SELECT
 19 x.item.value('@ItemNumber[1]','varchar(20)') AS ItemNumber,
 20 x.item.value('@Qty[1]','INT') AS Qty
 21 FROM @x.nodes('//items/item') AS x(item)
 22) v ON (v.ItemNumber = inv.ItemNumber)
 23
 24 RETURN

Execute

Let us execute the procedure now. Run the following code.

 1 -- Declare the variable
 2 DECLARE @x XML
 3
 4 -- store the results of the Query to XML variable
 5 SET @x = (SELECT ItemNumber, Qty FROM OrderDetails FOR XML RAW('item'), ROOT('items'),
TYPE)
 6
 7 -- execute the stored procedure
 8 EXECUTE UpdateInventory1 @x
 9
 10 -- review the results
 11 SELECT * FROM inventory

Updated Procedure

The sample code above, creates a wrapper view around the XML variable. This is a pretty simple and straight-
forward approach. You could still access the values as if it is coming from a table/view. The complexity of XML
processing is absorbed in the inner view. The example below, demonstrates another syntax, which updates the
table directly from the XML variable.

 1 CREATE PROCEDURE [dbo].[UpdateInventory2]
 2 (
 3 @x XML
 4)
 5 AS
 6
 7 SET NOCOUNT ON
 8
 9 /*
 10 This version of the stored procedure has a slightly enhanced version of the
 11 TSQL code. This version updates the table directly from the XML variable,
 12 rather than converting the XML data to a view.
 13 */
 14
 15 UPDATE Inventory SET
 16 stock = stock + x.item.value('@Qty[1]','INT')
 17 FROM Inventory inv
 18 INNER JOIN @x.nodes('//items/item') x(item) ON
 19 (x.item.value('@ItemNumber[1]','varchar(20)') = inv.ItemNumber)
 20
 21 RETURN

http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt5.txt
http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt3.txt
http://www.sqlservercentral.com/columnists/jSebastian/tt1/tt6.txt

The Best of SQLServerCentral – Vol. 5

 195

Conclusions

In the past few years, several times I came across the situation where I needed a way to pass a table to a function or
stored procedure. Since SQL Server does not allow to pass a TABLE variable to a function or stored procedure, the
only way I could make it work is by using the approach presented above. There may be other ways to get this done
too. It is apparent that there will be a small performance penalty by doing this. I did not do extensive tests to see if
there is a performance problem. I did not notice any performance issues in my applications so far.

New Column Updates
By Bimal Fernando

What is the fastest way to update a newly added column in to a very large table?

Recently I had to add a new column to a table which has more than 35 million very wide (1000+ bytes per row) rows
and populate with data. Using the recommended method by various people the best speed I could get was 20 hours.
I will first describe the failed attempt and then I will explain the method I came up with to increase the speed of this
operation significantly.

Table Schema:

CREATE TABLE [dbo].[LargeTable](

 [ID] [int] IDENTITY(1,1) NOT NULL,

 [InvID] [decimal](11, 0) NOT NULL,

 [JNumber] [tinyint] NOT NULL,

 [JType] [nchar](1) NOT NULL,

 [NameKey] [nvarchar](341) NOT NULL,

 [SystemID] [decimal](12, 0) NOT NULL,

 [BDate] [datetime] NOT NULL,

 [EDate] [datetime] NOT NULL,

 [DateTimeModified] [datetime] NOT NULL,

 [RowTimestamp] [timestamp] NULL,

 [Designation] [nvarchar](200) NOT NULL,

 [Capacity] [nvarchar](20) NOT NULL,

 [Agreement] [nvarchar](50) NOT NULL,

 [DateQ] [nvarchar](10) NOT NULL,

 CONSTRAINT [LargeTable__PK] PRIMARY KEY NONCLUSTERED

(

 [ID] ASC

The Best of SQLServerCentral – Vol. 5

 196

)ON [PRIMARY]

) ON [PRIMARY]

CREATE CLUSTERED INDEX [LargeTable__IE1] ON [dbo].[LargeTable]

(

 [NameKey] ASC

)ON [PRIMARY]

Note that the clustered index is on a very wide column.

The recommended method to add a new column and update it is as follows. There was nothing wrong with the
method to add a new column to such a large table.

Step 1: Add new column

alter table MyTable

add NewZip char(10) NULL

Step 2: Set Batch Size for update

--- (2) set piecemeal batch size

set nocount on

SET ROWCOUNT 1000

Next, the piecemeal update is repeatedly done until there are no NULL values in NewZip. This example sets all rows
using the char(5) ZipCode column. Alternately, you can selectively set the value of an added column using a lookup
or join. Step 3: De-coupled Piecemeal Update

declare @rowcount int, @batchcount int, @rowsupdated int

select @rowcount = 1,@batchcount = 0, @rowsupdated = 0

while @rowcount > 0

begin

 begin tran

 update MyTable

 set NewZip = ZipCode

 where NewZip is NULL

 set @rowcount = @@rowcount

 select @rowsupdated = @rowsupdated + @rowcount

 if @rowcount > 0 select @batchcount = @batchcount + 1

The Best of SQLServerCentral – Vol. 5

 197

 commit

end

When I followed the above method I realized that the performance is degrading exponentially with the iteration count.
See below graph for the actual statistics during my test load. Duration is in seconds and the batch size was 10,000.

As you can clearly see when it comes to Iteration 2000+ the time to update 10,000 records has gone up to 80
seconds and with this behavior it took more than 20 hours for me to update my 35 million records table.

The reason for this is the cost to find the next 10,000 to update and it becomes costlier with each iteration because of
lesser and lesser availability of records where the NewColumn is null and they are scattered everywhere in the
clustered index. You would think why not we then add an index on this new column so that its easier to locate the null
records, but it doesnt help because it still has to do a costly bookmark lookup to find the actual data page and it even
has to update this new index with each update.

OK, so what’s the solution to this issue? We know that we cannot do this update in one shot because thatll fill up the
log file and if something goes wrong then we need to do it from the beginning again. Thats why we still need to do this
in batch by batch basis.

Then I realized that actually SQL server has to load the data pages (Clustered index) to update this new column
anyway and if I can find a way to go through the same order as the clustered index key column(s) then it would be
much faster because then SQL server optimizer can easily predict the next set of pages (read-ahead) because they
are physically ordered in the clustered index key order. And for that reason it will not have to jump everywhere in the
clustered index to find the next set of records to be updated since we are doing it in the same order as they are stored
physically.

If I had a clustered index on an IDENTITY column my life would have been much easier because then I can iterate
thorough it from start to finish advancing the loop by the batch number.

But since my clustered index is an Alpha Name column which contains values from the ASCII table
(http://www.neurophys.wisc.edu/comp/docs/ascii.html) I had to use a different approach. I had to find a way to
iterate though the Clustered index from A to Z but in batches. My batch count will not be consistent with this approach
but if you smart enough you can break the ASCII table in to several ranges to break the clustered index key values in
to manageable batches. Dont think you can do that easily with some simple ranges like A-B, B-C; This is a huge table
and A to B range it self may contain millions of records. Thats why I had to do something extra to break in to smaller
batches.
To achieve this I did the following trick.

http://www.neurophys.wisc.edu/comp/docs/ascii.html

The Best of SQLServerCentral – Vol. 5

 198

1) Create a table to hold the different Range keys from the ASCII table.

create table _CLUSTKEY (ID int Identity(1,1) primary Key, Key1 nvarchar(2), Key2 nvarchar(2))

2) Generate the ASCII key ranges and insert them in to the above created table. (If its difficult to understand the
algorithm, first run this and then look at the results. Then you will be able to understand the logic easily)

declare @var as char(1), @ascii as int, @count as int

set @ascii = 65

set @count = 0

while(@ascii<90)

begin

 insert into _CLUSTKEY

 select char(@ascii) + char(ascii('A')+@count) , char(@ascii) + char(ascii('A')+@count+1)

 if (char(ascii('A')+@count+1) = 'Z')

 begin

 insert into _CLUSTKEY

 select char(@ascii) + char(ascii('A')+@count+1) , char(@ascii+1) + char(ascii('A'))

 set @ascii = @ascii + 1

 set @count = 0

 end else set @count = @count + 1

end

3) Insert beginning and end ranges to the above table manually

insert into _CLUSTKEY

select '', 'AA'

insert into _CLUSTKEY

select 'ZA', CHAR(ASCII('Z')+1) Your end criteria may be different to this depending on the data
you have on your clustered key column.

Once populated the above table will look like this:

ID Key1 Key2

The Best of SQLServerCentral – Vol. 5

 199

1 AA AB

2 AB AC

3 AC AD

... .

...

650 YZ ZA

651 AA

652 ZA [

4) Add the new column to my very large table

Alter table LargeTable Add AlphaName_CS int null

5) Start the update in batches (Batch boundaries are defined by the table I have created and populated above)

-- Run this Script to create a table to record the progress so that you can see how far you are
from the completion

create table __progress(RecCount int, LoopCount int, DateT datetime)

-- Actual Update Script

declare @Key1 as nvarchar(2), @Key2 as nvarchar(2),@count as int, @rowcount as int, @MaxLoopCount
as int

select @MaxLoopCount = max(ID) from _CLUSTKEY

set @count = 1

while(@count<=@MaxLoopCount)

begin

 -- Get the start Key and End key value for the current batch in to variables

 select @Key1 = Key1, @Key2 = Key2

 from _CLUSTKEY

 where ID = @count

 -- Do the update for the above Key range

 update dbo.LargeTable

The Best of SQLServerCentral – Vol. 5

 200

 set AlphaName_CS = CHECKSUM(NameKey)

 where NameKey >= @Key1 and NameKey < @Key2

 select @rowcount = @@rowcount

 -- insert a record to this progress table to check the progress

 insert into __progress select @rowcount, @count,getdate()

 set @count = @count + 1

end

35 million rows were updated within less than 35 minutes..!!!

The T-SQL Quiz
By Grant Fritchey

I was reading the latest Simple-Talk email that linked me to an article on Coding Horror, "Why Can't Programmers
- Program?" In the article they talked about a simple test that they gave developers to verify their abilities and decide
whether or not to continue the interview. Here's the test: Write code that counts from 1 to 100 For each number
evenly divisible by 3, substitute 'Bizz' For each number evenly divisible by 5, substitute 'Buzz' For each number
divisible by both substitute 'BizzBuzz'.

I decided to try it out in TSQL. Once I had a solution (it took about five minutes, it would have been about
two but I kept getting syntax errors on the CASE statement). I had so much fun that I sent it out to our
team to see who else could meet the requirements and I added one more: no cursors are allowed.

Before you read any further, try it out for yourself. It's not hard. A solution should take you less than 10
minutes.

Here are the various solutions that we came up with on our team.

First up, mine:

DECLARE @i VARCHAR(3) ;

DECLARE @s VARCHAR(8) ;

SET @i = 1 ;

WHILE @i < 101

 BEGIN

 SELECT @s = CASE WHEN ((@i % 3 = 0)

 AND (@i % 5 = 0)

http://www.simple-talk.com/
http://www.codinghorror.com/blog/archives/000781.html

The Best of SQLServerCentral – Vol. 5

 201

) THEN 'BizzBuzz'

 WHEN (@i % 3 = 0) THEN 'Bizz'

 WHEN (@i % 5 = 0) THEN 'Buzz'

 ELSE @i

 END ;

 PRINT @s ;

 SET @i = @i + 1 ;

 END ;

I didn't need to use the @s variable for the print statements, but overall, first pass, it was simple and
worked fine. I'm assuming I'd still get interviewed although my pay scale may have dropped a grade
because I introduced parameters that weren't really necessary.

The next submission came in from Chris:

declare @i int

set @i = 1

while(@i < 101)

 begin

 if @i%3 = 0 print 'Bizz'

 else if @i%5 = 0 print 'Buzz'

 else if @i%3 = 0 and @i%5 = 0 print 'BizzBuzz'

 else print @i

 set @i = @i+1

 end

He fixed my problem with the string, but he introduced a new one. Go back, reread the code and see if you can spot
it. Give up? Because he checked for 3 then 5 then the combination, none of his code found the combination of 3 and
5. End of interview. Sorry Chris. It's also worth mentioning that the CASE statement resolves in a single pass where
as the IF statements check each condition. Take a look at the estimated query plans:

The Best of SQLServerCentral – Vol. 5

 202

Next came one from Det:

CREATE TABLE Nums (num int primary key)

GO

DECLARE @i int

SET @i = 1

WHILE @i <= 100

 BEGIN

 INSERT Nums (num)

 VALUES (@i)

 SET @i = @i + 1

The Best of SQLServerCentral – Vol. 5

 203

 END

SELECT CASE WHEN num % 3 = 0

 AND num % 5 = 0 THEN 'BizzBuzz'

 WHEN num % 3 = 0 THEN 'Bizz'

 WHEN num % 5 = 0 THEN 'Buzz'

 ELSE CAST(num AS nvarchar)

 END

FROM nums

Det's worked very well, but he created a permanent table and didn't include a drop statement. When I went back to
look at the query plan, I got an error. We'll continue the interview, but Det shouldn't count on getting a top spot on the
team. He submitted a second query as well:

DECLARE @i int

SET @i = 1

WHILE @i <=100

BEGIN

SELECT CASE WHEN @i % 3 = 0 AND @i % 5 = 0 THEN 'BizzBuzz'

 WHEN @i %3 = 0 THEN 'Bizz'

 WHEN @i %5 = 0 THEN 'Buzz'

 ELSE CAST(@i AS nvarchar) END

SET @i = @i + 1

END

This worked in a repeatable fashion and instead of printing output lines to the message window, it returned actual
results. 100 separate result sets, but even so, it worked. Points for perseverance.

Next came Scott Abrants:

DECLARE @int AS INT;

DECLARE @immdResult AS VARCHAR(100);

SET @int = 1;

WHILE @int < 101

The Best of SQLServerCentral – Vol. 5

 204

BEGIN

 SET @immdResult = CASE WHEN @int % 3 = 0

 AND @int % 5 <> 0 THEN 'Bizz'

 WHEN @int % 5 = 0

 AND @int % 3 <> 0 THEN 'Buzz'

 WHEN @int % 3 = 0

 AND @int % 5 = 0 THEN 'BizzBuzz'

 END ;

 PRINT 'The number is ' + CONVERT(VARCHAR(10), @int);

 IF LEN(@immdResult) > 0

 BEGIN

 PRINT @immdResult;

 END

 SET @int = @int + 1;

END;

Not at all surprisingly, Scott's is dead on accurate and extremely thorough. He reintroduced the extra parameter that I
had, but instead of a crutch, he makes real use of it. At this point Scott's at the head of the class.

Freely admitted, this is a silly little test and doesn't really demonstrate much in the way of coding skill, or more
especially TSQL skills. However, it spawned a lot of discussion within the team. We started running the queries to see
what performance looked like. Since most of them didn't do anything approaching data manipulation, there really
weren't query plans to look at. Performance was very similar to a degree:

Chris - 15ms
Grant - 31ms
Scott - 46ms
Det 1 - 62ms
Det 2 - 93ms

One of the discussions that came up was, shouldn't there be a simple way to do this with a CTE? So after lunch, I set
out to try it. This is what I came up with:

WITH Nbrs(n) AS (

 SELECT 1

 UNION ALL

 SELECT 1 + n FROM Nbrs WHERE n < 100)

SELECT CASE WHEN n%5=0 AND n%3=0 THEN 'BizzBuzz'

 WHEN n%3 = 0 THEN 'Bizz'

The Best of SQLServerCentral – Vol. 5

 205

 WHEN n%5 = 0 THEN 'Buzz'

 ELSE CAST(n AS VARCHAR(8))

 END

FROM Nbrs

OPTION (MAXRECURSION 100);

This worked well, looks neat, and it ran in 15ms. The only problem with it was, it created one scary looking query
plan:

That's it. We had some fun writing these queries and I decided to share them. The results speak for themselves.
There is no great and magnificent truth revealed here. It's simply a starting point for conversation and a method of
verifying a basic level of knowledge along with the ability to apply logic. There are probably much more elegant ways
to do this. I looked up some methods for generating counting data that could be used for something like this or for
something a heck of a lot more sophisticated like a Numbers table and found a nice summary of information here. If
you have a better way to skin this cat, please share it. If you're applying at my company, you might want to anticipate
this as a question at the start of the interview.

Practical Methods: Naming Conventions
By Michael Lato

Naming conventions are used to streamline development when multiple developers are working on a single system,
as well as to simplify ongoing maintenance during the Development Lifecycle. There are many different naming
conventions for SQL Server and no single convention is necessarily right or wrong. However, a single consistent
naming convention should be followed within each database to reduce confusion and to enhance usability. Ideally,
follow a single naming convention throughout all SQL Servers in an organization.

Databases

• Single database applications may use any simplified name. Multiple database applications should use a prefix
followed by the database category.

• Samples:
o "Finance" for Financial Operations
o "Operations" for Operations
o Prefix of "HR" for Human Resources

 "HRData" for the primary database
 "HRImport" for data import holding tables and procedures
 "HRExport" for data export holding tables and procedures

http://www.projectdmx.com/tsql/tblnumbers.aspx

The Best of SQLServerCentral – Vol. 5

 206

Backup Files

• Prefix all backups with the database name. Use an underscore and add the date and time of the backup.
• Samples:

o Full backup: dbname_200601011800.bak
o Differential backup: dbname_200601011800.dif
o Transaction Log: dbname_200601011800.trn

Users and Logins

• Match all database user names to the mapped login. This simplifies security audits.
• No user accounts should be shared among logins. Use database roles to achieve continuity instead.

Tables

• Prefix all tables with "t".
• Complete the name with the primary entity stored in the table in a singular form.
• Name tables that rely on other tables in sequence using the primary table name as a starting point.
• Name many-to-many tables with both primary tables listed alphabetically. Separate the names with an underscore

for clarity.
• Holding tables for temporary data should be prefixed with "temp".
• Samples:

o tCompany, tCustomer, tProduct, tInvoice
o tCompanyAddress, tCustomerAddress, tInvoiceDetail
o tRole_User, tPermission_Role
o tempCustomerBackup

• Comments:
o The prefix used here helps ensure that no keywords are used as a table name. For example, "user" is a

common desired table name that is also a keyword, but "tUser" is not.
o Never, ever link a stored procedure to a table with the "temp" prefix. It is a virtual guarantee that this will

lead to a "temp" table being used in production. Sooner or later someone will delete this "temp" table and
break your production system.

Columns

• Name columns according to the information they contain. Primary keys should use the table name plus the suffix
"ID".

• Samples:
o CustomerID, CustomerName, CustomerNumber, Address, City, Country
o FirstName, LastName, Phone
o CreateOn, CreateBy, EditOn, EditBy, DeleteOn, DeleteBy

• Comments:
o Be consistent with column names between tables. Don’t refer to a primary key as "CustomerID" in one

table and as "CustID" in another.
o Dont prefix columns with their data type. This is unnecessary and makes for extra typing.

Indexes

• Use the table name as a prefix plus the first indexed column name. If creating more than one index starting with
this column, use as many as necessary to uniquely identify the index.

• Always explicitly name your indexes rather than allowing SQL Server to generate names. This makes indexes
easier to trace and to understand just by looking at the name.

• Samples:

The Best of SQLServerCentral – Vol. 5

 207

o tCustomer_CustomerID, tCustomer_CustomerName_Address,
tCustomer_CustomerName_CustomerNumber

Constraints

• Use the table name as a prefix plus the constrained column name.
• Always explicitly name your constraints rather than allowing SQL Server to generate names. This makes

constraints easier to trace and to understand just by looking at the name.
• Samples:

o Primary Key: tCustomer_CustomerID
o Foreign Key: tInvoice_CustomerID
o Unique: tInvoice_InvoiceNumber

Views

• Prefix all views with "v". This prefix helps ensure that no keywords are used as a view name.
• Complete the name with the primary entity displayed by the view in a singular form.
• For views that merge entities, use a combined name starting with the primary table.
• Samples:

o vCustomerDetail, vCustomerAddress, vInvoiceHeader, vInvoiceDetail, vCustomerInvoiceDetail
• Comments:

o The prefix used here helps ensure that no keywords are used as a view name. For example, "user" is a
common desired view name that is also a keyword, but "vUser" is not.

o Although consistency in naming between tables and views allows them to be used interchangeably in
accordance with ANSI standards, I prefer a clear difference provided by the prefix. This is because I do
not allow direct access to either tables or views to the users of my systems (all access is provided
through stored procedures that feed various reports).

Stored Procedures

• Prefix all stored procedures with "p". Complete the name with the primary table affected, then the job performed.
This will group all procedures for a given table in one location alphabetically.

• Use the prefix "r" for stored procedures that directly generate a report.
• Samples:

o pCustomerList, pCustomerSearch, pCustomerCreate, pCustomerRead, pCustomerUpdate,
pCustomerDelete, pCustomerPurge

o rCustomersByCountry, rCustomersBySales
• Comments:

o Never prefix a stored procedure with "sp_". This will cause a performance hit against your system as
SQL Server always searches the Master database for these stored procedures first.

User-Defined Functions

• Prefix all user-defined functions with "f". Add a shortened description of functionality.
• Samples:

o fSplit, fMixedCase

Triggers

• Prefix all triggers with "tr". Add the table name and trigger type.
• Samples:

o trCustomerInsert, trCustomerUpdate

The Best of SQLServerCentral – Vol. 5

 208

General Notes

• Never use reserved words as a name for any database object. The SQL Server Books Online help file contains a
list of reserved words under the title "Reserved Keywords (Transact-SQL)".

• Only use letters, numbers and underscores in the names of database objects. Specifically, never use a space as
these can create many problems in other applications.

• Avoid extremely long names, but don't oversimplify past the point of readability. Too many acronyms makes it
difficult for new developers to follow the design.

• Use mixed case rather than underscores (in most cases) to indicate word breaks . Use
"pCustomerAddressCreate" instead of "pcustomer_address_create".

• Use singular names rather than plural. This is often debated - singular naming saves a character when coding.

Behind The Scenes

I was once faced with the task of "cleaning up" a database with more than 1200 tables and 2000 stored procedures.
80% of these tables and procedures were not in use and needed to be removed. A standard naming convention
would have made the cleanup work much faster and would have allowed new developers to learn the system much
faster as well.

In addition, a standard naming convention would have allowed for directed text searches to trace specific stored
procedures and tables. This would have allowed consolidation of some redundant procedures without having to resort
to a "change it and see what breaks" testing methodology.

References and Additional Reading

• Narayana Vyas Kondreddi
• Joe Celko's SQL Programming Style (a book available on Amazon.com)

About "Practical Methods"

I have written the "Practical Methods" series as a guide for database developers and administrators that are starting
out with SQL Server. The articles are intended to serve as a quick reference and starting point but are not necessarily
comprehensive. The articles are written for SQL Server 2005 but most will also apply to SQL Server 2000.

This information has been pulled directly from my day-to-day experience. I hope that you find it useful - Michael Lato

Large Object Data
By Simon Sabin

Large Object Data can be confusing for many DBAs. How to load it, retrieve it, and optimize queries on your server.
New author and MVP Simon Sabin brings us a look at whether or not you should store this data in a row or on
separate pages.

Introduction

I have just received the latest copy of SQLMagazine and read with interest the article on "Varbinary(max) tames the
BLOB" it discusses in passing the fact that the new max data types hold the data in the row (same page) if possible
and only if the data is too large, move it off the page. This is the opposite to the older LOB data types, TEXT, NTEXT

http://vyaskn.tripod.com/object_naming.htm
http://www.sqlmag.com/
http://www.sqlmag.com/Article/ArticleID/92995/sql_server_92995.html
http://www.sqlmag.com/Article/ArticleID/92995/sql_server_92995.html

The Best of SQLServerCentral – Vol. 5

 209

and IMAGE which only hold the data in row if you set an option. (Kalen Delaney goes into more depth in another
article)

I have a word of caution around the inclusion of any of the max data types in a table with other columns (except the
PK). The reason for this is that because the max data types are stored "in row", this means that if you have to read
other data that requires the row being accessed i.e. accessing a column that is not in an index you will be reading this
large column of data as well.

Imagine a person table

create table Person (

PersonId int

identity(1,1) Primary Key,

Forename varchar(50),

Surname varchar(50),

DateOfBirth datetime,

Avatar varbinary(max))

Create Index IX_Person_DateOfBirth

 On Person(DateOfBirth)

Let's assume the average size of the Avatar is 4000 bytes (20x20 logo). If you then run the following query

Select Forename, Surname

 From Person

 Where DateOfBirth Between '1 Aug 2006' and '1 Sep 2006'

To get the Forename and Surname fields a bookmark lookup that has to go to the main row of the table.
Unfortunately this is bloated with the Avatars and so you only get 1 row per page. So if the query returned 80 rows
you will probably have had to read at least 80 pages of data.

If the Person table was set to have "large value types out of row" on then each page would contain about 80
rows because only a pointer to the Avatar is stored in the row (it would be > 80 if the forename and surname weren't
always 50 characters). So your query would then read 2 or 3 pages (its > 1 due to the index pages being read)

There are other was around this by adding the extra columns onto your indexes by using the new "INCLUDE" clause,
but this would have to be done on all indexes on your table.

Conclusion

My preference is to store images and other LOB data on tables with columns that have a common selection policy,
the LOB column (s) will always be selected when the other columns are selected i.e. if in the above situation the
Avatar was always returned when any of the surname, forename or dateOfbirth columns where selected then having
the Text In Row would be a benefit.

http://www.sqlmag.com/Article/ArticleID/92772/sql_server_92772.html

The Best of SQLServerCentral – Vol. 5

 210

So bottom line is to plan carefully whether to include LOB data in row, taking note of the other columns on the table.
You can also read about the new .write method available for the max data types that greatly improve update
performance

Simon is a database architect for Totaljobs Group based in the UK. He specialises in performance SQL Server
systems and recently on search technologies.

Row-By-Row Processing Without Cursor
By Amin Sobati

INTRODUCTION

Cursors exist because there are situations that row-by-row processing is inevitable. However as they are resource
intensive, developers always try to refine their codes and bypass cursors using T-SQL tricks.

Not all scenarios are capable for this replacement, but I have seen many of them! One of the common usages of
cursors is inside triggers for processing the Deleted and Inserted tables. At the time of writing this article, SQL Server
does not support any mechanism to fire a trigger for each row separately when a DML statement affects more than
one row.

As an example, an Insert command is inserting 3 records (from a query) into a table. Your trigger needs to retrieve
each PK value from Inserted table and send it to a particular Stored Procedure for some processes. Iterating through
a cursor made of PKs might seem the first option. However in this case we can use the power of variables that live
within a query, then Dynamic T-SQL Execution finalizes the trick! Let's create necessary objects:

CREATE TABLE Books (

BookCode VARCHAR(5),

BookDesc VARCHAR(100))

-- The SP which processes new BookCode during insertion

CREATE PROC usp_Process

@BookCode VARCHAR(5)

AS

-- Do something useful with each BookCode. We simply print it

Print 'SP is processing... ' + @BookCode

GO

All we need to do in the trigger is to construct a string of T-SQL commands that contain EXEC
usp_Process for each BookCode:

CREATE TRIGGER tr1 ON Books AFTER INSERT AS

http://sqlblogcasts.com/blogs/simons/archive/2006/03/02/530.aspx
http://sqlblogcasts.com/blogs/simons/archive/2006/03/02/530.aspx
http://www.totaljobs.com/

The Best of SQLServerCentral – Vol. 5

 211

 DECLARE @sql VARCHAR(8000)

 SET @sql=''

 SELECT @sql=@sql+'EXEC usp_Process ''' + BookCode + '''; ' FROM Inserted

 PRINT 'Trigger is preparing Dynamic T-SQL: ' + @sql -- Just o see @sql

 EXEC (@sql)

GO

Now let's try to see how it works:

INSERT Books

 SELECT 'A','Book desc 1' UNION

 SELECT 'B','Book desc 2' UNION

 SELECT 'C','Book desc 3'

Trigger is preparing Dynamic T-SQL: EXEC usp_Process 'A'; EXEC usp_Process 'B'; EXEC usp_Process
'C';

SP is processing... A

SP is processing... B

SP is processing... C

(3 row(s) affected)

This manner can be used even if you need to send more parameters to the SP. Please be careful with
@sql here because your dynamically-built string cannot exceed 8000 characters. Fortunately SQL Server
2005 developers can benefit from MAX length of VARCHAR and NVARCHAR data types!

CONCLUSION

Use the power of T-SQL and SELECT statement whenever you can. They are flexible enough to help us to perform
some sort of row-by-row processing faster without bothering the hardware. Experts think about a Cursor as the last
option!

Beauty is in the Eye of the Beholder
By Stephen Hirsch

Shakespeare probably didn't realize he was talking about dynamic SQL when he wrote those lines, but he did. There
have been a number of articles on this site telling developers that dynamic SQL is "bad". After commenting on the
articles a few times, I'd like to detail an application space where dynamic SQL is "good".

The Best of SQLServerCentral – Vol. 5

 212

The quotes around the words "good" and "bad" are not just the stylistic affectations of an English major. The question
of what you need to optimize for should be the first question asked in the design process. The answer to the question
depends on so many factors, whether the software to be developed is embedded or not, whether it is internal to an
organization or not, whether it is transaction or reporting focused, etc., that I am loathe to pass judgement right away.

After all, which direction does a clock move, clockwise or counterclockwise? The answer depends on your
perspective...

For most of the developers reading this site, and indeed for most of us working in and around relational databases,
the default optimization strategy is to optimize for speed of execution. This is not without reason. If you need to
optimize for speed, then dynamic SQL will slow you down to some extent, since the SQL will need to be compiled
before it can be run. In that case, dynamic SQL is "bad".

However, there are application spaces that use relational databases extensively, where speed of execution is not the
primary optimization path. I worked in such an application space for many years, clinical trial applications.

Clinical trials are simply put, giant, extremely costly experiments. Each clinical trial is its own application, with its own
data structures, programs, etc. Clinical trials tend not to have huge amounts of data (a massive trial had about a
gigabyte of raw data), but since we had over 250 trials in production at one time, we had an enormous amount of
metadata.

Since clinical trials come under the purview of the FDA, there is a tremendous overhead of validation for each distinct
piece of software you write. Validation here does not mean testing your software, but rather documenting the testing
of your software. Whether it is a good use of anyone's time is a discussion for another day, but the requirement is
there, and it is onerous to one degree or another. Dynamic SQL is incredibly useful in reducing the regulatory
overhead. Below are two areas where it was used.

Two important notes. One, these were internal, server-only apps with no real direct end user involvement. Therefore,
SQL injection was not something we had to deal with. If your app needs to be concerned with SQL injection, that
could definitely limit your use of dynamic SQL. Two, ClinTrial, the clinical trial programming tool we used, has a well
thought out and extensive metadata repository. Dynamic software, whether dynamic SQL or some other language,
practically requires a metadata repository.

The first area that dynamic SQL was used was the creation of generic data validation scripts. Instead of having to
write the same scripts over and over (static SQL couldn't be used because each trial had different table names, and if
they did have the same table names, they often had different column definitions), the tool read the metadata
repository to dynamically create the validation routines. Days upon days spent creating validation scripts were
eliminated.

There certainly was a time-to-execute performance hit, but it really wasn't that awful, and certainly worth the savings
in development and validation time.

The second area for dynamic SQL was one where I was directly involved. We were tasked with creating the first ever
clinical data warehouse. Among other things, this meant loading literally thousands of heterogeneously structured
tables into 10 standard structures. A new set of tables would typically be created each week, and we had to allow for
the fact that table structures could change in the middle of a trial, since they were, after all, experiments.

Finally, we had to make allowances for bizarre behavior on the part of individual trials. While you could certainly make
an argument that the initial trial design process should have be more closely regulated (i.e ., don't think outside the
box until you look inside the box first), that was the environment we had to deal with.

With our validation requirements, there was no way in the world to do that without dynamic SQL. Here's a very short
version of how we accomplished this.

1) For each individual target entry, we created a "feed table". This feed table was populated from the metadata
repository and a configuration table we called the "metameta" table.

The Best of SQLServerCentral – Vol. 5

 213

2) From the feed table, we created an enormous SELECT statement, full of UNION ALLs, that extracted and
transformed the individual trial's data to the standard target, as well as handled the change data capture logic. We
stored this SELECT statement as a VIEW.

3) An Informatica program would load the data by invoking the VIEW and moving its result set into the staging target
table.

In some ways, you could think of the whole feed table apparatus as a giant, complicated text replacement program, or
keystroke macro; for validation purposes, that's exactly what we did, since we considered the VIEW to be the E and T
of ETL. Validating that was trivial; just do SELECT * FROM new MINUS SELECT * FROM old and SELECT * FROM
old MINUS SELECT * FROM new statements to compare the new and the old views. If you got the results you
wanted, you were done. That was our story, and we stuck with it.

In the second example, there was no performance hit at all. Dynamic SQL turned what could have been an onerous
task, a working in the coal mines kind of task, into one that didn't harsh anybody's mellow once trained.

The Best of SQLServerCentral – Vol. 5

 214

Security

As DBAs and developers we have seen security become a bigger and bigger concern over the last decade. Despite
the fact that, these days, more and more breeches aren’t due to technical errors, we must still work harder to ensure
that our code can stand the scrutiny of hackers and other malicious users.

This section highlights a few articles that pertain to security in SQL Server in a general sense and will help you better
understand how this platform can work for you.

SQL 2005 Symmetric Encryption .. 215
Ownership Chaining .. 222
Preventing Identity Theft Using SQL Server.. 223

The Best of SQLServerCentral – Vol. 5

 215

SQL 2005 Symmetric Encryption
By Michael Coles

Introduction

One of the most exciting new features of SQL Server 2005 is the built-in encryption functionality. With this new
version of SQL Server, the SQL Server Team has added encryption tools, certificate creation and key management
functionality directly to T-SQL. For anyone who males their living securing data in SQL Server tables because of
business requirements or regulatory compliance, these new features are a godsend. For those trying to decide
whether to use encryption to secure their data, the choice just got a lot easier. This article describes how the new
encryption tools work, and how you can use them to your advantage.

T-SQL now includes support for symmetric encryption and asymmetric encryption using keys, certificates and
passwords. This article describes how to create, manage and use symmetric keys and certificates.

Because of the amount of information involved, I've divided this article into three sections:

• Part 1: Service and Master Keys
• Part 2: Certificates
• Part 3: Symmetric Keys

 Part 1: Service and Database Master Keys

The SQL 2005 Encryption Hierarchy

SQL Server 2005 encryption functionality uses a hierarchical model that looks like this:

http://www.sqlservercentral.com/columnists/mcoles/sql2005symmetricencryption.asp#Part1#Part1
http://www.sqlservercentral.com/columnists/mcoles/sql2005symmetricencryption.asp#Part2#Part2
http://www.sqlservercentral.com/columnists/mcoles/sql2005symmetricencryption.asp#Part3#Part3

The Best of SQLServerCentral – Vol. 5

 216

Service Master Key

Each SQL Server 2005 installation has exactly one Service Master Key (SMK), which is generated at install time. The
SMK directly or indirectly secures all other keys on the server, making it the "mother of all SQL Server encryption
keys." The Windows Data Protection API (DPAPI), at the higher O/S level, uses the SQL Server service account
credentials to automatically encrypt and secure the SMK.

Because it is automatically created and managed by the server, Service Master Keys require only a few
administrative tools. The SMK can be backed up via the BACKUP SERVICE MASTER KEY T-SQL statement. This
statement has the following format:

BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file'

 ENCRYPTION BY PASSWORD = 'password'

Path_to_file is the local path or UNC network path to the file in which the SMK will be backed up. Password is a
password which is used to encrypt the SMK backup file.

You should backup your Service Master Key and store the backup in a secure off-site location
immediately after installing SQL Server 2005.

Should you ever need to restore the Service Master Key from the backup copy, you can use the RESTORE SERVICE
MASTER KEY statement:

The Best of SQLServerCentral – Vol. 5

 217

RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'

 DECRYPTION BY PASSWORD = 'password' [FORCE]

The path_to_file is the UNC or local path to the backup file. Password is the same password previously used to
encrypt the backup. When restoring the SMK, SQL Server first decrypts all keys and other encrypted information
using the current key. It then re-encrypts them with the new SMK. If the decryption process fails at any point, the
entire restore process will fail. The FORCE option forces SQL Server to ignore decryption errors and force a restore.

If you have to use the FORCE option of the RESTORE SERVICE MASTER KEY statement, you
can count on losing some or all of the encrypted data on your server.

If your Service Master Key is compromised, or you want to change the SQL Server service account, you can
regenerate or recover the SMK with the ALTER SERVICE MASTER KEY statement. The format and specific uses of
the ALTER SERVICE MASTER KEY statement are available in Books Online.

Because it is automatically generated by SQL Server, there are no CREATE or DROP statements for the
Service Master Key.

Database Master Keys

While each SQL Server has a single Service Master Key, each SQL database can have its own Database Master Key
(DMK). The DMK is created using the CREATE MASTER KEY statement:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'

This statement creates the DMK, encrypts it using the supplied password, and stores it in the database. In addition,
the DMK is encrypted using the Service Master Key and stored in the master database; a feature known as
"automatic key management." We'll talk more about this feature later.

Like the Service Master Key, you can backup and restore Database Master Keys. To backup a DMK, use the BACKUP
MASTER KEY statement. The syntax is analogous to backing up a Service Master Key.

BACKUP MASTER KEY TO FILE = 'path_to_file'

 ENCRYPTION BY PASSWORD = 'password'

Restoring the Database Master Key requires that you use the DECRYPTION BY PASSWORD clause, which specifies
the password previously used to encrypt the backup file. In addition you must use the ENCRYPTION BY PASSWORD
clause, which gives SQL Server a password to encrypt the DMK after it is loaded in the database.

RESTORE MASTER KEY FROM FILE = 'path_to_file'

 DECRYPTION BY PASSWORD = 'password'

 ENCRYPTION BY PASSWORD = 'password'

 [FORCE]

Like restoring the Service Master Key, the DMK restore statement has a FORCE option which will ignore decryption
errors.

The Best of SQLServerCentral – Vol. 5

 218

It is recommended that you immediately create backups of Database Master Keys and store
them in a secure off-site location immediately after creating them. Also, the FORCE option of
the RESTORE MASTER KEY statement can result in encrypted data loss.

To drop a DMK, use the DROP MASTER KEY statement:

DROP MASTER KEY

This statement drops the Database Master Key from the current database. Make sure you are in the correct database
before using the DROP MASTER KEY statement.

Automatic Key Management

When you create a Database Master Key, a copy is encrypted with the supplied password and stored in the current
database. A copy is also encrypted with the Service Master Key and stored in the master database. The copy of the
DMK allows the server to automatically decrypt the DMK, a feature known as "automatic key management." Without
automatic key management, you must use the OPEN MASTER KEY statement and supply a password every time you
wish to encrypt and/or decrypt data using certificates and keys that rely on the DMK for security. With automatic key
management, the OPEN MASTER KEY statement and password are not required.

The potential downfall of automatic key management is that it allows every sysadmin to decrypt the DMK.
You can override automatic key management for a DMK with the DROP ENCRYPTION BY SERVICE
MASTER KEY clause of the ALTER MASTER KEY statement. ALTER MASTER KEY and all its options are
described in full detail in Books Online.

 Part 2: Certificates

Creating Certificates

Once you have your Service Master Key and Database Master Key configured, you're ready to begin making
certificates. SQL Server 2005 has the ability to generate self-signed X.509 certificates. The flexible CREATE
CERTIFICATE statement performs this function:

CREATE CERTIFICATE certificate_name [AUTHORIZATION user_name]

 { FROM <existing_keys> | <generate_new_keys> }

 [ACTIVE FOR BEGIN_DIALOG = { ON | OFF }]

<existing_keys> ::=

 ASSEMBLY assembly_name

 | {

 [EXECUTABLE] FILE = 'path_to_file'

The Best of SQLServerCentral – Vol. 5

 219

 [WITH PRIVATE KEY (<private_key_options>)]

 }

<generate_new_keys> ::=

 [ENCRYPTION BY PASSWORD = 'password']

 WITH SUBJECT = 'certificate_subject_name'

 [, <date_options> [,...n]]

<private_key_options> ::=

 FILE = 'path_to_private_key'

 [, DECRYPTION BY PASSWORD = 'password']

 [, ENCRYPTION BY PASSWORD = 'password']

<date_options> ::=

 START_DATE = 'mm/dd/yyyy' | EXPIRY_DATE = 'mm/dd/yyyy'

There are a lot of options associated with the CREATE CERTIFICATE statement. Fortunately few are needed most of
the time. The following statement will create a certificate encrypted by password:

CREATE CERTIFICATE TestCertificate

 ENCRYPTION BY PASSWORD = 'thisIsAP@$$w0rd'

 WITH SUBJECT = 'This is a test certificate',

 START_DATE = '1/1/2006',

 EXPIRY_DATE = '12/31/2008';

If you leave off the ENCRYPTION BY PASSWORD clause, the Database Master Key is used to encrypt the certificate.
Leaving the START_DATE out will result in the current date being used as the default start date for your certificate.

You can also use the CREATE CERTIFICATE statement to import an existing certificate into your SQL Server.

In addition to CREATE CERTIFICATE, SQL Server provides additional statements to manage certificates. These
include DROP CERTIFICATE, ALTER CERTIFICATE, and BACKUP CERTIFICATE.

There is no RESTORE statement for certificates. Use the CREATE CERTIFICATE statement to
restore a backed-up certificate.

The Best of SQLServerCentral – Vol. 5

 220

Encryption and Decryption by Certificate

Certificates can be used to encrypt and decrypt data directly by using the built-in EncryptByCert, DecryptByCert
and Cert_ID functions. The Cert_ID function returns the ID of the certificate with the specified name. The format of
the Cert_ID function is:

Cert_ID ('cert_name')

The 'cert_name' is the name of the certificate. The EncryptByCert function requires the Certificate ID and has
the following format:

EncryptByCert (certificate_ID , { 'cleartext' | @cleartext })

The certificate_ID is acquired by using the Cert_ID function. 'Cleartext' is the clear text string to encrypt.
The clear text can be a char, varchar, nchar, nvarchar or wchar value. The EncryptByCert function returns a
varbinary result of up to 8,000 bytes.

The DecryptByCert function is used to decrypt data that was previously encrypted by certificate. The format for
DecryptByCert looks like this:

DecryptByCert (certificate_ID,

 { 'ciphertext' | @ciphertext }

 [, { 'cert_password' | @cert_password }]

)

Like EncryptByCert, certificate_ID can be obtained using the Cert_ID function. 'Ciphertext' is the
previously encrypted text. If you created your certificate with the ENCRYPT BY PASSWORD clause,
'cert_password' must be the same password you used when you created the certificate. If you did not use
ENCRYPT BY PASSWORD to create the certificate, leave out 'cert_password'.

The following sample script creates a Database Master Key, a test certificate and demonstrates how to
encrypt/decrypt data using the certificate. (Complete code is at www.sqlservercentral.com)

 Part 3: Symmetric Keys

Creating Symmetric Keys

You can use certificates to create symmetric keys for encryption and decryption within the database. The CREATE
SYMMETRIC KEY statement has the following syntax:

CREATE SYMMETRIC KEY key_name [AUTHORIZATION owner_name]

 WITH <key_options> [, ... n]

 ENCRYPTION BY <encrypting_mechanism> [, ... n]

The Best of SQLServerCentral – Vol. 5

 221

<encrypting_mechanism> ::=

 CERTIFICATE certificate_name |

 PASSWORD = 'password' |

 SYMMETRIC KEY symmetric_key_name |

 ASYMMETRIC KEY asym_key_name

<key_options> ::=

 KEY_SOURCE = 'pass_phrase' |

 ALGORITHM = <algorithm> |

 IDENTITY_VALUE = 'identity_phrase'

<algorithm> ::=

 DES | TRIPLE_DES | RC2 | RC4 | DESX | AES_128 | AES_192 | AES_256

Like the CREATE CERTIFICATE statement, CREATE SYMMETRIC KEY is very flexible. In most situations you will
probably use a small subset of the available options. As an example, this statement creates a symmetric key and
encrypts it with the Test Certificate created in the previous section:

CREATE SYMMETRIC KEY TestSymmetricKey

 WITH ALGORITHM = TRIPLE_DES

 ENCRYPTION BY CERTIFICATE TestCertificate;

Symmetric keys can be secured via other symmetric keys, asymmetric keys and passwords, as well as by certificates.
SQL Server also provides ALTER SYMMETRIC KEY and DROP SYMMETRIC KEY statements to manage your
symmetric keys. Specific syntax for these statements can be found in Books Online.

When dropping keys and certificates, the order is important. SQL 2005 will not allow you to
DROP certificates or keys if they are being used to encrypt other keys within the database.

Symmetric Key Encryption

SQL Server provides a set of functions to encrypt and decrypt data by symmetric key. These functions are
EncryptByKey, DecryptByKey and Key_GUID. The Key_GUID function returns the unique identifier assigned to a
specific symmetric key. The format of the function is:

Key_GUID('Key_Name')

The EncryptByKey function requires a reference to the symmetric key GUID in order to encrypt data. The format of
the EncryptByKey function is:

The Best of SQLServerCentral – Vol. 5

 222

EncryptByKey(key_GUID, { 'cleartext' | @cleartext }

 [, { add_authenticator | @add_authenticator }

 , { authenticator | @authenticator }]

)

The key_GUID is the symmetric key GUID, 'cleartext' is the plain text to be encrypted. Add_authenticator
and authenticator are optional parameters that can help eliminate post-encryption patterns from your data.

The DecryptByKey function performs the reverse of EncryptByKey. This function decrypts your previously
encrypted data. The format for DecryptByKey is:

DecryptByKey({ 'ciphertext' | @ciphertext }

 [, add_authenticator

 , { authenticator | @authenticator }]

)

'Ciphertext' is the encrypted text. Add_authenticator and authenticator, if present, must match the
values used in the EncryptByKey function. The DecryptByKey function doesn't require you to explicitly specify the
symmetric key GUID. The symmetric key used previously to encrypt the data must be open, however. The OPEN
SYMMETRIC KEY statement is used to open a symmetric key.

Here is a sample T-SQL script demonstrating encryption and decryption by symmetric key: (code at
www.sqlservercentral.com)

Conclusions

SQL Server 2005 includes several new functions to securely create, manage and use encryption keys and certificates
to secure sensitive data. Taking advantage of this new functionality can greatly enhance your database and
application security.

Ownership Chaining
By Rob Farley

Ownership chaining can be really cool. Many of us would have granted a restricted user access to a stored procedure
or function called dbo.GetInfo, but denied access to the underlying tables. The user can get access to the data
through the stored procedure, but can't get at the tables underneath at all. Makes life nice and safe. But why does this
work?

The answer is ownership chaining.

What happens is that the system sees the request come in for the stored procedure (or could be a function, I'll say
'module' to make life easier). It checks to see if the user has permission to execute the module, and it does! Great. So
then it enters the module and executes what's in there. Now within the module, the system tries to access a table, and
it needs to work out if the user should have access to it.

The Best of SQLServerCentral – Vol. 5

 223

Of course, the answer should be no, because the user doesn't have access to that table. But here's where the
ownership chaining kicks in. The system says "I'm in the context of a stored procedure which is owned by dbo (or
whoever). This table I'm trying to access is owned by them too, so clearly I must have access to it!" It's a bit sneaky, I
know. Heck of an assumption to make, but it's what happens, and it makes life quite handy for us developers.

What many developers think is that a stored procedure has some special kind of super-access to access stuff
because it runs under a different context or something, but it's not the case. The security check is just skipped on the
underlying tables if the owner is the same.

"But I can use 'execute as' within a module, and that changes all that" I hear you say, and I'm going to ignore you for
a minute.

Cross-database ownership chaining is worth being aware of. You might have read about what I've just written and
suddenly realise why various things just worked before. You might also have suddenly wondered why that didn't work
in some other situations, particularly when you've tried to access a table in a different database.

Cross-database ownership chaining is just like ownership chaining, but it works across databases. Let's suppose we
have two databases, we'll call them db1 and db3 (haha - get it?). A stored procedure in db1 tries to access a table
owned by the same login on db3. But it's denied. That's because cross-database ownership chaining is turned OFF
by default. Let me explain why.

Barry and I each have a database on a server. I don't have access to his, and he doesn't have access to mine. We
both have full access to our own databases, and I don't let Barry see my sensitive data. But somehow, Barry has
persuaded the DBA to turn on cross-database ownership chaining. I'm not worried, am I?

Next thing I know, all my data is compromised, and I've lost my job. Why?

Turns out evil Barry created a stored procedure in his own database that tried to access my data. It didn't work. But
then he created a user in his database for my login. Yeah! He didn't even tell me. But even if I had known, it wasn't as
if that user could do anything in his database. Except that he then changed the owner of that dodgy stored procedure
to be that login of mine. Yeah great, so I could access a stored procedure on his machine.

But because of cross-database ownership chaining, when Barry accessed that stored procedure, the system let him
see my sensitive data. It had confirmed that he had access to the stored procedure in his own database (that module
that was owned by me!), and everything was fine. But when that module tried to access my tables, it noticed that the
owner was, well, me - the same owner as the module it was running. So it skipped the check and granted access.

So cross-database ownership chaining is bad, unless you have full control over the whole server. Many of us do, of
course, but not always. Be aware of that.

Thanks for reading...

Oh sorry - you were asking about 'execute as'. Yes. Execute as is a great way of avoiding this. Stick all your tables
into a schema owned by someone else, and tell your modules to run as a particular user, who presumably has access
to the right tables in whichever database is appropriate. Now you can avoid all the ownership chaining, and feel like
you have proper control over your security.

Preventing Identity Theft Using SQL Server
By Yaroslav Pentsarskyy

When it comes to security of an online business so often we are so used to the concept of an attacker hitting our web
server as a main target that we may forget about other important elements of our network, such as our database

The Best of SQLServerCentral – Vol. 5

 224

server. There are many techniques and layers of defense available to protect the external perimeter of the network
and web applications. We cannot have too many tools, however, that will protect our data on a database server when
an attacker has direct access to the system. That implies that we'll always rely on some other mechanisms to protect
our database system, but what if those mechanisms are compromised?

In this example I would like to share one solution that will demonstrate how the database system can be used in
detecting the potential unauthorized alteration of the data.

Let's assume we have an online gambling business that relies on our clients accessing web application (an e-casino)
which communicates with the backend database. The web application handles user authentication and account
management. The database holds information about customer's account: username, encrypted password, name,
address, email, and account balance. As a part of our service we offer our clients the ability to associate their
accounts with an online payment processing system (such as PayPal) so they can withdraw their funds. To associate
the account with PayPal we have to have their email, and name matching PaylPal account information.

The network diagram will look something like this:

Assuming that our web application has the best security practices applied when developed, and our firewall has all
the restrictive rules implemented we might think that there is nothing to worry about. However, there is a constant
threat of a blackhat community exploiting certain server vulnerabilities and access the database engine directly
bypassing our web application. It may be as "simple" as exploiting another buffer overflow vulnerability, which we
hear about so many times these days. In this case an attacker may access our database records and modify certain
data that will let her impersonate one of the users by replacing her name and email with the original account
information.

For example, in the table below, we have 3 users with their corresponding information:

Assuming that "JimK" is a legitimate user, and "ChesterJ" is a phony user created by an attacker "ChesterJ" can
replace information used by Payment Processing System to become the owner of the legitimate balance or change
his balance with the bogus amount and withdraw funds.

In case of our database system being attacked directly using system specific vulnerability we won't have any signs of
a compromise from the web application part. We can use restrictions and triggers, but those can be deleted or altered
in no time once an attacker gains access to our DBMS.

The solution to a problem includes simple modifications to our web application and the database.

The Best of SQLServerCentral – Vol. 5

 225

As we have designed our web applications we know that the only system that is allowed to access the database is an
application and its respective user interface.

For example, to create a user we have to use the same old registration screen that is duplicated practically on any
website. The same situation is with a system updating user's balance no one can access balance management
system unless certain events in an application triggered the change of that balance (for example user won a jackpot
etc).

Knowing who's allowed to access certain parts of the database - we can develop custom signatures for our
applications that modify user's account. That will include adding one more column to the database that will store
unique signature of a modifying application.

For instance, the only time username can be changed is when the user is created through our registration form.
Therefore, the registration form will add its hashed signature to the column corresponding to our username. The hash
will also include some other important parts of the user's account being unique for every user. Here are the steps to
generate user specific hash in a database:

 The registration screen will take down the following information:

 date user is created (dd/mm/yyyy), username, email, name, and address.

 The following string is an example of user identification information generated

 from the input in the registration form:

 "29/08/2006, 12:39:2368*JimK*Jim K*435 Shell St.*jim@businessinvent.com".

 Where "*" is a separator.

 The string is hashed using SHA1 algorithm (you can use algorithm of your choice)

 The hashed result (in our case: "0xBB4E951901FF5DCECE446162D2E5B39BE589363F")

 is recorded to the table along with the rest of the data.

Now that we have created a unique hash for our records any account changes to the information that were not
supposed to be made by an authorized application will mean that the data in the database has been maliciously
modified. But how do we know that the data has been modified?

There are many approaches to this. We can create a schedule for the user records to be scanned and verified against
hash that is in our special column. The scanning is better to be done by another independent system so that when our
database is compromised an attacker cannot figure out the hashing algorithm we used along with the string that is
expected as an input.

With SQL Server 2005 we can have a scheduled job running any time we prefer comparing original hash value with
the one calculated using HASHBYTES (SHA1', @input) function. If the result of our dynamic hash doesn't match the
recorded value in a user row the alert is sent to an administrator using Notification Services.

Another approach is to have the integrity of our records checked when it is required. Going back to our e-casino
application, whenever user wants to withdraw funds we double check the hash of his current information with the one
created earlier.

Of course this solution will not (and should not) replace other security practices available out there. However, it is a
nice addition to our multilayer security system.

Feel free to post your comments and feedback here or at spentsarsky@aim.com.

The Best of SQLServerCentral – Vol. 5

 226

ETL and BI

More and more often, we are called to move data between systems and, oh yeah, can you fix these few little
problems. Three days later, after massaging the flies in Excel or T-SQL, you’re ready to pull your hair out. The
process of extracting data, transforming it, and loading it back into a system (ETL), is one that has created
employment for a great many people. Business Intelligence (BI) seems to deal mainly with reporting.

In SQL Server 7, we got DTS, which was a great tool for moving data around in a limited fashion. After many
complaints on the problems with complex transformations, SQL Server 2005 brought us Integration Services (SSIS),
a very rich programming environment.

This came at a cost, however, in that this environment requires true programming skills and has a steep learning
curve. This year we have a special section just for our ETL articles.

A Common Architecture for Loading Data... 227
Overview of SSIS .. 232
SSIS - Transfer SQL Server Objects Debugged ... 240
SSIS Is Not Just for SQL Server ... 244
SSIS Programming.. 247
Loading a 24x7 Data Warehouse .. 250
More Problems with Data Warehousing .. 253
Storage Modes in SSAS 2005... 256
Dynamic Connection Strings in Reporting Services 2005 ... 258
Populating Fact Tables.. 260
Reporting Services 2005 101 with a Smart Client ... 272
Data Driven Subscriptions for Reporting Services (2000 and 2005) ... 283

The Best of SQLServerCentral – Vol. 5

 227

A Common Architecture for Loading Data
By Marck Balasundram

It is always a welcome challenge in a big organization to write ETL application, that runs quite efficiently. As we all
know during the nightly batch process the time is a constraint and the allocated time must be wisely used. Recently I
was given the task of designing a service that loads data into a sql server database. The extracts come in pipe
separated text files. There are eighteen extracts; The challenge was to create one loader which can handle all
eighteen extracts at the same time and must handle any totally new feeds without any new major development. The
design I came up with is very flexible that any structural changes to source files was accommodated very easily
without changing the frame work code. The initial requirement was to load only eight extracts, but the project ended
up having eighteen extracts. I accepted the new extracts without changing the framework code.

It is important to pay attention to performance and scalability. My goal was to create an ETL application that can load
multiple files with good performance and should be able to add new extracts without modifying the existing framework
code. So the design was a no brainier, so I chose "Plug in" Architecture as the solution. This methodology provides
increased flexibility for any future enhancement.

The challenge was to create one loader which can handle all eighteen extracts at the same time and must handle any
totally new feeds without any new major development. The design I came up with is very flexible that any structural
changes to source files was accommodated very easily without changing the frame work code. The initial requirement
was to load only eight extracts, but the project ended up having eighteen extracts. I accepted the new extracts without
changing the framework code.

Framework functionalities

• Finding Extract files
• Verifying Extract files integrity
• Loading into staging tables
• Creating dynamic format files
• Running component (Eg Multithreading)
• Integrating component results in the database
• Unloading component

The advantage of the "Plug In" approach is that it simplifies the future addition using only metadata, this table
contains unique names of extracts, names of stored procedures for uploading data from staging to production tables,
unique key position in the data file and so on. The flow diagram is shown below.

It is always interesting to create a high performance application, so I decided to go with a combination of using BCP
(Bulk Copy Program) asynchronously and uploading data from staging tables into production tables with the use of
many threads. BCP is a part of the SQL Server 2000 client. It is a very powerful tool to upload data.

I used System.Diagnostics namespace to run BCP asynchronously to upload data into the staging tables. This means
that while application is loading data into a staging table, another process reads the source folder and prepares a
data file to be uploaded.

The Best of SQLServerCentral – Vol. 5

 228

It is easier to write synchronous code solutions. However, in using asynchronous multithreaded programming, one of
the biggest gains is to avoid bottlenecks. We all know that synchronous programming can cause unnecessary
dependencies. There are many more reasons for to choose asynchronous multithreaded programming over
synchronous programming. More information can be found at
http://msdn.microsoft.com/msdnmag/issues/05/08/concurrency/default.aspx.

So I created two C# components

1. An executable which acts as Loader framework
2. A common class(objLibrary) which contains all common activities such as error logging, encryption

decryption and connection to DBs.

The database is SQL Server 2000.

Here are the functionalities of the loader framework

1. Read source folder for data files to be loaded. Multiple source files can be loaded at the asynchronously using
System.Diagnostics.Process based on the flag value in the executable configuration file.

Example: Here are the variables from the config file; application uses these variables to decide the course of action.

<add key="NumberOfFilesAtaTime" value="18"/>

Please include System.Diagnostics in the C# code. The following code is executed within a loop using
Directory.GetFiles and then processing all the files in the specified directory.

http://msdn.microsoft.com/msdnmag/issues/05/08/concurrency/default.aspx

The Best of SQLServerCentral – Vol. 5

 229

System.Diagnostics.Process p = null;

//Process multiple files or process one file at a time

if(System.Configuration.ConfigurationSettings.AppSettings["NumberOfFilesAtaTime"]=="1")

 { p.WaitForExit();

}

//This executed after execution of the

loop, ensure the all extracts are

loaded

if(System.Configuration.ConfigurationSettings.AppSettings["NumberOfFilesAtaTime"]!="1")

 {

 p.WaitForExit();

 }

2. Read the static table. This static table contains the names of the tables, primary key information, and names of the
stored procedures used for uploading data from staging tables into production tables. Here is a sample DDL for
static table.

CREATE TABLE [dbo].[LoaderDetails](

 [L_LoaderName] [varchar](50) NOT NULL,

 [L_StoredProcedureName] [varchar](80) NULL,

 [L_LoaderKeyColumnNumber] [int] NULL,

 [L_KeyIDColName] [varchar](50) NULL,

 [L_LoaderDescription] [varchar](50) NULL,

 [L_LastUpdatedTime] [datetime] NULL,

 [L_LastStatusMessage] [varchar](500) NULL,

 [L_BPSKeyLoader] [bit] NULL

) ON [PRIMARY]

In this application format files are used very heavily through BCP to upload data. I use format files to selectively pick
columns from source file to be exported into sql server table. For example if source files contain twenty columns and I
need data from columns 3,7,15 and 16 then format files are extremely useful to complete this task. The format files
are created on a nightly basis, and the primary reason for creating format files regularly is to accommodate any table
structure changes. I use the schema of the staging tables to do this.

The Best of SQLServerCentral – Vol. 5

 230

Create format files using the schema of staging tables. The format files are created every night before the batch
begins to ensure all changes to tables are included during data load. These table names are stored in the static table.
For example if the staging table ABC has six columns then a format file with six fields is created dynamically using
SqlDataAdapter,StreamWriter classes.

 8.0

 7

 1 SQLCHAR 0 0 "\n" 0 "" ""

 2 SQLCHAR 0 0 "|" 1 a0 Finnish_Swedish_CS_AS

 3 SQLCHAR 0 0 "|" 2 a1 Finnish_Swedish_CS_AS

 4 SQLCHAR 0 0 "|" 3 a2 Finnish_Swedish_CS_AS

 5 SQLCHAR 0 0 "|" 4 a3 Finnish_Swedish_CS_AS

 6 SQLCHAR 0 0 "|" 5 a4 Finnish_Swedish_CS_AS

 7 SQLCHAR 0 0 "\r" 6 a6 Finnish_Swedish_CS_AS

4. Use Bulk Copy Program (BCP) with the created format file to upload data from data files into a staging
table. BCP also produces an output file and an error file.

I added the following node in my config file to find the location of BCP.

<add key="BCPexePath" value="C:\Program Files\Microsoft SQL Server\80\Tools\Binn\BCP.EXE"/>

<add key="BCPSwithches" value=" -n -t | -c -b 50000"/>

Here is the code that uses to execute BCP to load data.

//The file that will be use to capture errors thrown by BCP

strOutPutFileName=ConfigurationSettings.AppSettings["FormatFilePath"]+"RecordsProcessed"

 +ConfigurationSettings.AppSettings["ErrorFileNamePrefix"] + strLoaderName+".txt";

strBCPErrorFileName=ConfigurationSettings.AppSettings["FormatFilePath"]

 +ConfigurationSettings.AppSettings["ErrorFileNamePrefix"] + strLoaderName + ".txt";

proc.Arguments=strLoaderName + @" IN " + strReceivedFileName.ToString() +
ConfigurationSettings.AppSettings["BCPSwithches"].Replace("|","\"|\" ")+
objLibrary.Decrypt(objLibrary.Read("CONNECTION_BCP"))

 + " -o" + strOutPutFileName + " -e " + strBCPErrorFileName + " -L " + dblRecordCount+1 + " -f"

 + proc.UseShellExecute=false;

proc.RedirectStandardOutput=false;

proc.ErrorDialog=false;

//The file that will be use to capture errors thrown by BCP

strOutPutFileName=ConfigurationSettings.AppSettings["FormatFilePath"]+"RecordsProcessed"

The Best of SQLServerCentral – Vol. 5

 231

 +ConfigurationSettings.AppSettings["ErrorFileNamePrefix"] + strLoaderName+".txt";

strBCPErrorFileName=ConfigurationSettings.AppSettings["FormatFilePath"]

 +ConfigurationSettings.AppSettings["ErrorFileNamePrefix"] + strLoaderName + ".txt";

proc.Arguments=strLoaderName + @" IN " + strReceivedFileName.ToString()

 + ConfigurationSettings.AppSettings["BCPSwithches"].Replace("|","\"|\" ")

 + objLibrary.Decrypt(objLibrary.Read("CONNECTION_BCP"))

 + " -o" + strOutPutFileName + " -e " + strBCPErrorFileName + " -L " + dblRecordCount+1

 + " -f" + proc.UseShellExecute=false;

proc.RedirectStandardOutput=false;

proc.ErrorDialog=false;

//Begin process asyncronously

p = System.Diagnostics.Process.Start(proc);

5. Another set of format files are created to upload all failed records into an exception management table.
The static table contains the primary column number for all the staging tables, which is used to create
these format files. For example if the primary key is the 6th column then the following format file is
created. The execution is same as above except this time all failed records are loaded into exception
table.

5.6.

8.0

9

1 SQLCHAR 0 0 "\n" 0 "" ""

2 SQLCHAR 0 0 "\t" 0 a0 Finnish_Swedish_CS_AS

3 SQLCHAR 0 0 "\t" 0 a1 Finnish_Swedish_CS_AS

4 SQLCHAR 0 0 "\t" 0 a2 Finnish_Swedish_CS_AS

5 SQLCHAR 0 0 "\t" 0 a3 Finnish_Swedish_CS_AS

6 SQLCHAR 0 0 "\t" 0 a4 Finnish_Swedish_CS_AS

7 SQLCHAR 0 0 "\t" 0 a5 Finnish_Swedish_CS_AS

8 SQLCHAR 0 0 "\t" 1 a6 Finnish_Swedish_CS_AS

9 SQLCHAR 0 0 "\r" 0 a8 Finnish_Swedish_CS_AS

6. Use Bulk Copy Program (BCP) with the created format file to upload failed data from error log files into
exception management table

//load error records

The Best of SQLServerCentral – Vol. 5

 232

System.Diagnostics.ProcessStartInfo proc = new System.Diagnostics.ProcessStartInfo(strBCPPath);

proc.Arguments="FAILEDRECORDS " + @" IN " + ConfigurationSettings.AppSettings["FormatFilePath"]

 + "Log"+oTable.Rows[j].ItemArray.GetValue(0).ToString()+"_Load.txt"

 + ConfigurationSettings.AppSettings["BCPErrorLoadSwithches"]+
@" ""\t"" "

 + objLibrary.Decrypt(objLibrary.Read("CONNECTION_BCP"))

//+ " -o" + strOutPutFileName + " -e " + strBCPErrorFileName + " -L " + dblRecordCount+1 +

// " -f" + Get_Create_Format_File(SQLCon,strLoaderName);

 + " -f" + strFormatFilename;

7. After loading all data files into the staging and exception management tables (All failed records), a
Normalizing process cleans up the staging tables using the exception management table. My
requirement is that any failed record must be taken out from all extracts before loading them into
production table. The reason is to ensure that no partial records are loaded. So another process reads
FailedRecords and then delete records from all staging tables containing these values. This is another
way for normalizing before uploading into production tables.

8. Finally, we read the static table and execute stored procedures to load data from staging table into
production table System.Threading used for multithreading. (Code available at
www.sqlservercentral.com)

Conclusions

My objective was to create an application that is very flexible, good performance and scalable. Although
the above design sounds complicated, it accomplished all required goals. Now the daily feeds process all
eighteen files at the same time and loads them into production tables very efficiently.

Overview of SSIS
By Amit Lohia

There are many articles on SSIS focusing on different aspects of SSIS. When I started learning SSIS I came across
many great articles and found a solution to almost all of the problems I faced. This article is nothing more than
compiling all the blog/help files and providing a comprehensive view of SSIS.

Let's start

SSIS is not an upgrade to DTS. It is a replacement for DTS. SSIS should not be considered just a part of SQL Server.
It is very powerful and should be treated with respect. SSIS Service is installed as a single service on the server
even if we have multiple instances of SQL Server. In other words it is a shared service across multiple instances.
We can manage the SSIS service via SQL Server Configuration Manager

The Best of SQLServerCentral – Vol. 5

 233

SQL Server Management Studio (SMS)

• Migrates DTS packages into SQL Server 2005
• Run/ Schedule Packages
• Assign Package Security
• View Packages

BIDS ("SQL Server Business Intelligence Development Studio") - This is nothing but Visual Studio. Imagine the
number of hours spent in a meeting in a conference room at Microsoft to come up with this name.

• Manage, Develop and Edit Package
• Deploy Package

SQL Server Configuration Manager

• To manage SSIS service

Accessing SSIS via SQL Server Management Studio (SSMS)

We can connect to SSIS Service for various reasons via SSMS. To connect to SSIS we have to mention the server
name without the instance of SQL Server. SSMS will connect to the default instance of SQL Server (if specified, else
it would error out).

 Now the question is how can we manage packages on different Instances? For that we need to change a
configuration file. By default, the file is located in the folder, Program Files\Microsoft SQL Server\90\DTS\Binn, and
the file name is MsDtsSrvr.ini.xml. The default configuration file contains the following settings:

• For Integration Services in SMS (Object Explorer) are the MSDB and File System folders.
• The packages in the file system that the SSIS Service manages are located in Program Files\Microsoft SQL

Server\90\DTS\Packages.

You can modify the configuration file to display additional folders in Object Explorer, or to specify a different folder or
additional folders in the file system to be managed by SSIS service. The example below shows how to configure the
MsDtsSrvr.ini.xml to use more than one MSDB database, which are stored in different database instances.

Here is configuration file after the changes.

<?xml version="1.0"encoding="utf-8"?>

The Best of SQLServerCentral – Vol. 5

 234

<DtsServiceConfiguration xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<StopExecutingPackagesOnShutdown>true</StopExecutingPackagesOnShutdown>

 <TopLevelFolders>

 <Folder xsi:type="SqlServerFolder">

 <Name>MSDB DEV01</Name>

 <Server Name>\<Instance Name 1></ServerName>

 </Folder>

 <Folder xsi:type="SqlServerFolder">

 <Name>MSDB DEV02</Name>

 <Server Name>\<Instance Name 2></ServerName>

 </Folder>

 <Folder xsi:type="FileSystemFolder">

 <Name>File System</Name>

 <StorePath>..\Packages</StorePath>

 </Folder>

 </TopLevelFolders>

</DtsServiceConfiguration>

Note: We have to restart the Integration Service after the changes are done to the file

You will now notice that we can see 2 different folders for MSDB

With this, we can manage multiple instances of SQL Server for SSIS. Check this link :
http://bloggingabout.net/blogs/mglaser/archive/2007/03/01/multiple-sql-server-integration-services-ssis-
database-instances-on-one-machine.aspx. This can also give us the advantage to manage the Packages
for different instance from a different location.

To access SSIS remotely we should have RPC port open (Port 135). Here are few links which can help in
case you are not able to connect remotely:
http://sqljunkies.com/WebLog/knight_reign/archive/2006/01/05/17769.aspx and
http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=62541

http://bloggingabout.net/blogs/mglaser/archive/2007/03/01/multiple-sql-server-integration-services-ssis-database-instances-on-one-machine.aspx
http://bloggingabout.net/blogs/mglaser/archive/2007/03/01/multiple-sql-server-integration-services-ssis-database-instances-on-one-machine.aspx
http://sqljunkies.com/WebLog/knight_reign/archive/2006/01/05/17769.aspx
http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=62541

The Best of SQLServerCentral – Vol. 5

 235

Executing the SSIS package from Command Prompt

The dtexec command prompt utility is used to configure and execute SQL Server 2005 Integration Services (SSIS)
packages. The dtexec utility provides access to all the package configuration and execution features, such as
connections, properties, variables, logging, and progress indicators. The dtexec utility lets you load packages from
three sources: a Microsoft SQL Server database, the SSIS service, and the file system.

The command of dtexec is very simple, just a matter of getting used to it. Most commonly used will be the
/set command which is used to assign values to the properties of the package / task or to assign values to
variables. Need more on dtexec utility? Try this link: http://msdn2.microsoft.com/en-us/library/ms162810.aspx

To get a better idea of the variables and properties and how to assign them from the command line we will go through
a small example. Let's add a new data source. Right Click Data Source -> New Data Source -> Complete the Wizard
(Use SQL server Authentication). Go to the properties window for the newly created data source

Note: To view properties window use "F4"

In the expression properties of the data source add ConnectionString as property and the following line in the
expression.

"Data Source=" + @[User::ServerName] + ";User ID=" + @[User::UserName]

+ ";Password=" + @[User::Password] + ";Initial Catalog=msdb;Provider=SQLOLEDB.1;"

You will notice we have 3 variables in the expression. We will add the above variable and then assign the values from
command line. To add variables open the variable window (2 ways to open variables window)

• SSIS -> Variables
• View -> Other Window -> Variables

Now in the variables window add the above variables, just keep the scope as default ("Package") and change the
data type to "String". Now we can change the value of the variable from the command prompt, which will change the
connectionstring of our data source.

Syntax for command line
dtexec /f "D:\PacakageName"

/set \Package.Variables[User::ServerName].Properties[Value];< ServerName>

/set \Package.Variables[User::UserName].Properties[Value];<UserName>

http://msdn2.microsoft.com/en-us/library/ms162810.aspx

The Best of SQLServerCentral – Vol. 5

 236

/set \Package.Variables[User::Password].Properties[Value];< Password>

Other method of changing the connectionstring without the variables or expression is to manipulate the property of
our data source directly. Here is the command line syntax:

dtexec /f " D:\PacakageName"

/set \Package.Connections[DataSourceName].Properties[ServerName];<ServerName>

/set \Package.Connections[DataSourceName].Properties[UserName];<UserName>

/set \Package.Connections[DataSourceName].Properties[Password];<Password>

Passing variable as a parameter in a stored procedure

Add a new SQL Server Task and go to the property window (F4 key).

Add the proc name in SQLStatement and add "?" for the parameter and then go to parameter Mapping (make sure
you have the connection set in the previous screen).

The Best of SQLServerCentral – Vol. 5

 237

Add a new parameter Mapping, change to the appropriate Data Type and the Parameter Name to 0 (this determine
the ordinal position). For more information on Parameter Mapping: http://msdn2.microsoft.com/en-
us/library/ms187685.aspx. The best way to find the property path of a property is to create an
XML configuration file.

Logging Package Information

SSIS comes with some predefined ways to log package information. We can log the information to the following 5
providers (excluding the log window)

• Text File
• SQL Server Profiler
• SQL Server (Table)
• Windows Event Log
• XML File.

Logging is disabled by default. We have to enable it at the package level. We can log the information at the package
level or at the task level.

To enable logging go to the property window of package and change the LoggingMode to enable. You can change
the loggingMode at the task level based on your requirement. Now to select the destination for logging information we
need to right click on the control flow (anywhere) and then click Logging, which will open the following window

http://msdn2.microsoft.com/en-us/library/ms187685.aspx
http://msdn2.microsoft.com/en-us/library/ms187685.aspx

The Best of SQLServerCentral – Vol. 5

 238

Choose the provider type and then Click Add. Complete the wizards for that provider and the logging will happen. If
you click on the details tab you will notice below we can select the events and the information which we need to
capture. We can save this configuration in XML by clicking the save or can apply the configuration based on
previously saved XML file by clicking Load.

One thing confusing, was the name of the table which logs the information? The name of the table is sysdtslog90 (it
will be created in the database which was specified in the connection string). If the table is already created it will
append the information.

Deploying the package

Once the package is ready for production we can deploy using the following steps. Go to the package Property
Projects -> Project Properties which will open the following window.

By default the CreateDeploymentUtility will be false, change it to True and hit ok. Now Build the Project Build -> Build
<Project Name>. Now go to the location where you have the package (not sure where it is?) Check the property
window of the package (press F4) and the location Path. Go to that folder from window explorer and you will see a

The Best of SQLServerCentral – Vol. 5

 239

folder as Bin and under that you will see the Deployment folder (this is the same path which you see in
DeploymentOutputPath in the above screen).

You will see a file name (your project name); file type will be Development Manifest. Double click on the file and it will
open the Deployment wizard. After the welcome screen, the next screen will give you 2 options, select the one were
you want to deploy and complete the wizard.

Running the package from a SQL Agent job

While adding a new step in the job now we have a new type as SSIS package

The Best of SQLServerCentral – Vol. 5

 240

Complete the above screen and we are set to go.

SSIS - Transfer SQL Server Objects Debugged
By Stephen Laplante

I have recently received SSIS training and have had the opportunity to write my first package. As a software
developer, I know how hard it is to write perfect code but I ran into some rather significant problems that I find hard to
believe an organization with the talent and resources of Microsoft could have missed. I am quite impressed with the
published capabilities of SSIS but after writing my first internally important package (which ultimately failed), I was
quite embarrassed.

I'm not the type to point a finger very quickly as I have made my fair share of mistakes in the past. In an effort to make
my experience beneficial to others, I thought I would put something together to document my experience, showing
how I went about identifying each problem and ultimately resolving them. I have also included two SSIS packages to
help others who are trying to create a package to perform a similar task. Let me begin by explaining the purpose of
my package and the general concept of how it works.

The package is responsible for copying Stored Procedures and User Functions from one Database to another. I saw
that Microsoft had provided a "Transfer SQL Server Objects" task which appeared it would be able to do what I
needed all by itself. After completing the package, my first test resulted with no errors, but also did not copy any
objects to the destination database either. So I reached into the developer's bag of tricks and pulled out the single
most valuable tool in the diagnostic arsenal, Google. After a half hour of reading articles, I found what I was looking
for; I needed to set the "CopySchema" property to True. Why Microsoft gives me a property that if not set causes the
task to do nothing is beyond me, but easy enough to fix.

The Best of SQLServerCentral – Vol. 5

 241

Package Control Flow Diagram

So I deleted all the Stored Procedures and User Functions from the destination database and ran the package again.
My second test also ended in failure giving me an error telling me that Procedure "xxx" already existed at the
destination database. With a quick look at the Task Editor, the "DropObjectsFirst" property jumped out at me and I
thought, OK, that error makes sense; you need to drop the procedures with the same name from the destination
database before you can copy them over from the source database. I figured if I set this property to True that would
resolve the problem. When I ran the package for a third time, I got an error telling me that Procedure "yyy" did NOT
exist at the destination database.

So I had discovered the first problem I was not sure how to resolve. It made sense to me to get an error when the
procedure already existed at the destination database and the 'DropObjectsFirst' property is set to 'False'. When you
set it to 'True', you would expect the behavior to be that any procedures being copied from the source database that
did not exist on the destination database should just be silently transferred. After all, the whole point of setting the
property to 'True' is to ensure that procedures don't exist at the destination database that are being transferred from
the source database. I would expect it would be common occurrences to have new procedures on the source
database you were trying to copy over to the destination database. You would think Microsoft would have thought of
such a simple test right?

I went back to Google to see if anyone else had seen this problem and what ideas were floating out there to work
around it. What I found was a suggestion to write a script task to handle dropping the procedures from the destination
database before running the Transfer SQL Server Objects task. I figured it wasn't that much work to write some code
to handle this so I rolled up my sleeves and got busy writing a Data Flow task to get a collection of procedures and
functions from each database and merge the collections through an inner join to derive a collection of objects
common to both databases. I passed this collection to a For Each Loop task and then inside the loop, used a script
task to create the Drop statement which was sent to an "Execute SQL" Task.

The Best of SQLServerCentral – Vol. 5

 242

Data Flow Task to Build Collection of Common Database Objects

Everything seemed to be working perfectly until I reached the "Transfer SQL Server Objects" task in the control flow.
This time I had successfully transferred 25 procedures and on the 26th procedure I got an error telling me the
procedure already existed at the destination database. I thought how can this be? I started with an empty destination
database; there were no procedures in the database to begin with so how can there be a duplicate procedure?

Well, after a couple of days of Googling, testing and debugging, I finally found the problem after running a trace on
the destination database. The trace file revealed that the Transfer SQL Server Objects task was attempting to create
2 procedures with the same name at the destination database. I thought how is this possible? You can't have 2
procedures with the same name on the same database instance. Right away I suspected I was not connecting to the
source database I thought I was. I verified all my server and database settings and was truly at a diagnostic dead
end.

For a sanity check, I exported all the stored procedures from the source database into a single file and using a text
search, I looked for the procedure name that was being created twice. The name was only found in the file once so
that ruled out the possibility of a procedure creating another from within itself with this procedure's name. So if there is
only one create statement for this procedure, then where is the second procedure coming from?

A little more digging in the trace file revealed the answer; the task was trying to create two versions of the same
procedure on the destination database. A careful examination of the text in each of the procedures (which was
fortunately available in the trace file) showed that one of these versions was in fact the previous version that had
originally been created on the source database but was later replaced by the second version of the procedure.

At first, I thought the underlying database was somehow keeping a version history of procedures that had been
copied and renamed so I made every attempt to locate both versions of the procedure in the source database by
looking at every view I could find relating to the stored procedure text. There was only the one, current version of the
procedure visible to me on the source database. So now I knew how it was happening but didn't really know 'what'
exactly was happening. My thought was that this couldn't be a SQL database bug since the views available to me
show only the correct version of the procedure. That suggested to me that however the Task was getting the
procedure list and associated text, must not be using the views I had available to me.

Assuming I was dealing with a bug internal to the Task, I thought I would just set the "MaximumErrorCount" property
to something ridiculous like 999999 and the task would just ignore cases where the procedure already existed and

The Best of SQLServerCentral – Vol. 5

 243

continue transferring the remaining procedures. Unfortunately, the "MaximumErrorCount" property had absolutely no
effect on the operation of the task. As soon as it got the first error, it threw an exception and aborted the transfer.

Just to be sure I didn't have something funky in my database, I tried this against another database and got some
surprising results, this time, I got 3 procedures transferred to the destination database that don't even exist on the
source database!!! To be sure I didn't make a mistake, I deleted all the procedures from my destination database, ran
the package (which would work fine with "this" database if I would delete all procedures first) and sure enough, there
were 3 procedures that did not exist on the source database.

Suspecting that however unlikely it could be that I had two bad databases, I decided to create two fresh test
databases and then using the script file I had created earlier, I loaded all the procedures from the first source
database I had been working with into my new test source database. I ran the package on the 2 new test databases
and it worked perfectly 10 out of 10 times! Then I decided to keep pointing at my test destination database, but
changed the source database to point to each of the other two source databases that had previously failed. This
resulted in the same failures from both of them as I had observed before.

I thought to myself, this task is fundamentally flawed and absolutely unusable. How could Microsoft miss such basic
and fundamental error checking? If I would have released a piece of software this flawed to my organization, I would
have been flogged and publicly humiliated. This is just plain shoddy work that should have never passed into the
release phase of development. With all the money Microsoft pulls in, I think it's high time they started testing their own
software instead of dumping it on the development community to do for them (*for free).

Now I set out to write my own task to handle the object transfer between databases. I didn't know it at the time, but
this would prove to be the silver bullet in identifying the real cause of the problem I was having and it wasn't a bug in
the Transfer SQL Server Objects task as I had originally suspected (although the task does have some of those as
well).

Once I completed coding my task and ran the package, I got the exact same results as the Microsoft task did. I was
quite surprised by this but this time, I could get under the hood of the task with debugging tools and see what was
really going on. I discovered it wasn't that an older version of the procedure was somehow being stored in the
underlying database; it was that the name of the procedure and the name referenced in the procedure text did not
match. The name of the procedure in the definition text, which is used to create the procedure, was in fact the same
as another procedure so it was in fact a duplicate procedure.

Now I could see 'what' was happening but 'why' was still a bit of a mystery. In the case I was investigating, it just so
happened that the older version of the procedure I had seen in the trace file was in fact an older version of the
procedure that had been renamed from 'xxx' to 'xxx_old". This is what sent me down the wrong path, just some dumb
coincidence. When I looked in the sys.objects view from the database system views, I found the procedure named
'xxx_old' as expected but after adding the join with the sys.sql_modules view to get at the procedure definition text, I
saw the name in the "Create Procedure" line was 'xxx'. That was the problem! The procedure 'Name' and procedure
name referenced in the definition text did not match.

Since I had a procedure named 'xxx' and a procedure named 'xxx_old' being transferred from the source database,
when the 'xxx_old' procedure script was executed, it was actually creating a procedure named 'xxx'. This is what
threw me off when I was debugging the Microsoft task; they used the name of the procedure being created (from the
definition text) rather than the visible name of the procedure being transferred in the error message. The error
message made it appear that a duplicate procedure was being copied from the source database. I don't fault
Microsoft for writing the error message the way they did, I agree with their reasoning, it was just an unfortunate
scenario that prevented me from being able to correctly identify the problem.

So now that I knew what the problem was and why it was happening, I set out to duplicate the problem myself. So I
went back to my test databases that worked just fine and made a copy of one of the procedures and renamed it in the
Object window using the right mouse rename menu item. As expected, the name was changed in the sys.objects
view 'name' column but in the sys.sql_modules view 'definition' column, the old procedure name was still in the create
statement.

The Best of SQLServerCentral – Vol. 5

 244

Now that I had identified the problem and was able to successfully duplicate the problem, it was now time to figure out
a way to solve the problem so I could make this package work. The solution that came to mind was to add code to the
script task that was creating the drop statement to search the definition text for the 'Create Procedure' line and parse
out the procedure name. Then I compared the name from the definition text to the name stored in the sys.objects
table and if there was a mismatch, the definition text procedure name was changed to match the name from the
sys.objects view.

This time when I ran the package, I was able to successfully transfer all the stored procedures and user functions
from both of the databases I was not able to get to work using the Microsoft Transfer SQL Server Objects task. I was
also able to confirm that this time, the procedure name and the name referenced in the definition were identical.

You can download some packages and code here.

For Microsoft to allow you to rename a stored procedure in the object window of the SQL Server Management Studio
and not make the necessary changes to all tables in the underlying database is a major oversight and should be
corrected immediately. One of the potential problems that could occur as a result of this bug would be that if you
simply renamed an older version of a procedure in the Object window of SQL Server Management Studio, the old
version could potentially overwrite the current version because the internal names matched. Now you have the old
version of a procedure masquerading as the new version.

I hope you found this article helpful and hope the packages will help you work around the current limitations of this
particular task as well as provide a base package you can modify and tweak to meet your own needs. If nothing else,
the bugs have been exposed and the work around has been made public. Now we can continue to push the limits of
the SSIS technology to meet the ever increasing demands of our profession.

SSIS Is Not Just for SQL Server
By Tim Mitchell

It's been said that when all you have is a hammer, everything looks like a nail. SQL Server Integration Services is just
such a tool, and can turn lots of difficult or troublesome tasks - some of which are unrelated to SQL Server data
storage and retrieval - into nothing more than simple 16 penny nails. Since I got started with SQL Server Integration
Services (SSIS) over a year ago, I've found a number of uses for this product that would have required hours of
coding or batch scripting. This article will share a simple use of SSIS for data flow that does not even involve SQL
Server proper.

A little background here... I ran into a task that required me to download web log files from a remote web server each
day, run an executable to process each file, then archive the log file locally. This was being done manually before the
SSIS hammer got involved. Even though this information is external to SQL Server, the nature of the task seemed to
be a perfect fit for SSIS. Automating this process was a quick and easy task with Integration Services.

I start off by creating a simple script task whose purpose is to set a couple of package variables. The file name we
are to download is for the previous day and is named according to the date. The following snippet shows the logic to
set those variables:

http://www.sqlservercentral.com/columnists/sLaPlante/SSISPackage.zip

The Best of SQLServerCentral – Vol. 5

 245

Next, I'll use another simple task, the FTP Task, to download the source file from the FTP server. The RemoteFile
name set in the script task above is used to download yesterday's file. You can see that I am using the variables
referenced in the above script task to dynamically set the file names in the FTP Task:

The next step is to create an instance of the very useful Execute Process task. This element allows you to call an
external exectuable from within SSIS, and also allows you to specify arguments for those calls. In this case, I need to
call the perl.exe executable and pass the name of the Perl script to run along with some other values (including the
local file name set earlier). The settings here are relatively straightforward; the only thing that requires a little
tweaking is to set the argument properly, since this will need to be dynamic. See below where I use an expression to
set the name of the Argument to the local file I need to process:

The Best of SQLServerCentral – Vol. 5

 246

You can also see that I am capturing the output of the call to perl.exe below, to allow me to review the statistics
generated by the script. As shown below, the StandardOutputVariable can be used to capture the command line
output and send it to another package variable:

Lastly, I use a Send Mail task to e-mail the output message in the PerlOutput variable to the operator to verify record
counts.

Conclusions

SQL Server Integration Services is a very powerful data processing tool, and its uses with SQL Server are almost
limitless. Even more, this article has shown that SSIS can be used apart from SQL Server to simplify data processing
in heterogeneous environments.

The Best of SQLServerCentral – Vol. 5

 247

SSIS Programming
By U.K Padmaja

Overview

Most of us have been using Data Transformation Services (DTS) in the previous versions of SQL Server in order to
manipulate or move data. With the introduction of SQL Server 2005, Microsoft has introduced a completely re-written
version of DTS with a lot more new features which is now known as Integration Services. This new ETL platform is
nothing but a set of utilities, applications, designers, components, and services all wrapped up into one powerful
software application suite.

The most attracting feature of SSIS is that the data movement and transformation is separate from the package
control flow and management. There are two different engines that handle these tasks. Integration Services Data
Flow engine takes care of the data movement and transformation whereas the Integration Services Run-time engine
manages the package control flow.

The motivation behind this article is that the SSIS API is not well documented in MSDN though you get an overall idea
of what is going on. This article assumes that the reader is aware of the fundamental components of an SSIS
Package. To know more about what SSIS is all about, check the MSDN Books Online
http://msdn2.microsoft.com/en-us/library/ms141026.aspx

DTS vs. SSIS Programming

There are two fundamental approaches one can have for SSIS programming. One is to use the SSIS Designer to
create and run packages. The other approach is to use the API to create, configure and run packages from own
applications.

Those who are familiar with the DTS programming can see that there is very little code from DTS remaining in
Integration Services. Some of the similarities are listed here.

DTS SSIS

Control flow and Data flow on the same
design surface

Control flow and Data flow have been separated

Datapump (supported only one source,
transform, and destination)

Data Flow Task or Pipeline (can perform extremely complex and
advanced data processing within one pipeline)

Step Taskhost (An expanded version of Step) which schedules the task
execution

Precedence Constraints Still remains with added features

Connections Connection Managers

Getting Started

Let us get started with some actual coding in VB.NET, my favorite!

The following table lists the assemblies that are frequently used when programming Integration Services using the
.NET Framework (http://msdn2.microsoft.com/en-us/library/ms403344.aspx).

http://msdn2.microsoft.com/en-us/library/ms141026.aspx
http://msdn2.microsoft.com/en-us/library/ms403344.aspx

The Best of SQLServerCentral – Vol. 5

 248

Assembly Description

Microsoft.SqlServer.ManagedDTS.dll Contains the managed run-time engine.

Microsoft.SqlServer.RuntimeWrapper.dll Contains the primary interop assembly (PIA), or wrapper, for the
native run-time engine.

Microsoft.SqlServer.PipelineHost.dll Contains the managed data flow engine.

Microsoft.SqlServer.PipelineWrapper.dll Contains the primary interop assembly (PIA), or wrapper, for the
native data flow engine.

Consider the example of transferring data from a flat file to a database table in SQL Server 2005. Create the
destination table in SQL Server prior to running the package. This can be done using a simple T-SQL statement.

The programmatic approach would include the following steps:

1. Create an SSIS Package - http://msdn2.microsoft.com/en-us/library/ms135946.aspx

b. Create Control flow, which would be as simple as adding a new Data Flow task in our case. -
http://msdn2.microsoft.com/en-us/library/ms135997.aspx

c. Add two connection managers. We need a Flat file connection manager for the source and an OleDb or SQL
Server connection manager for the destination.

Creating OleDb connection manager is not hard.

Dim oleDbConn As ConnectionManager = myPackage.Connections.Add("OLEDB")

oleDbConn.Name = "MyOLEDBConnection"

oleDbConn.ConnectionString = "Provider=SQLOLEDB.1; Integrated Security=SSPI;"

& "Initial Catalog=<db>; Data Source=" & SS_INSTANCE & ";"

The following code shows creating a flat file connection manager and setting up the formatting information for the
same. (code available at www.sqlservercentral.com)

d. Create Data flow which does the actual job of copying the data from flat file to table. This would involve
creating a Flat file source and an OleDb destination. This is fairly standard. We give it for the sake of
completeness. (code at www.sqlservercentral.com)

e. Connect Data flow components - http://msdn2.microsoft.com/en-us/library/ms136086.aspx

f. Map source and destination columns

 Dim input As IDTSInput90 = DFDestination.InputCollection(0)

 Dim destinationInputID As Integer = CInt(input.ID)

 Dim vInput As IDTSVirtualInput90 = input.GetVirtualInput()

 For Each vColumn As IDTSVirtualInputColumn90 In vInput.VirtualInputColumnCollection

http://msdn2.microsoft.com/en-us/library/ms135946.aspx
http://msdn2.microsoft.com/en-us/library/ms135997.aspx
http://msdn2.microsoft.com/en-us/library/ms136086.aspx

The Best of SQLServerCentral – Vol. 5

 249

 ' This will create an input column on the component.

 DestInst.SetUsageType(destinationInputID, vInput, vColumn.LineageID, DTSUsageType.UT_READONLY)

 ' Get input column.

 Dim inputColumn As IDTSInputColumn90 =
input.InputColumnCollection.GetInputColumnByLineageID(vColumn.LineageID)

 ' Getting the corresponding external column.

 ' Ex : We will use the column name as the basis for matching data flow columns to external
columns.

 Dim externalColumn As IDTSExternalMetadataColumn90 =
input.ExternalMetadataColumnCollection(vColumn.Name)

 ' Tell the component how to map.

 DestInst.MapInputColumn(destinationInputID, inputColumn.ID, externalColumn.ID)

Next

g. Validate and execute the package

 Dim pkgStatus As DTSExecResult = myPackage.Validate(Nothing, Nothing, Nothing, Nothing)

 If pkgStatus = DTSExecResult.Success Then

 Dim pkgResult As DTSExecResult = myPackage.Execute()

 End If

Notes

1: For debugging purposes it is a good idea to save the SSIS package created programmatically which can then be
exported to the Designer. This would allow us to check whether the properties of the connection managers etc are set
properly. See the link for different options - http://msdn2.microsoft.com/en-us/library/ms403347.aspx

2: To get a list of data types that SSIS uses, check http://msdn2.microsoft.com/en-us/library/ms141036.aspx

3: In case a subset of columns from the flat file needs to be transferred to the destination table, then one can identify
such columns in Step c, and then delete them from Output Collection of the source in Step d before creating the
external columns

Download the code

Conclusion

SQL Server Integration Services, the new ETL platform in SQL Server 2005, is the successor to DTS, which was
there in previous versions of SQL Server. SSIS with all its new features is a huge topic in itself and we tried to look at
some of the programming aspects of it. We have looked at how we can programmatically create a package to transfer
data from a Flat file source to a database table. Interested readers can look at the MSDN for more information on
SSIS. A couple of books that I have come across are also worth reading

http://msdn2.microsoft.com/en-us/library/ms403347.aspx
http://msdn2.microsoft.com/en-us/library/ms141036.aspx
http://www.sqlservercentral.com/columnists/Upadmaja/SSIS_Code.zip

The Best of SQLServerCentral – Vol. 5

 250

1. Microsoft SQL Server 2005 Integration Services by Kirk Haselden
2. Professional SQL Server 2005 Integration Services by Brian Knight et al
3. Microsoft SQL Server 2005: A Developers Guide by Michael Otey et al.

Loading a 24x7 Data Warehouse
By Leo Peysakhovich

Extract-Transform-Load (ETL) is a process that is used to take information from one or more sources, normalize it in
some way to some convenient schema, and then insert it into some other repository.

A common use is for data warehousing, where regular updates from one or more systems are merged
and refined so that analysis can be done using more specialized tools. Typically, the same process is run
over and over as new data appears in the source application(s). Many data warehouses also incorporate
data from non-OLTP systems, such as text files, legacy systems, and spreadsheets; such data also
requires extraction, transformation, and loading. In its simplest form, ETL is the process of copying data
from one database to another. This simplicity is rarely found in data warehouse implementations. ETL is
often a complex combination of process and technology that consumes a significant portion of the data
warehouse development efforts and requires the skills of business analysts, database designers, and
application developers.

ETL process is not a one-time event; new data is added to a data warehouse periodically. Many
companies have data warehouses that are loaded nightly and used as READ ONLY databases for the
applications during regular business hours. ETL processes must be automated and documented. The
data warehouse is often taken offline during update operations. But what if data warehouse database used
24*7 even traffic at a load time is very low? It means that the database can't be taken offline during the load! This is
the reality of my company and this presents some challenges for the DBA group to setup processes with following
criteria:

• database must be online 24*7
• data (tables) can't be locked
• data must be consistent at any time. E.g. it can't be time when data is loaded partially
• If load is failed then the previous day data must be returned

Also, there are some other restrictions that require special architecture for the nightly ETL process.

Let's start with the fact that the ETL job itself is very complicated and consists of 60+ individual steps. If at least one
step fails the whole job should fail and database should keep the previous day's data. The challenge to control data
includes the fact that the load process can't be transactional because the data warehouse database used 24*7 even
traffic at night time is very low. This means that the database can't be locked or placed offline. At the same time, load
can't leave partially loaded data in case of error and/or partially loaded data for users while load is running. It requires
mentioning that the ETL process usually runs for 30-60 minutes based on the number of daily made changes.

After many hours of thinking I came up with this idea for the load based on the fact that this is the data warehouse
and data changes ONLY with ETL process once a day. I decided keeping 2 the same databases on the server. Let's
call them LOAD and PROD databases.

The Best of SQLServerCentral – Vol. 5

 251

LOAD and PROD databases are the same at the time ETL process is started. ETL starts loading data to the LOAD
database. If load is successful then LOAD database keeps the new data and PROD keeps the previous day's
data.The next two steps will be done consecutively with no delay time in between.

Step 1 and 2 rename production database to the OLD database and rename LOAD database to PROD database.
The rename process takes less than a second. Step 3 backup production database and restore LOAD database from
PROD backup to prepare for the next day's load. At the end we have the previous day's data in OLD database,
current day's data in PROD database, and current day's data ready for the next day's load.

If you can't afford to keep 3 databases because of drive space restrictions or some other factors, then OLD database
can be dropped. You don't need to restore LOAD database until the next load is started and it can be the first step for
the ETL process. The picture below shows the whole process logic.

The Best of SQLServerCentral – Vol. 5

 252

Let's see the code for the parts of the process.

Step - Kill database connections. (Code at www.sqlservercentral.com)

Step Set database to Single User Mode

SINGLE_USER | RESTRICTED_USER | MULTI_USER controls which users may access the database. When
SINGLE_USER is specified, only one user at a time can access the database. MULTI_USER returns the database to
its normal operating state

ALTER DATABASE PROD SET SINGLE_USER with rollback immediate

You need to remember that ALTER DATABASE permissions default to members of the sysadmin and dbcreator
fixed server roles, and to members of the db_owner fixed database roles. These permissions are not transferable.

ROLLBACK IMMEDIATE specifies whether to roll back after the specified number of seconds or
immediately. If the termination clause is omitted, transactions are allowed to commit or roll back on their
own. Remember that this database is a data warehouse and used as READ ONLY source.

Step Modify database name

Alter database PROD modify name = OLD

Step Set database to Multiuser mode

ALTER DATABASE PROD set MULTI_USER

The Best of SQLServerCentral – Vol. 5

 253

Step backup database to the database device

Backup database PROD to PROD_BAK with INIT

The step to restore LOAD database from backup file presents some challenge because each time databases are
renamed or restored the physical file names should have unique name's.. The code below illustrate the example of
the step restore from device LOAD_BAK and files named based on the database name LOAD, OLD, and PROD
(code at www.sqlservercentral.com)

This is the logic if load is successful. If ETL process fails then PROD database must be backed up and the LOAD
database must be restored from PROD backup (see picture above). You may notice from the process that the user's
requests will be cut from the database during renaming process. This is true, but remember, it takes less than a
second to switch the database's names and the user has to have active request during this time. Most of our requests
are very short ,2-3 seconds, and traffic is very low at night time. During our tests we prove that the worst case
scenario for the user will be an application message stated that user has to hit "Refresh" button to get the result.

Conclusion

The process may have some additional logic. For example, if you would like to keep the LOAD database when load
fails, then the steps to rename LOAD to ERR database can be added to the process. It will allow you to make the load
analysis and to find an answer for the question "why the load failed" easier. In our case, we added some additional
data verification and analysis steps to the process after the ETL is completed to verify the data integrity and business
rules. If the fatal data rules violation is found then ERROR part of the process is started and loaded database
renamed to ERR. LOAD database is restored from the PROD database. Next day DBA is analyzing the data issues
from ERR database. But the process of data verification and analysis is the topic for my next article.

We using this architecture for 6 months and there are no issues or user's complains.

More Problems with Data Warehousing
By Richard Gardner

I was interested in the sheer number of people who had read Janet Wong's recent article, Problems In Building a
Data Warehouse. Reading into a couple of the replies, it seems that one thing which people were interested in
were the "gotchas" from implementing a data warehousing system, and having the most technophobic user base in
the universe I thought I could highlight a few.

The most important thing to bear in mind is clean data. You have to remember that Data Warehousing is like a
pyramid, your base data makes up the base of the pyramid, and you need to fine hone this to get to the point. In
getting to the point I found a few problems.

Make Sure You Have a Universal Primary Key Across All Data Sources

Obvious isn't it? But in my case I was a couple of weeks in before I realized one of the systems I was integrating
didn't have one (it looked like it did, but actually there were subtle differences). Luckily there was a text field that I
could use with the SSIS fuzzy logic task to match for my pilot proof. In the end it took 2 months for the users to go
back and change their systems to fix this for good.

Make Sure You Know How Reliable your Base Information is

This can't be stressed enough. No system is 100% accurate, and bear in mind that a 97% accurate report combined
with a 97% accurate report will probably not make a 97% accurate report; most likely it will be 94% accurate.

http://www.sqlservercentral.com/columnists/jchan/2832.asp
http://www.sqlservercentral.com/columnists/jchan/2832.asp
http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=309&messageid=340323

The Best of SQLServerCentral – Vol. 5

 254

If you find information in two places, work out which is the most reliable and try to get rid of the other one. It's kind of
like having two cigarette lighters, front door keys or pairs of glasses. Because you have a spare you don't expend as
much energy keeping track of either of them as you do when you only have one; it's just human nature. Also, try and
work out if one of the systems has checks and balances which help to keep things up to date.

As an example we have an ink system which records the cost of the ink we buy. We also have a finance system
where we raise purchase orders to buy ink. It makes far more sense to get the ink cost from the finance system
because if we get the price wrong in the finance system the invoices from the suppliers don't match the purchase
order and it soon gets sorted out. If the price is wrong in the ink system nothing bad happens and nobody cares.

Until your data warehousing project fails. Then it's your fault.

Some systems are just not right; the data is bad and they are poorly looked after. Of course, a re-implementation
project can help to get these straightened out, but you are likely to be quite a way into your warehousing project
before you realise just how not right they are. Also, re-implementation helps going forward, but what about the
historical data? Do you just throw it away?

The key here is to look for the person with the spreadsheets who is responsible for getting meaningful data about the
part of the business this system controls. Chances are he drags a report from the system into Excel then uses a
combination of algorithms to come up with his figures. For example if this value is 0 this record is clearly rubbish; if
this is greater than 10 then this is clearly rubbish. If you're a glorified hacker like me you can use a series of very
basic statistical techniques and where clauses to match this guys logic and get to a pretty good average. If you're a
stats genius then you'll probably do a much better job.

Compare Like For Like

Even in something as simple as a CRM system the report "Show me all customers that bought X in the last 3 months"
can be inaccurate when combined with other data are you talking about the invoice date, invoice payment date,
delivery date or order date?

Picking one out of thin air is not the way forward. This is a difficult topic and one you have to work out for yourself.
Suffice it to say that your sales team will usually want you to go with purchase order date, but your finance team will
probably only be interested in invoices raised or even paid invoices.

If you start reconciling a sales report with a finance report you'll see anomalies in the data, sales will consider a
product as being sold in January whilst finance will consider it as sold in February.

Errors are Obvious

In my opinion this is the single most frustrating thing you can experience as an IT professional. You are rolling out
information that has never been rolled out before, people are going to look at it. There will be errors.

You need to know how many. A guy far more experienced than me always told me you should never sell a data
warehouse on 100% accuracy, because you will never get there. The problem you have is that even if management
have had this information in the past through manual reporting, they have probably never had this level of visibility,
and they will almost certainly never have been able to cross check it.

The nature of computerised reports is such that generally the details are 100% accurate, but there may be some data
which falls outside your logic, even when your logic is perfect you'll usually lose something because of system or
entry errors, and therefore there will be whole rows of data missing. The nature of manual reports is that generally all
the rows are there, but the details in the rows are incorrect (typing errors rather than omissions).

As a rule nobody checks manual systems. Apart from me. I've spent weeks doing it, and I can tell you that cumulative
errors from complex manual systems seem to manage a maximum of 90% accuracy. Omission errors from
computerised reports seem to average about 95% accuracy (once you've ironed out the basic problems).

The Best of SQLServerCentral – Vol. 5

 255

The problem being that omission errors are easy to spot, and they can see your report is "only" 95% accurate. This is
a tricky one, and of course there will be a combination of bad data and compromises you have made to get your data
onto a level playing field, which may affect accuracy. But 95% ain't bad (excepting for simple CRM type apps where
you can probably do better)

I've found almost without exception that the department who produce these manual systems are inordinately proud of
it and boast of their 100% ISO compliance and traceability blah blah blah, they usually have a pretty well established
marketing machine and everyone parrots this as gospel.

So you need to check their manual systems yourself, they're not going to do it, and prove your 95% is better than their
90%. Then you have to convince everyone else that you've checked it, 'cos they ain't going to check your checks.

This is a hard sell.

Don't be Nasty About Spreadsheets

At least try. I know it's hard sometimes, but when your DW will be replacing the pinnacle of somebody's technical
achievement they can get pretty emotional about it. Try and engage the user, tell them they've got a lot of very useful
information in their spreadsheet and ask them to explain what they're doing. This will tell you a lot about what you're
trying to achieve (remember they may have algorithms which weed out bad data which you can use, but they almost
certainly won't know that they are algorithms).

Remember everyone knows something you don't. Their spreadsheet may well be a complete waste of time, energy
and duplicated effort, but don't be negative about it; just deliver a proven (ultra-efficient) replacement for it.

Manage your Stored Procedures

You'll find that some data cannot be compared directly straight away, two bits of data will need to be manipulated to
get it compared on a like for like basis. This means you will end up with a lot of stored procedures that transform your
data so it is on a level playing field with all your other data. If your warehouse is anything like mine you'll end up taking
data from various places and performing several transforms on it to get it into your warehouse.

It is absolutely imperative that you name your stored procedures properly. Use numbers to denote sequence. What
you will find is that you have made some mistakes in your transforms along the way, and you have to keep going
back over the transforms to get it just right.

Try and name the transform path sensibly, and I would suggest numbering it. For example, I have several data paths
for the data in our printing firm, I have an ink recipe which I need to combine with our paper usage, here are my
transforms :

Ink Recipe

1. DW_Sp_IR_Get Ink Recipe by Job 1
2. DW_Sp_IR_Get Ink Cost From Finance per Gramme 2
3. DW_Sp_PJ_Calculate Job Size 3
4. DW_Sp_IR_Calculate total Ink Cost for job 4

Printing Job

1. DW_Sp_PJ_Get Paper use per ink job 1
2. DW_Sp_PJ_Get Paper cost from Finance 2
3. DW_Sp_PJ_Calculate Job Size 3
4. DW_Sp_PJ_Calculate total paper cost for job 4

The Best of SQLServerCentral – Vol. 5

 256

Combine

1. DW_Sp_Nexus1_Combine Printing Job with Recipe

You might be able to see from the above that there is more than one relationship between those two sequences.
Draw a flow diagram and work out which procedures you run where. If you go at it from a trial and error point of view
you're going to get stuck when something isn't quite right, you'll go back and change it. There is no real mechanism in
SQL Server to document the interdependency of these transforms (Unless you're using SSIS in SQL 2005, which is
pretty good for this sort of thing, incidentally).

Don't try and document it straight away in any detail, you won't know half of what you need to do, try and do it when
you understand each particular "Module" of your project.

Conclusion

OK, so there are a lot of barriers to the completion of a Data warehousing project, most of them are not technical. I
think the most important thing is educating the business (and yourself) about the accuracy of their current figures, as
the quickest way to derail a data warehousing project is to set the business expectations too high.

Remember the point of a DW project is to get the best information you can to the top level as quickly and painlessly
as possible. You are probably fighting against a series of manual reports which have been produced possibly for
many years, probably with completely spurious but completely accepted statements of accuracy. The people who
provide this information may well see you as a threat to their job and try and derail you themselves unless you can
engage them in the process, never forget they know stuff you don't and they might be quite proud of their nonsense
reports, or they might not care, or they might know or suspect they're nonsense and worry that you'll prove it.

Even if your Warehouse is attempting to deliver completely new information it is still going to be based on a backbone
of accepted business reporting, so there should be some way to reconcile your information against something you
know to be true (but remember that "know" is sometimes subjective, so try not to take anyone's word for it)

Bear in mind that the accuracy of data is related to the number of checks made against it, for example a Sales Order
system is pretty accurate, because a customer will almost always question an incorrect invoice and a salesman will
usually take care with an order, whereas a production reporting system may reconcile material flow against material
purchased, but there will be an acceptable variance for error.

You are going to have to go back and do it again, you'll get some stuff wrong on the first attempt. You may have to go
right back to your initial query and change the whole flow from beginning to end. Make sure you document the data
flow and name your procedures sensibly or you'll get lost.

Storage Modes in SSAS 2005
By Yaniv Mor

Overview

In SSAS 2005, a cube, a partition within a cube or a dimension can store data and aggregations in numerous ways,
each with its own pros and cons. While Microsoft has retained the storage modes available in AS 2000 (MOLAP,
HOLAP and ROLAP), it has added several new storage modes, which make an SSAS implementation a more robust
and flexible solution in a production environment. A new concept: proactive caching has been introduced, and as the
name implies, using this new feature enables the administrator to better control the frequency and the way cube
updates are being performed.

The Best of SQLServerCentral – Vol. 5

 257

What exactly do we store?

SSAS 2005, being an OLAP engine, stores cumulative data of the measures defined in the cube. For example, if we
have a cube with a customer dimension and a time dimension, we might have a measure like: sales amount which
will indicate the dollar figure of the sales per customer in a certain date and time. This data is stored as part of the
cube. On top of the measures data, each cube can have its own aggregations. Aggregations are pre-calculated
summaries of data for various combinations of dimension slicing. SSAS 2005 needs to store both the measures data
and the aggregation data on disk. This enables the OLAP engine to retrieve answers to users queries faster. In the
remainder of this article, Ill try to explain what types of storage modes SSAS 2005 offers to store this data.

1. MOLAP (Multi dimensional OLAP)

This is the most common storage mode. It implies that the cubes data and aggregations will be stored in a
multidimensional format. This is the most efficient way to store data and will provide the user with optimal query
performance. The downside with using this storage mode is that it creates a completely offline data set. Once the
cube retrieved the data from the underlying relational database and processed it, there is no further connection to the
relational database. Any subsequent updates in the database will not be reflected in the cube, unless it is re-
processed. Now, for most data warehouse solutions, a daily or even a weekly re-process of the cubes is more then
enough. For environments like these, it is highly recommended to use the MOLAP storage mode.

2. Scheduled MOLAP

This is somewhat similar to the MOLAP storage mode, in that it stores its data in a multidimensional format. However,
the content of the cube/partition cache will be automatically updated every 24 hours. In a way, using this storage
mode already utilize the proactive caching feature. It is important to note that theres no need to create a SQL Agent
job or an IS package to process the cube. The cubes cache will be refreshed automatically every 24 hours.

3. Automatic MOLAP

Again, data is stored in a multidimensional format. There is a basic change, though, when compared with the previous
2 storage modes. Using an automatic MOLAP storage mode means that Analysis Services needs to listen to
notifications from the underlying relational database. Once an update has occurred in the database, an event is raised
and sent to Analysis services. This type of messaging system can be achieved by using Notification Services, for
example. When the Analysis Services Server has received the notification, it will automatically refresh the cubes
cache, to reflect the new changes in the database. Users will still be able to access the cube while the cache is being
refreshed, but they will be using the old cache. Once the cache is refreshed, users will be redirected to the new data.
This type of storage provides the users with an almost up-to-date cube (the target latency is 2 hours from update to
process). This obviously depends on the cube size and the magnitude of changes in the underlying database.

4. Medium Latency MOLAP

Things are starting to get interesting as we approach the latency variance (which we touched briefly in the previous
section). Initially data is stored in a multidimensional format. The Analysis Services server is listening to notifications
from the underlying relational database. When an update is performed in the database, the cube switches to a Real
Time ROLAP storage mode. We will touch on this storage mode shortly, but I will briefly note that this storage mode
means: no multidimensional storage at all and the cubes data is being retrieved directly from the underlying relational
database. The timing of the switch to ROLAP is determined by the latency variable. By default, cache will be updated
after 4 hours from the time the relational database was updated. This switch should not last for long though, as in
parallel, the cubes MOLAP cache gets processed to reflect the latest changes. Once the cache is processed, the
cube switches back to the MOLAP storage mode. You would want to use this type of storage when you realize that
the underlying database goes through updates occasionally, and users do want to have an up-to-date cube. However,
they still require performance to be reasonable. Having the cube reflecting data which is accurate up to the last 4
hours is reasonable for the users and provides the correct trade-off between performance and real-time data. If the
users agree to these terms, then this is the preferred storage mode to use.

5. Low Latency MOLAP

The Best of SQLServerCentral – Vol. 5

 258

This mode is similar in its behavior to the Medium Latency MOLAP mode, the only change is (yes, you may have
guessed it by now) the latency. Instead of allowing a latency of 4 hours, this mode will allow only up to 30 minutes of
latency. This implies a more frequent switch to the ROLAP mode and even poorer query performance, as the cube is
being processed more often. The users do get to see a more updated version of the data though.

6. Real Time HOLAP

HOLAP stands for hybrid OLAP. So far we have discussed having the data and aggregations stored in a
multidimensional format. In the hybrid storage mode, data is maintained in its relational format (i.e. data resides in the
relational database), while aggregations are stored in a multidimensional format. What this means is that the data is
always real-time data. The Analysis Services server still listens to notifications, and when changes in the relational
database occur, the aggregations (which are still stored in a multidimensional format) are refreshed. During this
process, the cube is switched to the infamous ROLAP mode, until aggregation processing is complete. It is easy to
see that users are enjoying real-time data with the added benefit of MOLAP aggregations to improve query
performance. Still, performance is not as good as it used to be when compared to data stored in a multidimensional
format, as well as the aggregations.

7. Real Time ROLAP

This is the last storage mode available and we are actually quite familiar with it already. Data and aggregations are
stored in a relational format. This means zero latency for users, who will always be able to access the cube and
retrieve real-time data. Query performance is the poorest here though as no MOLAP objects are available at all.

Just a bit more before finishing

You can apply the various storage modes on cubes, partitions and dimensions. Some of the features will not be
available on some of the objects. When using proactive caching, there are several settings which you can manually
tune, like the latency, the listening intervals and the notification types. You can also fine-tune the processing options
and instruct the SSAS engine whether to fully process a partition or to incrementally process it.

Conclusion

The MOLAP, HOLAP and ROLAP storage modes were available in the Analysis Services 2000 version. The
important addition to the 2005 version is the proactive caching feature, which enables the user to have a real-time
version of the data while still enjoying the query performance benefits of the MOLAP storage mode.

Dynamic Connection Strings in Reporting Services 2005
By Bilal Khawaja

Wouldn't it be nice to have one report and can display data from different databases residing on different servers?
Instead of creating a same report multiple times to be deployed on different servers, we can have one report and it
can generate data from any database on any server.(if you are using stored procedures, make sure the same stored
procedure exists in every database you are running the report against). So in the URL we can pass in the database
name and server name for different clients for their specific data.

Example

If your connection string looks like this:

 Data Source=XYZ333;Initial Catalog=ABC01

The Best of SQLServerCentral – Vol. 5

 259

Add two parameters in the Report. Click on the Report -> Report Parameters.

Since the prefix for DataSource is XYZ and Prefix for Database is ABC, you can hard code the "XYZ" and "ABC" in
your connection string and just pass in "333" for Server and "01" for Database and have your connection string like
this:

 ="data source=XYZ" & Parameters!Server.Value & ";initial catalog=ABC" &
Parameters!Database.Value

If you want to pass in the full ServerName and full Database Name do the following:

 ="data source=" & Parameters!Server.Value & ";initial catalog=" & Parameters!Database.Value

Steps

1. First build your Report by hard coding a connection string
2. Data Source=XYZ333;Initial Catalog=ABC01;uid=sa;pwd=dynamic

3. Test and Preview the report to make sure you see the results you want.
4. Add the two parameters to the Report as i mentioned above with the screen shots.
5. If everything looks good, go back to your Data Tab and select your DataSet and choose edit.
6. Replace your existing connection string with this dynamic expression based connection string.

The Best of SQLServerCentral – Vol. 5

 260

Choose either the Windows Authentication or you can supply user name and password in the Credentials Tabs:

7. Once you did this, do not preview the report since, it will not work and give you an error.
8. Right click on the report and select deploy to the ReportServer. You can right click on the project and go to

properties and TargetServerURL: Make sure the the path of the server is correct. For example it should be:
http://localhost/ReportServer or the server name you are deploying it to.

9. Once it is deployed, run the report and it will ask you to enter the server name and database name to run the
report against.

10. Enter that and it will generate the report.

Hope you liked the Article :)

Populating Fact Tables
By Vincent Rainardi

Fact tables are normally loaded from transaction tables, such as order tables or from transactional files, such as web
logs. Hence the number of rows to update in a load is much larger than in dimensions. The core of loading fact tables

The Best of SQLServerCentral – Vol. 5

 261

is to change the natural keys into surrogate keys. Let's start with the basic steps, then continue with a few of
important consideration such as loading partitioned fact tables, slim lookup tables, deduplication, loading snapshot
and delta fact tables, and dealing with fact table indexes

Basic Steps

When loading a transaction table from OLTP into a fact table in the data warehouse, the value columns on the
transaction table become fact table measures, the primary key(s) on the transaction table become degenerate
dimension column on the fact table, and the alternate primary keys become dimensional key columns on the fact
table.

As rows of fact tables are loaded, each of the key columns is converted from the natural key. This is why all the
dimension tables must be populated first before we populate the fact tables: because we need the surrogate keys on
the dimension tables to translate the fact table natural keys. This is the very basic and the very heart of data
warehouse loading, so it is important to understand it. Perhaps the best way to describe this concept is using an
example. Consider a simplified order detail table with the following columns: order_id (primary key), order_date,
product_id, quantity and price.

Source table: order_detail

order_id order_date product_id quantity price last_update

352 15/07/2006 BGCKQ 1 12.99 30/10/2006

410 30/10/2006 KMSCG 2 7.99 30/10/2006

In the data warehouse let us assume we have an over simplified star schema consisting of a date dimension, a
product dimension and a sales fact table, as describe below.

Date dimension table: dim_date

date_key date day month

2388 15/07/2006 Saturday July

2485 30/10/2006 Monday October

Product dimension table: dim_product

product_key product_id product_name description

53076 BGCKQ Aike IDE HD case USB 2

92184 KMSCG Sony BP71 VIAO CG7 battery

Fact table: fact_sales

The Best of SQLServerCentral – Vol. 5

 262

fact_key date_key product_key order_id quantity price load_time

830923 2388 53076 352 1 11.99 15/07/2006

Notes:

Note that order_id 352 already exists in the data warehouse but the price has changed. When it was loaded on
15/07/2006 the price was 11.99 but now the price is 12.99.

In reality date dimension would contains many more other attributes, such as day of the week (2 columns: name and
number), ISO date (YYYY-MM-DD), Julian date (number of elapsed days since the beginning of the year), SQL date
(in SQL Server datetime format), day of the month, calendar week / month / quarter / year (3 columns for month: full
name, short name and number), fiscal week / period / quarter / year, weekday flag, statutory holiday flag, last day of
the month flag, etc. Plus day and month names in other languages if your data warehouse is internationalised.

In reality the dimension tables would have standard dimension table columns such as load_time and SCD attributes
but for this simplified case these columns are not displayed here.

It is a common practice not to have a fact_key column in the fact table, with the argument being the combination of all
the dimension keys will make the record unique. In this case, the primary key of the fact table is a composite key.
When loading this kind of fact table we will need to compare all dimensional key columns to identify the correct row
when doing updating (see step 3 below).

The basic steps in loading data warehouse fact tables are described below. It is not that different from the steps in
loading dimension tables. In fact, they are almost the same. In this example, it is assumed that the source table,
order_detail on the OLTP, has been loaded incrementally into a stage table called order_detail. The stage database
name is stg. So what we need to do now is to load the fact table records from the stage into the data warehouse.

Step 1. Create The Temp Table

SELECT * INTO #fact_sales FROM dw.dbo.fact_sales WHERE 1 = 0

The temp >Step 2. Populate The Temp Table

SET IDENTITY_INSERT #fact_sales ON

INSERT INTO #fact_sales

(date_key, product_key, quantity, price, load_time)

SELECT

ISNULL(f.fact_key, 0),

ISNULL(d.date_key, 0),

ISNULL(p.product_key, 0),

ISNULL(s.quantity, 0),

ISNULL(s.price, 0),

@current_load_time

The Best of SQLServerCentral – Vol. 5

 263

FROM stg.dbo.order_detail s

LEFT JOIN dw.dbo.dim_date d ON s.trans_date = d.sql_date

LEFT JOIN dw.dbo.dim_product p ON s.product_id = p.product_id

LEFT JOIN dw.dbo.sales_fact f ON d.date_key = f.date_key

AND p.product_key = f.product_key

WHERE s.load_time BETWEEN @last_run AND @current_run

The temp table after it is populated:

fact_key date_key product_key order_id quantity price load_time

830923 2388 53076 352 1 12.99 30/10/2006

0 2485 92184 410 2 7.99 30/10/2006

Source table: order_detail

order_id order_date product_id quantity price last_update

352 15/07/2006 BGCKQ 1 12.99 30/10/2006

410 30/10/2006 KMSCG 2 7.99 30/10/2006

Date dimension table: dim_date

date_key date day month

2388 15/07/2006 Saturday July

2485 30/10/2006 Monday October

Product dimension table: dim_product

product_key product_id product_name description

53076 BGCKQ Aike IDE HD case USB 2

92184 KMSCG Sony BP71 VIAO CG7 battery

Notes:

The Best of SQLServerCentral – Vol. 5

 264

Look how dimensional keys are looked up in a single step, by joining the fact table to the dimension tables on the
natural keys. Because they are LEFT JOINS, the fact table rows without corresponding dimensional rows will results
in NULL dimensional keys in the fact table. The ISNULL then convert these NULLs to zeros.

Notice that we dont populate the load_time with getdate(), but with a variable named @current_load_time. This
variable is populated with getdate() at the beginning of the loading batch and used by all processes in the batch. This
is necessary so that in the event of failure, we know the point in time we have to restart the process from.

Notice that we only load the rows between @last_run and @current_run. This is necessary if we keep the records on
the stage table for a few days, i.e. if the stage contains more than 1 day data. If we clear the data from the stage table
as soon as we load them into data warehouse, we dont need to specify this where clause.

The example above is using only 2 dimensions but in the real practice we would have to deal with more dimensions.
10 to 15 dimension key columns on the fact tables are common occurance.

Step 3. Update existing records

UPDATE f

SET f.date_key = t.date_key,

f.product_key = t.product_key,

f.order_id = t.order_id,

f.quantity = t.quantity,

f.price = t.price,

f.load_time = t.load_time

FROM dw.fact_sales f

INNER JOIN #fact_sales t ON f.fact_key = t.fact_key

WHERE t.fact_key <> 0 AND

(f.date_key <> t.date_key OR

f.product_key <> t.product_key OR

f.order_id <> t.order_id OR

f.quantity <> t.quantity OR

f.price <> t.price)

Source table: order_detail

order_id order_date product_id quantity price last_update

352 15/07/2006 BGCKQ 1 12.99 30/10/2006

410 30/10/2006 KMSCG 2 7.99 30/10/2006

The Best of SQLServerCentral – Vol. 5

 265

fact_sales after the update:

fact_key date_key product_key order_id quantity price load_time

830923 2388 53076 352 1 12.99 30/10/2006

Notes:

Here we update the fact table, based on the data on the temp table. In this case the price was updated from 11.99 to
12.99. We only update the rows where the tmp tables fact_key is not 0, i.e. the rows already exist on the target fact
table. For the rows where the fact_key is 0 (not exist on the fact table), we will insert them into the fact table later on.

Notice that when updating rows we update the load time column as well. The last line is used to specify which
changes we want to pickup. In most cases, we want to pick up changes on all columns, but sometimes there are
legitimate reasons for business rules to specify that changes on certain columns are to be ignored.

Step 4. Insert new records

INSERT INTO dw.dbo.fact_sales

(date_key, product_key, order_id, quantity, price)

SELECT date_key, product_key, order_id, quantity, price

FROM #fact_sales

WHERE fact_key = 0

Source table: order_detail

order_id order_date product_id quantity price last_update

352 15/07/2006 BGCKQ 1 12.99 30/10/2006

410 30/10/2006 KMSCG 2 7.99 30/10/2006

Date dimension table: dim_date

date_key date day month

2388 15/07/2006 Saturday July

2485 30/10/2006 Monday October

Product dimension table: dim_product

The Best of SQLServerCentral – Vol. 5

 266

product_key product_id product_name description

53076 BGCKQ Aike IDE HD case USB 2

92184 KMSCG Sony BP71 VIAO CG7 battery

fact_sales after the insert:

fact_key date_key product_key order_id quantity price load_time

830923 2388 53076 352 1 12.99 30/10/2006

916912 2485 92184 410 2 7.99 30/10/2006

Notes:

It is a good practice to always declare the column names. This is important for flexibility and maintenance. Let
RDMBS maintains the fact_key. When setting up the data warehouse, set this column to be IDENTITY (1,1).

Logging and closing

In every step above we need to do error handling and logging. Error handling is important because if the loading fails
on any steps, we need to be able to recover from the failure. Logging is important to know what exactly happened on
each steps, i.e. how many records are processed, etc.

At the end of the program, we should not forget to clean everything up, i.e. drop the temp table(s), follow control
protocol e.g. set the process to complete state, etc.

The above code shows how to do upsert with native SQL codes, which is very fast and efficient. But it is worth to note
here, that good dedicated ETL tools such as Informatica and Data Integrator have the facilities to do in-memory
lookups which has very good performance too. Disk-base lookup is definitely not they way to go here, as they are
slow. Mainly because there are a lot of SQL statements to execute, i.e. one for each lookup, and each of these
statements touches the disk, which is a costly operation.

Now that we have understand the basic steps in loading fact tables, lets familiar ourselves with a few practical
experiences such as loading partitioned fact tables, slim lookup tables, deduplication, loading snapshot and delta fact
tables, and dealing with fact table indexes.

Slim Lookup Tables

When a dimension is very large, sometimes it would be a significant performance improvement if we provide a
separate lookup table for key management. For example, if our customer dimension has 100 columns and 10 million
rows, we could create a customer key lookup with only 3 columns: customer_id, customer_key, load_time, which
would increase the performance of dimensional key lookup process on step 2 above. It is also more suitable for
performing in-memory lookup.

Example of Slim Key Lookup table: lookup_customer

The Best of SQLServerCentral – Vol. 5

 267

customer_id customer_key load_time

493238 30012 02/10/2006

493240 30013 03/10/2006

493241 30014 03/10/2006

The load_time column would be useful if we have very long dimension table, e.g. 25 million rows. This is not
uncommon when the data warehouse is utilised to drive CRM systems (Customer Relationship Management),
especially in the dot com companies dealing with online campaigns, be it subscription based or tactical campaigns. In
this case we can specify a where clause to limit the selection on this slim key lookup, for example where load_time is
within the last 2 years. This would cover, say, 98% of the lookup. For the remaining 2%, e.g. the one older than 3
years, we then go to the main customer dimension table to find the customer_key.

Altough it takes a bit of time to maintain the lookup table, overall we still save time as the time saved by querying a
slim key lookup table is a lot greater than the time required to maintain the lookup table itself. This is especially true
for a Master Data Management (MDM) dimensions such as customer, product and account, where they are used all
over the place in the data warehouse and data marts. Time dimension is not that long - 10 years is only 3651 rows -
hence I tend not to have a lookup for time dimension. For those of us who think to set the grain of time dimension to
hours or minutes, the general advice is: don't. Either put a time stamp column on the fact table or have a time of day
dimension. But this discussion (time of day dimension) is for another article.

Natural Key Changes

Sometimes a natural key which we thought was a good solid natural key could change and therefore can no longer be
a natural key. Perhaps the best way to explain it is using an example. In a OLTP source system the customer table
has a composite primary keys as combination of branch code and customer code. Customer code is only unique
within a branch. Occasionally a branch could be closed and all the customers in that branch are moved or assigned to
another branch. For example, see the customer table below.

branch_code customer_code customer_name other_attributes

1 1 Andrew ...

1 2 John ...

2 1 Steve ...

2 2 Paul ...

When branch 1 is closed, and its customers are moved to branch 2, the customer table becomes:

branch_code customer_code customer_name other_attributes

2 1 Steve ...

The Best of SQLServerCentral – Vol. 5

 268

2 2 Paul ...

2 3 Andrew ...

2 4 John ...

If we use branch_code and customer_code as natural key in the data warehouse, we need to handle this branch
closure event with care. In the previous project we utilise another column in the customer table which would help
identify a unique record and we create a special table in the data warehouse to translate the change natural key to
the correct data warehouse key.

Unknown Records

If a fact table record does not have a corresponding dimension record, basically we have 2 choices: either we don't
load that record into the fact table, or we load it but we put 0 as the dimension key, referring to the unknown record in
the dimension table. An unknown record is a record in the dimension table, with a dimension key of 0 and all the
attributes are populated with blank string, number 0 or low value date, depending on the data type. Name and
description columns are usually populated with the word "Unknown". The load_time column is populated with the date
of the record was created. This date is normally equal to the date the data warehouse was setup, because the record
was created by the data warehouse setup scripts. For example:

Product dimension table: dim_product

product_k
ey

product_i
d

product_na
me

descripti
on

min_lev
el

valid_un
til load_time

0 0 Unknown Unknown 0 1/1/1900 12/10/20
04

Here is an example of a row in the source table with a product_id that does not exist in the dimension table:

order_id order_date product_id quantity price last_update

358 19/08/2006 BGCKZ 3 2.99 31/10/2006

This is how fact_sales looks after that record is loaded:

fact_ke
y

date_ke
y

product_k
ey

order_i
d

quantit
y

pric
e

load_tim
e

 830937 2424 0 358 3 2.99 31/10/200
6

If we load it into the warehouse, we need to flag it into the data quality system, so that it can be reported and
corrected on the subsequent load. If we don't load it it should still be set as a data firewall rule. If we don't load it, the

The Best of SQLServerCentral – Vol. 5

 269

total of measure on fact table would not be accurate. In the example above, the total sales amount for July 2006
would be 3 x 2.99 less than what it should be. Because of this we tend to load fact table record that does not have a
corresponding dimension record and set the dimension key to 0. This way the fact table measure total would be
correct, it's just that the sales could not be traced to a valid product record. But all other dimension keys would still be
valid, e.g. it can be traced to a valid date dimension record, a valid customer dimension record, etc. And above all, the
referential integrity between the fact tables and the dimension tables are still valid.

Deletion

There are 2 main causes why we perform deletion on the fact tables: 1. because the data extraction approach is fixed
period extraction, and 2. to accomodate reverse transactions such as cancellations. No 1 is usually physical deletion
and no 2 is usually logical deletion. Let's discuss them one by one, using examples to clarify.

No 1, loading approach. In one of the data warehousing projects I've been involved with, we had difficulties extracting
a transaction table from the source system incrementally, because the date stamp was not very reliable. We tried with
3 weeks tolerance i.e. where last updated date or created date is within the last 3 weeks but we still find some
leakage, i.e. a few records were updated without the date stamp columns were not updated. Please refer to this
article for discussion about incremental extraction and leakage. Luckily, source system did not allow the user to
update records that were more than 6 months old. When a user tried to update a transaction record that was created
more than 6 months ago, the system displayed an error, something like "You can not modify this record." So our
approach of extracting this transaction table to the stage was to get 6 months data every time. And consequently, the
approach of loading the fact table from stage was to delete the rows on the fact table that exist in stage, then reload
all the stage records into the fact table. It was actually the same as updating those records, but we found that it was
quicker to delete then reload. We identify the records on the fact table that exist in stage by comparing all the
dimension key columns, i.e. the composite natural keys of the source transaction table.

No 2, accomodating reverse transaction. Sometimes, in the source table we had a main transaction table containing
normal transactions and a smaller secondary transaction table containing cancellation records. We have 2 options
loading this kind of tables into the fact table in the data warehouse: either we load the cancellation as a new record
with negative measures, or we load the cancellation as logical deletion. Reverse transaction such as refund and credit
notes needs to be implemented as negative measures, but for cancellation we have 2 options. Each approach has its
own advantages and disadvantages. Which one is better depends on the situation, for example whether we will be
loading from that fact table into OLAP cubes or not, whether we will be creating a summary fact table or not, whether
we need the historical dates or not, and whether the secondary source table contains complete data or not. If we
decided to go for logical deletion, then for each cancellation record exists on the secondary source table, we mark the
logical delete column on the fact table record. All processes further down the stream such as loading into data marts,
creating summary tables or loading into OLAP cubes need to be aware of this column and they need to handle it
properly.

Deduplication

When loading records from stage to fact tables, sometimes we have duplicate records. For example: we declare that
the grain of the fact table is 1 day for every product for each store. But we found this on the stage table of the fact
table:

date product_id store_id quantity

19/8/2006 BGCKZ 309 30

19/8/2006 BGCKZ 309 1

Do we add them up, take the maximum, or take the minimum, or take the average? First we need to understand why
it happen. In this case I always found it useful to go back to the business users or the source system expert. The
second record could be an error, and in this case we take the earliest record. Or it could be a correction and in this

The Best of SQLServerCentral – Vol. 5

 270

case we sum them up. Or there can only be 1 measurement per day and in the case of 2 or more records found it
must be a system error and therefore they want us to take an average. Whatever the business rule is, we need to
document it, obtain sign off and then implement it in the code. This process is called deduplication. This normally
happens if the source system allow duplication, i.e. it does not have the necessary contraints in the database to make
it unique as per the grain criteria.

Deduplication does not only happen in fact tables, but also in dimension tables, especially MDM dimensions such as
customer. Deduplication can also occur when the fact table is loaded from 2 or more different source system. Many
data quality software such as Trillium, DataFlux, DQ Global, have facilities to deduplicate data.

Fact Table Indexes

Fact tables can be very large. They can have millions of rows. To improve query performance, fact tables are
normally indexed. The cluster index of a fact table is normally a composite of the dimensional keys. Or the fact key
column, if there is one. For the non clustered indexes, deciding which column to index depends on how the fact table
is used. Whether it is used for direct queries by end users, for populating OLAP cubes or by reports, SQL Profiler and
Index Tuning Wizard are useful to understand what indexes would help improving the query performance.

If our fact table contains 100,000 rows or less, we just load the fact table with the indexes on. There is no need to
worry about dropping indexes when loading. If our fact table contains more than 1 million rows, it may be quicker to
drop the indexes before loading the data, and recreate them afterwards. If the load is less than 10% of the fact table
length, generally speaking we don't need to worry about dropping indexes. Chances are we could decreate loading
performance by doing so. But if we are loading 20% or more (of the fact table length, i.e. number of rows in the fact
table) we may want to consider dropping and recreating indexes. It is very difficult to generalise this, as the
performance differs depending on what indexes we have and what loading operations we perform. Hence we always
need to test it to prove that our load is significantly improved by dropping and recreating indexes, before implementing
it in production.

Fact Table Partitioning

Table partitioning is new in SQL Server 2005, but has been in Oracle since 1997 on Oracle 8 and improved in version
8i and 9i. In SQL Server 2000 we only have partitioned view, not partitioned table. This article provides a good
overview on the partitioning on SQL Server 2005. Joy Mundy wrote an article about partitioning on SQL Server 2000.
For Oracle, it's on this document and this manual. In DB2, table partitioning was introduced in version 8 since 2002,
and was greatly improved in version 9 which was release in July 2006. Paul McInerney describes DB2 partitioning
features for data warehousing in this article.

Fact table partitioning is basically dividing the fact table into several physical parts. Each part is called a partition.
Each partition is ideally located on a different physical data file and ideally each file is located on different disk. For
example, we can divide the fact table so that rows for January 2006 are located on partition 1, rows for February are
located on partition 2, and so on. Each partition can be loaded separately in parallel. Partitioning can improve query
performance and increase availability. We can add new partition, drop existing partition, truncate (empty) a particular
partition, move a partition, split a partition, merge several partitions and exchange/switch partitions. All this improves
maintenance operations and greatly simplify administration tasks.

If our fact table contains more than 1 million rows, we need to consider partitioning it. It can improve the loading
performance significantly. We are talking 5-10 times quicker. This is because we load new data to just 1 partition,
which is say 12 times smaller than the size of the whole fact table, hence quicker. There are also techniques to load
data into a new empty table with exactly the same structure as the fact table, then switch/exchange partition that new
table with the main table. Queries can be a lot quicker too. We can also partition indexes so that each part of the
index serves only one table partition. This allows more processes to run in parallel. Partition can really be a life saver
for a data warehouse.

The Best of SQLServerCentral – Vol. 5

 271

Internal Data Warehouse Entities

Some data such as performance target or budget does not exist in any source system but it needs to exist in data
warehouse. Hence they are known as internal data warehouse entities. For example, for each store we can calculate
out of stock percentage, i.e. how many times a required product is out of stock. There may be a concensus that it
needs to be under 5%. This 5% is not written any where in any source system but will be required by the reports so
they need to exist in the data warehouse some where.

We have 2 options on how to get this performance target into the warehouse. 1) we can build an application which will
store or persist the data into its database, then from there we ETL into staging and into the warehouse, or 2) put it on
a simple spreadsheet and we import it into the warehouse. In any case we should not allow the data to be directly
entered into data warehouse, for example using direct SQL statement or through SQL Server enterprise manager. All
data stored in the warehouse must go through the data quality / data firewall rules, so that any exceptions to the rules
are recorded and reported.

Loading Snapsnot and Delta Fact Tables

A snapshot fact table is a fact table that contains a measurement of status at specific point in time. For example:

a fact table that contains actual inventory level for each product at 9 am every day a fact table that contains balances
of every saving account in all branches on the first day of every month a fact table that contains the details of all
accounts that each customer has every day There are 2 kinds of snapshot fact tables, periodic and accumulating.
Periodic snapshot fact tables contains regular statement of status. All 3 example above are periodic snapshot fact
tables. Accumulating snapshot fact tables show the status at any given moment. It is useful to track items with certain
life time, for example: status of order lines. Please refer to this Ralph Kimball article for more details about snapshot
fact tables. An example of accumulating snapshot can be found here.

How do we load periodic snapshot fact tables? We extract all records that satisfy the criteria from the source table at
certain period. For example, take all active rows from the account tables including the balance. Do this automatically
once a month on the first day. Loading accumulating snapshot is rather different. We still take all records from the
source table that satisfy the criteria, then we update the fact table. For the example of purchasing accumulating
snapshot above, everytime there is new piece of information about a particular purchase, we update the fact table
record. We only insert a new record in the fact table when there is a new purchase requisition.

Delta fact table is a fact table that we produce as a result of comparing the condition of a source table on 2 different
time point. For example: account table. This table in the source system contains all customer accounts. Say on
Monday we have 100,000 active accounts and on Tuesday we have 100,001 active accounts, i.e. there were 2 new
accounts opened, 1 account closed and 3 accounts changed. Out of the 3 accounts changed, 1 is changed interest
rate (from 5.75% to 5.50%), 1 changed the credit limit (from 3000 to 3500), and 1 the interest payment frequency
(from daily to monthly). On the delta fact table there will be 6 new rows today (suppose today is 6th Nov 2006).
Legend for change_type: NA = new account, CA = closed account, IR = Interest Rate, CL = Credit Limit, IPF =
Interest Payment Frequency.

accoun
t_key

change
_date

change
_type

IR_b
efore

IR_
afte
r

CL_b
efore

CL_
after

IPF_b
efore

IPF_
after

49912 6/11/20
06 NA

26077 6/11/20
06 CA

The Best of SQLServerCentral – Vol. 5

 272

32109 6/11/20
06 IR 5.75 5.50

19387 6/11/20
06 CL 3000 350

0

29462 6/11/20
06 IPF D M

To populate delta fact table, we download the source account table everyday and compare today's copy with
yesterday's copy and entered the differences on the delta fact table.

Purging Or Pruning A Fact Table

Some people call it purging, some call it pruning. Purging or pruning a fact table is an activity to remove certain rows
from the fact that satisfy certain criteria. To give us an idea below are some examples of purging criteria:

older than 2 years
older than 2 years and status is not active
keep daily records for the last 4 weeks then Monday only for the last 2 years

Example 1 and 2 is normally for transaction fact table and example 3 is normally applicable for periodic snapshot.
Purging is important when our data warehouse is a few years old. Purging can improve query and load performance
significantly. If the fact table is partitioned, it is a common exercise to archive the oldest partition (say older than 5
years old, partitioned by month) then drop or truncate the partition. Archiving can be done by exporting the partition
(using exp in Oracle) or by backing up the partition.

Reloading Fact Table History

Soon after the data warehouse is in production, user may want us to reload say last 2 years history from the OLTP
source system. Say they want 2 years history of order tables. It's not difficult to reload the history. Normally we just
need to modify the time window on the ETL package. For example, if you use SSIS or DTS, we could set the time
window on a table in the metadata database, where the Last Successful Extraction Time (LSET) and Current
Extraction Time (CET) are kept. See this article for the concept of LSET and CET.

The problem with reloading fact table history is: we need to reload all related dimensions too. And most OLTP do not
keep this history. All orders in the last 2 years, yes no problem they have it. But all customer and products and store
details in the last 2 years? Often the customer and products history are not kept, their details are overwritten with new
ones. SCD concept is not known and implemented in OLTP systems. This way they lost the history. The best way is
probably to load the last condition of product, customer and store tables from the source system, and for all order
table records which we can't find a match in the product, customer and store tables, we reference them to the
unknown records. This way the sum of measure in the fact table will still be valid and the referential integrity will still
be intact.

Reporting Services 2005 101 with a Smart Client
By Asif Sayed

The Best of SQLServerCentral – Vol. 5

 273

Introduction

I still remember it was a neatly done report that got me my first pay raise. Ever since, I am very passionate about
report writing (every one likes pay raise right?). In this article, I will guide you through step by step how to create a
simple report using MS Reporting Services 2005; and host it with a Smart Client application.

So, are you ready to get your pay raise? Why not! Who knows, your neatly done report can just do that.

Prior to this article, I wrote three others, which were addressing different issues related to the reporting services.
However, all of them were targeted towards the intermediate-advance level audience. From all the feedback I
received, one was common: quite a few of you asked for an article which will be specially geared towards the novice-
beginner level.

I assume the reader has the basic understanding of the Visual Studio 2005 IDE and comfortable with writing code
using C#. You dont have to know the MS Reporting Services to understand this article; although, any pervious
experience with the report writing would help to fast track yourself.

Although, I am calling this article 101, my intention is to adopt the applied approach rather then discussing each and
every topic associated with reporting services. I am touching on most common aspect of report designing with most
commonly used controls. I would strongly encourage you to please go through MSDN documentation for more
detailed information.

Lets roll up our sleeves, its reporting time

Please take a look at Image 1. How complex is that report? How much time do you think it will take to create such a
report? Well, as for complexity, it is a simple report extracted out of source NorthWind->Products (SQL Server 2000)
and lists all the products information with summary totals.

Image: 1

About time, obviously, it should not take you hours to do it. About R&D and trial & error time, I leave that to you; dig
down deep; the deeper you will explore, the better the treasure you will find.

Here it is, the million $ question: How to start? What is going to be the first step?

Often, it is very easy to find out what should be the first step. Have you seen a house built before the foundation? No!
So, have I given you a hint here? Sure, we must first develop the Smart Client to host our report.

The Best of SQLServerCentral – Vol. 5

 274

Step 1: Create Windows Application Project

Please do the following to create a Windows Application (Smart Client) project:

• Select File menu -> New -> Project.
• Choose C# from Project Types pane.
• In the Templates pane, choose Windows Application for Visual C# projects.

In the Name box, name the project something unique (I named the attached project code rsWin101) to indicate the
application's purpose. In the Location box, enter the directory in which you want to save your project, or click the
Browse button to navigate to it. Once you are done, you will find Form1 added to the project and you can start
working on it using Forms Designer.

Please update following properties of Form1:

Form1.Text = "MS Reporting Services 101 with Smart Client"

Form1.Size = 750, 300

Feel free to change any other property of Form1 as per your requirement.

Step 2: Add Report Viewer to the Form

So, what is report viewer? As we need the DVD player to play a DVD; same goes with the reports, we need a report
viewer to have the report preview done.

For all those who are brand new to report writing, I would say, report viewer gives life to your reports. It not only
previews you the output, further, it also facilitates you to generate the information in the various popular formats (pdf,
excel etc.). You can also take a hard copy print of the report while you are viewing the output.

Please perform following actions to setup Report Viewer Control on Form1:

• Drag ToolBox -> Data -> ReportViewer and drop it on Form1. This step will create a new instance of
ReportViewer with name reportViewer1. I always wanted to name reportViewer1 to rpvAbraKaDabra, hence,
wont let this chance pass by now. As I picked rpvAbraKaDabra, feel free to pick yours, let those imagination
horses run wild!

• By setting reportViewer1.Dock = Fill, report viewer will fill the entire surface of form for report display purpose.

After step 1 and step 2, your project should look as per Image 2.

Image: 2

The Best of SQLServerCentral – Vol. 5

 275

Step 3: Add DataSet to the Project

Hurray! We are done with the foundation. Its time to put walls around the foundation; eventually these walls will hold
the doors and windows of your home. DataSet is just that for Report Viewer, it holds and provides the raw data from
data source to be processed and ready to be outputted on the Smart Client interface.

Following step is required to have DataSet added to project:

• Select Add -> New Item -> DataSet from Solution Explorer. Change name from DataSet1 to
dsProduct and click on Add button to complete the action.

Lets add a DataTable to our newly created DataSet. DataTable is essential to load the reporting data; we will use the
information from DataSet/DataTable while designing the report.

Following step are required to have DataTable added to DataSet(dsProduct):

• Double click on dsProduct from Solution Explorer; it will open the designer view. Right-click on the
designer surface and Add -> DataTable. Please click on header and change the name to
dtProductList. Please see Image 3.

Image: 3

Lets start adding columns to DataTable(dtProductList). Your designer screen should look like Image 4. Right-click on
dtProductList and select Add -> Column to start adding columns to DataTable.

The Best of SQLServerCentral – Vol. 5

 276

Image: 4

Please repeat the action for following columns:

• ProductName (String)
• QuantityPerUnit (String)
• UnitPrice (Double)
• UnitsInStock (Double)
• UnitValue (Double) A calculated field based on UnitsInStock * UnitPrice

As you are adding columns, by default it is string data type. Please go to properties windows after selecting column to
change it from String to Integer or Double.

Please see image 5. Your DataTable should look the same. Also, you can see the properties window to change the
data type.

The Best of SQLServerCentral – Vol. 5

 277

Image: 5

Have you heard of Typed DataSet? If not, then we have just created a Typed DataSet here. Please consult online
help to know more about Typed DataSet.

Step 4: Add Report to the Project

All right, so far we created the project; added Report Viewer and DataSet. Now, it is the time to deal with star of the
show! Lets create that neat report. The following steps is required to have Report (rptProductList.rdlc):

• Select Add -> New Item -> Report from Solution Explorer. Change name from Report1.rdlc to rptProductList.rdlc
and click on Add button to complete the action.

Typically, after add action is finished your screen should be similar to Image 6. When a report is added to project, it is
ready to use the DataSet for designing.

Image: 6

Weather this is your very first report or you are a reporting junkie like me; we have to deal with the most basic building
blocks of report writing, which is: Header, Body and Footer.

Typically, reports are designed with specific page size and layout in mind. Our report is Letter size and Portrait layout.
You can explore various properties attached to report layout by right clicking anywhere on open designer surface and
select properties.

It is always advisable to draw a prototype of your report on paper, before you start the design attempt. As you can see
in Image 1, we have Report Name and Report Date in header section. The body section has the product list
information together with summary totals; and footer carries the Page Numbers.

Let’s start working on Page Header: When new report is added to project, by default, all you will see in report
designer is the body section. Right click on report designer surface anywhere other then body and select Page
Header. This will add header to report. Feel free to adjust the height of header and body section. See Image 7, I have
reduced the height of body and increased the height of the header.

The Best of SQLServerCentral – Vol. 5

 278

Image: 7

While inside the report designer, if you explore the Toolbox, you will see variety of controls which can be used to
design report. For our example, we will use, TextBox, Line and Table control. I would encourage you to go through
the online documents if you need detailed information for all available controls.

Header Section

Lets start designing the header. We will start by dragging two TextBox and dropping on header section. Texbox can
show both static and dynamic data. Line control is used to separate header from body section.

After dropping controls over report designer surface, you can control the look and feel by changing associated
properties. We will designate one TextBox to report title and another one to show current date. We can directly type
static text into TextBox control by selecting it and start typing inside.

Please change following properties of Title TextBox:

Value = "Product List"

Color = Purple (you like purple for title, right?)

Please change following properties of Date TextBox:

Value = ="Run Data: " & Today

Color = Purple (you like purple for title, right?)

Please note Value property for Date TextBox starts with a = sign. This is not a simple static text, instead it is an
expression. This expression is a result of string Run Date and VB.NET script keyword Today (to get current system
date). You can specify desired names to all objects in report; I choose to stay with default name for most of the
controls, however, for demo purpose I did specified txtTitle to Title TextBox.

Please refer to Image 8; your finished design for header should look relatively same.

The Best of SQLServerCentral – Vol. 5

 279

Image: 8

Body Section

The Body section, also referred as details section, is by far the most important part of the report. As you can see
when we added the report to the project; body section was added for us automatically. All we have to do is start
putting controls on it.

Traditionally the Body section is used to display details (in our example it is product information) usually more then
one row of information.The Body section can expand as per the growth of reported data. Often report is designed with
intention to have one physical page (Letter/A4 etc.) output; in this case Body section still can be used to display
information. Out of Table, Matrix and List, the three most commonly used control on Body section; we will use Table
control for our example. All three can repeat information; Matrix goes a step further and even produces Pivot output.

Lets drag and drop Table control on body section of report designer surface. If you notice, this action will produce a
table with three rows and three columns. You may have also noticed that center column also has been labeled:
Header, Detail and Footer. Now, dont be surprise if I tell you that Table control is nothing but bunch of TextBox
attached together! Yes, each and every Cell in Table is like TextBox, which means you can either type static text on it
or specify a dynamic expression.

Before we start designing the Body section, lets add two more columns (remember we have total of five columns in
the report). Adding columns is easy; please do the following to get new columns added to report:

• Select Table Control inside Body section
• Click on right most column header (I assume we are adding new columns to right side)
• Right click on header and select -> Insert Column to the Right

Make sure your report resemble to Image 9. Feel free to adjust the width of column based on length of data it will
hold.

The Best of SQLServerCentral – Vol. 5

 280

Image: 9

I am sure majority of us have used Excel or something similar; think of same for Table control as mini worksheet. We
can apply borders, change font of individual cell etc. etc. So, all you have to do is to think of desired formatting theme
and start applying it.

Starting with first column to the last one, please click on individual column header cell and type the
following text:

Header 1: "Product Name"

Header 2: "Packaging"

Header 3: "Unit Price"

Header 4: "Units in Stock"

Header 5: "Stock Value"

Lets continue to do so the same for Detail section, here one thing to know is, instead of text we have to type the
expression which is columns from dsProduct.dtProductInfo. You can either type the expression or simply drag and
drop the column from Data Sources Toolbar (see Image 7 on left side).

In case if you decide to type it out, starting with first column to the last one, please click on individual
column detail cell and type the following text:

Detail 1: "=Fields!ProductName.Value"

Detail 2: "=Fields!QuantityPerUnit.Value"

Detail 3: "=Fields!UnitsInStock.Value"

Detail 4: "=Fields!UnitPrice.Value"

Detail 5: "=Fields!UnitsInStock.Value * Fields!UnitPrice.Value"

Please take notice of Detail 5: it is the calculated output by performing multiplication of Units in Stock and Unit Value.

Tip: If you drag and drop the column to detail section of Table control, it will try to add column header
automatically, if column header is empty.

Finally, lets add summary total in footer section of Table control. Please make sure to select footer cell on column 4
and 5 inside Body section and type following text:

Cell 4: "Total Value:"

Cell 5: "=SUM(Fields!UnitsInStock.Value * Fields!UnitPrice.Value)"

Please check the expression in Cell 5; I am using a built-in function SUM() to find out total stock value of all the
products listed in report.

Footer Section

Before we start writing some cool C# code to bring our report alive, lets finish the report footer section. As we have
added report header earlier, similarly we have to right click on open report designer surface and select Page Footer

The Best of SQLServerCentral – Vol. 5

 281

(see Image 7). Drag and drop a Line and TextBox control on Footer section. Please type the following expression
inside TextBox:

Value: ="Page: " & Globals!PageNumber & "/" & Globals!TotalPages

As you can see I have used PageNumber and TotalPages, both are Global variables maintained by the reporting
engine.

Tip: Make sure all expression you type must start with = in front of it.

Please make sure your report looks like Image 10. As you can see I have introduced some color and right alignment
to numeric data etc.Feel free to try out all the different formatting options, just think of Table control as mini
spreadsheet with columns and rows and now you know all the formatting you can try on them.

Image: 10

Expression Builder

Expression builder is a very powerful feature of Reporting Services. As you can see in Image 11, Stock Value is
calculated with the help of SUM function. All fields in DataSet can be access with Fields! keyword.

The Best of SQLServerCentral – Vol. 5

 282

Image: 11

Step 5: Lets write some C# code to bring life to our report

Phew I hope you guys are not exhausted already. Hang in there; we are on last step now. Its like we have waited for
that long nine months and the time has come to witness the miracle of birth.

From solution explorer, select Form1. Right click on surface of form and select View Code.

using System.Data.SqlClient;

using Microsoft.Reporting.WinForms;

Make sure the Form1_Load event has following code: (code at www.sqlservercentral.com)

You might be wondering why I have used TOP 5 for select query; the reason is, I wanted to limit the output so that I
can show you summary total in Image 1.

Tip: Name property of ReportDataSource object should be always DataSet_DataTable.

Conclusion

Although, I tried to keep the language of this article as simple as possible; however, please feel free to get back to me
if you need any further clarification. I consider myself a budding author; I have to learn a lot; it is the reader like you,
who has always helped me to improve my writing.

I am looking forward to receive any comments/suggestion you have for me. Thank you for reading; I sincerely hope
this article will help you a bit or two to know reporting services better through my applied approach.

The Best of SQLServerCentral – Vol. 5

 283

Data Driven Subscriptions for Reporting Services (2000 and 2005)
By Jason Selburg

Introduction
As I covered in my previous article, there are many limitations of the subscription feature that comes with SQL
Reporting Services 2000 and 2005 Standard Editions. I dug into the RS database and came across a way to push my
information into the subscription, call it and then leave as if I was never there. After my initial article, I came across
several ways to improve its’ stability and performance. The following method/procedure is much more stable.
Although I received many requests to handle multiple parameters, I quickly realized that there are countless ways to
address this and it really depends on your personal preference and each report’s possible requirements.

• Are some or all parameters set based upon other parameters?
• Are some or all parameters static for all or some instances of the particular subscription run?
• What parameters are defined in a set table, or come from other sources in your database?

Another request was to handle the “File Share” delivery method. To be quite honest, the username and password
encryption has me stumped. So if any of you have a suggestion or solution, let us all know. However, I did make a
few key improvements to the original procedure. These Include:

• Comprehensive error handling
• A more efficient/stable method of updating the subscription settings and returning them to the original state.
• A method that allows the naming of your procedures, therefore reducing the headaches of administration and

maintenance.
• Better commented code for your benefit.
• The ability to specify the rendering format of the report.

o These may be different depending on the installation and configuration of your server, but these are
listed in the "reportServer.config" file.

o This file is located in a folder similar to "C:\Program Files\Microsoft SQL Server\MSSQL.2\Reporting
Services\ReportServer\"

o The standard formats are:
 XML
 IMAGE
 PDF
 EXCEL
 CSV

Assumptions

1. You know how to create a standard subscription.
2. You are familiar with executing stored procedures.

Instructions

1. Create or Replace the stored procedure and History table.
2. Create a standard subscription, placing the name of your subscription in the subject line of the email.

http://www.sqlservercentral.com/columnists/jselburg/datadrivensubscriptions.asp
http://www.sqlservercentral.com/columnists/jselburg/2824.asp#StoredProc#StoredProc

The Best of SQLServerCentral – Vol. 5

 284

NOTE: It is strongly suggested that you define a naming convention that will not allow duplicate subscription names.

1. Set the beginning and ending date to dates prior to “today”. This will keep your subscription from running unless
you explicitly call it.

2. Execute the procedure with the (procedure’s) parameters you require.

Conclusion
As there is no way in telling what Microsoft will change in upcoming releases this method may become obsolete if the
Reporting Services database changes, so be careful when implementing this as a full scale solution to your
subscription needs. However, this procedure works under all versions of SQL RS 2000 and all current versions of RS
2005, so the chances are good that it will continue to work. Again, any comments, suggestions or improvements are
welcome, email me.

Acknowledgements
Thanks to Hugh Thomas for discovering the method to “wait” for a report’s execution.

Stored Procedure code is available at www.sqlservercentral.com.

mailto:HeroTheCat@indy.rr.com
http://www.sqlservercentral.com/forums/userinfo.aspx?id=86254

The Best of SQLServerCentral – Vol. 5

 285

Service Broker

This year we have added a new section that we expect to grow more and more over the next few years. Service
Oriented Architecture (SOA) applications are catching on as a way to develop more flexible applications and reuse
more code throughout your organization. With Service Broker, SQL Server 2005 brings us a platform that allows you
to easily develop SOA applications.

The articles we bring you this year are basics that look at this new technology from a basic point of view. We hope
you enjoy these and contribute one of your own next year.

Adventures With Service Broker.. 286
Building a Distributed Service Broker Application ... 292

The Best of SQLServerCentral – Vol. 5

 286

Adventures With Service Broker

By Johan Bijnens

Introduction

As a part of my SQLServer2005 learning curve, the focus for now is Service Broker. I first heard about SQL Server
Service Broker during introduction sessions for Yukon.(codename for what later has been named SQL Server 2005).
Many developers were looking forward on the integration of CLR in SQL Server, meaning they wouldn't have to learn
and use SQL. We all know by now that's a myth. The second thing developers liked was message queuing also had
been integrated. Let's just say they were blinded by the light. But indeed, it is message queuing. But it isn't the MSMQ
they have known.

The reason why I was considering service broker was that I introduced a system of raising SQL Server alerts to
launch SQLAgent jobs. (help to tighten use of cmdshell or sp_start_job). Maybe I could ship those jobs of to
another (existing) application server, in stead of the actual db-server, so the dbserver could reclaim the full dedicated
server's capabilities.

So what is Service Broker?

Simply said: "SQL Server to SQL Server message queuing"

How hard can it be?

How to use this article

Let me start with mentioning I use SQL2005 Std (and EE) with SP1.

With this article, you'll find the solutions I used with SQL Server Management Studio. Download them and keep them
at hand, you'll find a solution per subject mentioned later on in this adventure.

Each solution contains a sequence of scripts per phase and per broker-party. You'll notice that script-
sequence 004, the execution, doesn't change sequence number. This is on purpose so everyone can
refer to it without being confused over a sequence number. Also, this way, you can experiment with the
kind of error messages SQL Server raises, when and where they are raised.

Building the whole sequence per party is, in my opinion, very welcome when finding scripts regarding new
stuff. So I'd like you to run the scripts on a test server, one step a time, because the scripts may result in
messages for you to move or copy files from one server to another.

Just keep in mind always to start with the cleanup steps, because each solution is supposed to stand by
itself. Take good care to connect to the correct instance when you test the multi-instance solutions.

When you get to use a "routing" script (sequence 007) check the create route statement so it points to
your correct test server. If you're using firewalls, you may need to open the ports you've picked when
creating the endpoints (listener_port).

I hope you'll enjoy my adventure and get a good reference in the scripts I've provided.

http://www.sqlservercentral.com/scripts/viewscript.asp?scriptid=1032
http://www.sqlservercentral.com/columnists/jbijnens/SimpleServiceBrokerSamples.zip

The Best of SQLServerCentral – Vol. 5

 287

First things I did for service broker exploration

• Search the forums to find out if something is too buggy to start with in Service Broker. Like always, Google or
MSN Search are your friends.

• Search the forums for some more examples. Since I went to the SQLPass2006 convention in Seattle, finding an
example has been the easy part.
(session AD405 "Message in a bottle")

• Read BOL (yes, I do) in a diagonal fashion.
• Ouch! ...XML...well, not really needed, but it makes life so much easier. So have a glimpse at it!

I wanted to drive the car, I didn't want to become a car technician. Casual Ferrari-drivers just drive the car
and especially don't touch the nuts and bolts under the hood, right? That was my aim!

Phase one: a simple LOCAL service broker scenario.
This is a piece of cake, because most examples you'll find are implemented in the local SQL Server instance. First of
all the elementary concepts need to be known. Also elementary, but you have to know some terminology, what's their
function and why they are used.

• How do we call the participants
• message types
• Contracts
• Queues
• Services
• BEGIN DIALOG CONVERSATION
• Send message
• Receive message
• End conversation
• and find out that there is no easy GUI-setup path for service broker !

I tested my first SSB application with sender and receiver in a single database. The example I used was the one
provided by Bob Beauchemin in his SODA presentation. (scripts not included with my solutions but you can find them
at http://www.sqlskills.com/resources/conferences/200510SODA.zip)

Copy/Paste of the example just did the trick. It was also nice to see that you don't need to stop / start SQL Server to
enable you first SSB-service. (Unlike with SQLAgent alerts for sql7.0 and sql2000)

Now it was worth to investigate more since I had seen the light. At that time, surfing the web, I stumbled onto Klaus
Aschenbrenner who asked for a SSB-newbie to co-read the book he was writing about SSB.
(http://www.csharp.at/blog/) I contacted him and he did send me his first couple of chapters. This was actually the
first time I co-read chapters of a book, and I enjoyed doing the co-reading and send him my comments. I learned a
bunch of things that I normally wouldn't even consider digging into when throwing a first glimpse to a product,
because it also handles nuts and bolts.

There are also a couple of nice articles on the web regarding "when to use the various asynchronous technologies". It
makes sense to have some selection criteria about which technology to use, so have a look.

Phase two: sender and receiver in separate databases.

Secondly I tested a SSB application with sender and receiver in separate databases. For this example I started with a
scenario I found with a presentation I attended at Flexcom-Azlan at the end of 2005. http://www.azlan.be. My
thanks to them for allowing me to elaborate on their example.

http://www.google.com/
http://www.msn.com/
http://www.sqlpass.org/events/summit06/index.cfm
http://www.sqlskills.com/resources/conferences/200510SODA.zip
http://www.csharp.at/blog/
http://www.azlan.be/

The Best of SQLServerCentral – Vol. 5

 288

This scenario has a concept of parties called Airline and TravelOffice. Because these names generate typical
scenarios with most people, regarding "asynchronous processing", I thought it would make life easy to elaborate on
that.

Basic scenario: An airline-company provides an SSB-service "TravelOfficeBooking" composed of an
"OpenBooking", "SeatBooking", "CloseBooking" and a "BookingConfirmation" method.

You can find this test in my solution in folder 01_1_ALZDBA_ServiceBrokerSequence_Local. When I run the scripts
from the solution, I just run them in sequence, actually building the situation one step at a time, each time the same
step for each database. Working this way clears out the parallels and the differences at each side of the service
broker services.

The most important thing I had to do is to alter the database that contains the initiator because it has to have the
"trustworthy ON" property set for local usage.

So within the same instance of SQL Server, things still work fine by default, provided you performed the previous alter
database.

Phase three: sender and receiver in separate instances

My third test was now to detach the initiating database and move it to a second instance of SQL Server. I installed
that second instance on the same physical box. (Or should I say operating system, because nowadays virtualisation
is hot) For the record, all my SQL Server instances are being served using a windows domain account and have
builtin\administrators revoked.

This time there is no need for the database to be trustworthy because that setting is only used within the SQL Server
instance. Guess what. It didn't work anymore! This urged the need for DMV's and queries to find out what's going on
and where things got stuck. Btw: I published my Troubleshooting Service Broker (SSB) script at
www.SQLServercentral.com

Why didn't it work?

Transport security
You can find this test in my solution in folder 02_1_ALZDBA_ServiceBrokerSequence_Transport. If you go outside of
your SQL Server instance, you need to setup transport security and routing. This thing is secured by default, so time
needed to be spent to check out the options.

You might imagine transport security to be the choice of your package-delivery-server like DHL, UPS, ABX,....
Without dialog security you would be giving them your love letters in an open envelope or in transparent foil. With
dialog security on the other hand, you'd hand your package-delivery-server an envelope or a vault containing your
encrypted message.

My choice was to always use SSL-certificates when setting up transport security. Don't be frightened by the word
SSL, you get it from SQL Server itself! Why SSL-certificates? Because with SQL Server 2005 you can create your
own SSL certificates, so you don't have to hassle outside of your beloved and known software. I won't go into
strategies or politics regarding this security-choice. That's something you'll have to determine yourself, but it makes it
easy for me during this experiment. Like the word says, Transport security is all about transport. There is only
transport when you go from one SQL Server instance to another.

Because we have a standard for composing a sa-password, I thought it might be opportune to also use a standard to
compose the password used for the master database master key. This key is then used to generate the certificate to
be exchanged between the instances for transport security. With SQL Server 2005 this part is handled in the master
databases of the involved instances.

It is mandatory to give SEND authority on the service to PUBLIC if you do not implement dialog-security!!

http://www.sqlservercentral.com/scripts/viewscript.asp?scriptid=1867
http://www.sqlservercentral.com/

The Best of SQLServerCentral – Vol. 5

 289

You can only have one Service Broker endpoint per SQL Server instance, so before you rollout an SSB application,
play with it so you learn what things to keep in mind and which decisions need to be taken.

Since you only have one Service Broker endpoint, and the transport security concern inter-instance communication
through the endpoint, you need to tell the endpoint it has to use your certificate. In my experiment's case resulting in:

CREATE ENDPOINT BrokerService

 STATE = STARTED

 AS TCP (LISTENER_PORT=55552)

 FOR SERVICE_BROKER (

 AUTHENTICATION= CERTIFICATE
[AirlineServiceBROKERCommunicationCertificate]

 , ENCRYPTION=SUPPORTED

)

I also decided to create a login per connecting instance because this gives me an excellent opportunity for
auditing.

So after creating the SSB-endpoint that uses the communication-certificate, certificates need to be exchanged. Need
it to be mentioned "what's in a name" ...

There was still a route to be created at each side of the transport. This route resides at database level, meaning it is
no other databases business to know who you route your messages to. Because I was only setting up transport
security at this time, I needed to grant send authority to public for my local SSB-service in the userdatabases.

I need to emphasize that I did look over the impact of this last line a number of times because as a DBA, I
never grant anything to public. So never say never ...!

GRANT SEND ON SERVICE::[AirlineBookingService] TO PUBLIC ;-- airline db

GRANT SEND ON SERVICE::[TravelOfficeBookingService] TO PUBLIC --TtravelOffice db

Things started to work again.

Dialog security: You can find this test in my solution in folder
02_2_ALZDBA_ServiceBrokerSequence_AnonymousDialog

So how about dialog security? As you can imagine by now, as long as your message stays within the same instance
of SQL Server, it is considered to be secure. Dialog security is about encrypting the content of your message. By itself
this has nothing to do with transport, but you'll need transport security to get to your counterpart instance.

So dialog security actually is an additional security measure which lives its own life, but needs transport. Like when
you send an encrypted letter using a package-delivery-server. A dialog resides in the userdatabases of the instances,
so dialog security is a user databases procedure.

The Best of SQLServerCentral – Vol. 5

 290

Just like with the setup of transport security, my choice was to always use SSL-certificates when setting up dialog
security. Just keep in mind there are other options to be explored. So you also need a user database master key to
encrypt the SSL-certificate you create to support dialog security. Then also telling the service to encrypt dialogs using
a specific certificate:

CREATE USER [TravelOfficeServiceUser] WITHOUT LOGIN;

-- This defers from Transport security! This way the dialog gets encrypted

-- by the certificate bound to the service USER !

Alter AUTHORIZATION ON SERVICE::[//wonderland.world/Broker/TravelOfficeBookingService]

 to [TravelOfficeServiceUser] ;

go

CREATE CERTIFICATE [TravelOfficeDialogCertificate]

 AUTHORIZATION [TravelOfficeServiceUser]

 WITH SUBJECT = 'Certificate for the TravelofficeService service',

 START_DATE ='11/30/2006',

 EXPIRY_DATE = '12/31/2050';

go

Exchanging these dialog certificates and implementing in both userdatabases and off course telling the
sprocs to begin the dialog using encryption and off we go ... NOT. (Kind of slang my teenage daughter
uses these days)

CREATE BEGIN DIALOG @dialog

 FROM SERVICE ..

 TO SERVICE

 ON CONTRACT

 WITH ENCRYPTION = ON;

One little bit I overlooked was that you also have to create a remote service binding at initiator side when
using dialog security!

CREATE REMOTE SERVICE BINDING [AirlineServiceBinding]

 TO SERVICE '//wonderland.world/Broker/AirlineBookingService'

 WITH USER = [ProxyAirlineServiceUser] , ANONYMOUS = ON ;

The Best of SQLServerCentral – Vol. 5

 291

With my scripts, you'll also find a solution using full dialog security (anonymous=off). You can find this test
in my solution in folder 02_3_ALZDBA_ServiceBrokerSequence_FullDialog. In that case there are dialog
certificates to be exchanged at both sides of the conversation.

Phase four: Forwarding

Ok, so now I had tested a simple scenario with two participators. Hey, I have heard you could move your db to
another server without informing your counterpart. So I focused on forwarding.

Once again I started off with the example where only transport security was implemented. Easy does it, so off we go.

The scenario is simple: all you do is detach the database, move it to another SQLServer2005, attach it like you would
when moving any user databases (users & stuff). All you have to do is to setup transport security from the original
server to the new server, setup the forwarding and off course also altering the existing route to your forwarding
server.

Setting up forwarding is actually quit easy, because it is handled in the original master and msdb. You have to tell the
endpoint for service broker (master db) that message forwarding is enabled. In msdb you provide the forwarding
details by providing the routes (forward and backward).

You can find this test in my solution in folder 03_1_ALZDBA_ServiceBrokerSequence_Transport_Forwarding

Guess what..... It worked!

It got a bit tricky when I tried it with the scenario where I implemented dialog security. Well it was actually the same as
with the example with only the transport security implemented, but this time it no longer worked. You can find these
tests in my solution in folders 03_2_ALZDBA_ServiceBrokerSequence_AnonymousDialog_Forwarding and
03_3_ALZDBA_ServiceBrokerSequence_FullDialog_Forwarding

And I had to actually use the SQL Server-errorlog to figure out why it didn't work. It stated it couldn't decrypt the
message because of lack of a key to open the database. Which certificate or key? The database's master key!

I had to provide the new server the knowledge how to open the old database's master key to decrypt the dialog.
Because I encrypted the database originally using a password, I used that same password to tell the new server how
to open the database master key.

EXEC sp_control_dbmasterkey_password @db_name = N'Airline',

 @password = N'P@ssword', @action = N'add';

My conclusion

I learned a lot and wanted to share, just to give everyone the chance to experiment the copy/paste way with this
powerful out of the box solution of our beloved SQL Server 2005. Combined with the obvious advantages for
messages using XML, SSB can be very powerful.

The things that need to be figured out before implementing it into production:

1. Elaborate on security.
2. Naming conventions for type, queues, services,...
3. Guidelines for transport security
4. Guidelines for dialog security

The Best of SQLServerCentral – Vol. 5

 292

5. Is using SSL certificates the way to go?
6. Selection criteria for SSB to be used.
7. XML. We have to learn it anyway because it makes our performance related life more meaningful figuring out

bottlenecks, execution plans,..
8. How to handle poison messages. Detection, notification and solution.

There are user efforts to build a GUI for SSB administration: e.g. SSB Admin - a GUI for SQL Server 2005 Service
Broker . For more info regarding the nuts and bolds of service broker I gladly redirect to Klaus Aschenbrenner's book,
which is still in the publishing process at this time.

Building a Distributed Service Broker Application
By Santhi Indukuri

In this article, we will discuss about the advanced service broker objects used for building a Distributed Service
Broker Application. We will see how messages will be transferred between two databases existing in two different
servers.

Pre-requisites: Should have basic knowledge of Service Broker Basic Concepts like Message Types, Contracts,
Services, Queues, Conversation, Sending messages on Conversation and Receiving messages.

Advanced Service Broker Objects

For Service Broker Applications which use the same database in the same server, we dont need to use the Advanced
Service Broker Objects.

The following are the advanced Service Broker Objects used by Distributed Service Broker Application.

• End Point: End Points will accept incoming and outgoing TCP/IP connections on a Specific port. We can have
only one End Point for instance which can be shared between all services in the instance.

• Routes: Route is used to locate a service that it is sending message to. When no route is explicitly associated
with a service then Service Broker will deliver the message within the current instance.

• Remote Service Binding: Remote Service Binding (RSB) is used to establish security credentials which will be
used by Initiating service to authenticate itself with the Remote Service. RSB uses a Certificate associated with
the specified database user account to connect to Remote Instance

For more details on Service Broker Objects, refer to SQL Server Books Online.

Security

Before proceeding further, we should know how Service Broker Security allows services to communicate securely,
even if they are located on different computers.

Service Broker security relies on certificates that are shared among remote databases, however no other information
is shared. Service Broker allows two types of security.

• Dialog Security: It provides remote authorization for conversations to specific services and encrypts
individual messages when the message leaves the sending instance until the messages reaches the
destination instance (end-to-end encryption).

• Transport Security: It prevents unauthorized network connections from sending Service Broker
messages to databases in the local instance. It controls which instances can communicate and

http://sqljunkies.com/WebLog/nielsb/archive/2005/05/10/14063.aspx
http://sqljunkies.com/WebLog/nielsb/archive/2005/05/10/14063.aspx

The Best of SQLServerCentral – Vol. 5

 293

provides encryption between the two instances, but it doesnt secure the contents of individual
messages

Steps to create a Distributed Service Broker Application

1. Create the basic Service Broker Objects (i.e. message types, contracts, services, queues etc)
2. Set up Transport Security:

1. Create a master key for master database.
2. Create certificate and End Point that support certificate based authentication. (i.e. creating a Private Key

for the Server)
3. Take a backup of the certificate created and install it into the remote instance.
4. Create certificate from the certificate backup file copied from the other server. (i.e. creating a Public Key

of the Remote Server in current server)
5. Create login from the certificate created in Step 4.
6. Grant the login, connect permissions on the end point.

Note: Steps 1 6 should be performed in both the servers

3. Set up Dialog Security:
1. Create a master key in the local database i.e. the database we are going to use for our application.
2. Create a user certificate. (i.e. creating a Private Key for the Server)
3. Take a backup of the user certificate created and install it into the remote instance.
4. Create a user with the same name as the user who has access rights on the other Database.
5. Create a user certificate from the user certificate backup file copied from the other server, allowing

authorization to the user created in Step 4. (i.e. creating a Public Key of the Remote Server in current
server)

6. Grant connect permissions to the user.
7. Grant send permissions to the user on the local service
8. Create a Remote Service Binding with the user created.

Note: Steps 1 8 should be performed in both the servers

4. Send Messages & Receive Messages

Example

In this example well first send message from one Server to another Server and the server that received the message
processes the message and sends a message back to sender server. Ill be using two servers, Server A and Server B.
And the databases used are DatabaseA (in Server A) and DatabaseB (in Server B).

The following are the tasks performed by our Sample Application.

a) Server A sends message to Server B
b) Server B receives the message and sends a message to Server A.

Steps:

I. Create Basic Service Broker Objects:

In DatabaseA in Server A, Lets perform the following Operations

1)Create Message Types

The Best of SQLServerCentral – Vol. 5

 294

Create Message Type SenderMessageType validation=NONE

Create Message Type ReceiverMessageType validation=NONE

2) Create Contract on the above message types

Create Contract SampleContract

(

 SenderMessageType SENT BY INITIATOR,

 ReceiverMessageType SENT BY TARGET

)

3) Create an Initiator queue

Create Queue InitiatorQueue

 WITH status = ON

4) Create a Service on the queue and the contract

Create Service SenderService ON QUEUE InitiatorQueue (SampleContract)

In DatabaseB in Server B, Lets perform the following Operations

1) Create Message Types:

Create Message Type SenderMessageType validation=NONE

Create Message Type ReceiverMessageType validation=NONE

2) Create Contract on the above message types

Create Contract SampleContract

(

 SenderMessageType SENT BY INITIATOR,

 ReceiverMessageType SENT BY TARGET

)

3) Create an Target queue

The Best of SQLServerCentral – Vol. 5

 295

Create Queue TargetQueue WITH status= ON

4) Create a Service on the queue and the contract

Create Service ReceiverService ON QUEUE TargetQueue (SampleContract)

Note: In the above code snippets we have created identical Message types and Contracts in both the servers. We
need to create identical Message Types and Contracts in each database that participates in the conversation.

II. Create a Route:

Once the Services are created on both the servers we need to create routes in each database and associate it with a
remote service to which it is sending message to.

In DatabaseA in Server A,

Create Route RouteA

WITH

 SERVICE_NAME = 'ReceiverService',

 BROKER_INSTANCE = '1B9C40BC-7FCF-41F7-9813-61C11A49D0DE',

 ADDRESS = 'TCP://157.57.100.9:4022'

GO

In the above Route, ReceiverService is the service in DatabaseB of Server B. If we dont specify the broker_instance
then the service with a similar name will be randomly picked by the server B from any database. But if you want to
specifically mention that we need to map to the ReceiverService of DatabaseB, then we need to get the
Service_broker_guid from sys.databases for DatabaseB using the following query.

select service_broker_guid

 from sys.databases

 where name = 'DatabaseB'

The address field tells us that we need to connect to 4022 port of Server B and IPAddress of ServerB in
157.57.100.9.

In DatabaseB in Server B,

Create a Route in the same manner. (We need to create this route in our example, as we are sending a message
back to Server A, once we process the message sent by Server A in Server B)

The Best of SQLServerCentral – Vol. 5

 296

Create Route RouteB

WITH

 SERVICE_NAME = 'SenderService',

 BROKER_INSTANCE='D164787D-590A-47AC-83AB-987F880E3F2A',

 ADDRESS = 'TCP://172.22.26.216:4022'

GO

III. Set up Transport Security:

Note: All actions related to Transport Security will be performed in the master database of the Servers.

1) Create a master key for master database.
2) Create certificate and End Point that support certificate based authentication.

Server A:

Use master

Go

--1. Create a master key for master database.

Create Master Key Encryption BY Password = 'gs53&"f"!385'

Go

/*2.Create certificate and End Point that support

 certificate based authentication

*/

Create Certificate EndPointCertificateA

WITH Subject = 'A.Server.Local',

 START_DATE = '01/01/2006',

 EXPIRY_DATE = '01/01/2008'

ACTIVE FOR BEGIN_DIALOG = ON;

GO

CREATE ENDPOINT ServiceBrokerEndPoint

 STATE=STARTED

 AS TCP (LISTENER_PORT = 4022)

 FOR SERVICE_BROKER

The Best of SQLServerCentral – Vol. 5

 297

 (

 AUTHENTICATION = CERTIFICATE EndPointCertificateA,

 ENCRYPTION = SUPPORTED

);

Server B:

Use master

Go

--1. Create a master key for master database.

Create Master Key Encryption BY Password = '45Gme*3^&fwu';

Go

--2.Create certificate and End Point that support certificate based authentication.

Create Certificate EndPointCertificateB

WITH Subject = 'B.Server.Local',

 START_DATE = '01/01/2006',

 EXPIRY_DATE = '01/01/2008'

ACTIVE FOR BEGIN_DIALOG = ON;

GO

CREATE ENDPOINT ServiceBrokerEndPoint

 STATE=STARTED

 AS TCP (LISTENER_PORT = 4022)

 FOR SERVICE_BROKER

 (

 AUTHENTICATION = CERTIFICATE EndPointCertificateB,

 ENCRYPTION = SUPPORTED

);

3) Take a backup of the certificate created and install it into the remote instance by physically copying this certificate
to Other Server.

Server A:

The Best of SQLServerCentral – Vol. 5

 298

BACKUP CERTIFICATE EndPointCertificateA

 TO FILE =

 'C:\Documents and Settings\Santhi\Desktop\Service Broker\Session\EndPointCertificateA.cer';

GO

Copy the certificate from the above location to the following location: Destination: Server B - Path: C:\Documents and
Settings\Santhi\Desktop\ServiceBroker\

Server B:

BACKUP CERTIFICATE EndPointCertificateB TO FILE=

 'C:\Documents and Settings\Santhi\Desktop\ServiceBroker\EndPointCertificateB.cer';

GO

Copy the certificate from the above location to the following location: Destination: Server A , Path: C:\Documents and
Settings\Santhi\Desktop\ServiceBroker\Session\

4) Create certificate from the certificate backup file copied from the other server.

Server A:

Create Certificate EndPointCertificateB

 From FILE =

 'C:\Documents and Settings\Santhi\Desktop\Service Broker\Session\EndPointCertificateB.cer';

GO

Server B:

Create Certificate EndPointCertificateA

 From FILE =

 'C:\Documents and Settings\Santhi\Desktop\ServiceBroker\EndPointCertificateA.cer';

GO

5) Create login from the certificate in remote server in the current server.

Server A:

The Best of SQLServerCentral – Vol. 5

 299

CREATE LOGIN sbLogin

 FROM CERTIFICATE EndPointCertificateB;

GO

Server B:

CREATE LOGIN sbLogin

 FROM CERTIFICATE EndPointCertificateA;

GO

6) Grant the login, connect permissions on the end point.

Server A:

GRANT CONNECT ON ENDPOINT::ServiceBrokerEndPoint To sbLogin

GO

Server B:

GRANT CONNECT ON ENDPOINT::ServiceBrokerEndPoint To sbLogin

GO

IV. Set up Dialog Security:

Note: All actions related to Dialog Security will be performed in DatabaseA of Server A and DatabaseB of
Server B, not in master databases.

1) Create a master key in the local database i.e. the database we are going to use for our application.

Server A:

Use DatabaseA

GO

Create Master Key Encryption BY

Password = 'gs53&"f"!385'

Go

Server B:

The Best of SQLServerCentral – Vol. 5

 300

Use DatabaseB

GO

Create Master Key Encryption BY

Password = '45Gme*3^&fwu';

Go

2) Create a user certificate.

Server A:

Create Certificate UserCertificateA

 WITH Subject = 'A.Server.Local',

 START_DATE = '01/01/2006',

 EXPIRY_DATE = '01/01/2008'

ACTIVE FOR BEGIN_DIALOG = ON;

GO

Server B:

Create Certificate UserCertificateB

 WITH Subject = 'B.Server.Local',

 START_DATE = '01/01/2006',

 EXPIRY_DATE = '01/01/2008'

ACTIVE FOR BEGIN_DIALOG = ON;

GO

3) Take a backup of the user certificate created and install it into the remote instance.

Server A:

BACKUP CERTIFICATE UserCertificateA TO FILE=

'C:\Documents and Settings\Santhi\Desktop\Service Broker\Session\UserCertificateA.cer';

GO

Copy the certificate from the above location to the following location: Destination: Server B , Path: C:\Documents and
Settings\Santhi\Desktop\ServiceBroker\

The Best of SQLServerCentral – Vol. 5

 301

Server B:

BACKUP CERTIFICATE UserCertificateB TO

FILE='C:\Documents and Settings\Santhi\Desktop\ServiceBroker\UserCertificateB.cer';

GO

Copy the certificate from the above location to the following location: Destination: Server A , Path: C:\Documents and
Settings\Santhi\Desktop\ServiceBroker\Session\

4) Create a user with the same name as the user who has access rights on the other Database.

Server A:

Create User UserB WITHOUT LOGIN

GO

Server B:

Create User UserA WITHOUT LOGIN

GO

5) Create a user certificate from the user certificate backup file copied from the other server, with authorization to the
user created in Step 4.

Server A:

CREATE CERTIFICATE UserCertificateB

 AUTHORIZATION UserB

 FROM FILE = 'C:\Documents and Settings\Santhi\Desktop\Service
Broker\Session\UserCertificateB.cer';

GO

Server B:

CREATE CERTIFICATE UserCertificateA

 AUTHORIZATION UserA

FROM FILE = 'C:\Documents and Settings\Santhi\Desktop\ServiceBroker\UserCertificateA.cer';

GO

6) Grant connect permissions to the user.

The Best of SQLServerCentral – Vol. 5

 302

Server A:

GRANT CONNECT TO UserB;

Server B:

GRANT CONNECT TO UserA;

7) Grant send permissions to the user on the local service.

Server A:

GRANT SEND ON SERVICE::SenderService To UserB;

GO

Server B:

GRANT SEND ON SERVICE::ReceiverService To UserA;

GO

8) Create a Remote Service Binding with the user created.

Server A:

CREATE REMOTE SERVICE BINDING ServiceBindingB

 TO SERVICE 'ReceiverService'

 WITH USER = UserB

Server B:

CREATE REMOTE SERVICE BINDING ServiceBindingA

 TO SERVICE 'SenderService'

 WITH USER = UserA

V. Send Messages from Server A:

In Database A:

/**********Begin a Dialog and Send a Message******************/

The Best of SQLServerCentral – Vol. 5

 303

Declare @ConversationHandle uniqueidentifier

Begin Transaction

Begin Dialog @ConversationHandle

 From Service SenderService

 To Service 'ReceiverService'

 On Contract SampleContract

 WITH Encryption=off;

SEND

 ON CONVERSATION @ConversationHandle

 Message Type SenderMessageType

 ('<test>test</test>')

Commit

The above snippet opens a Transaction and begins a Dialog on the specified contract with no encryption. It then
sends a message on the conversation using the ConversationHandle created and then commits the Transaction.
While begining a Dialog we also specify the services we are going to use to send and receive the messages.

Now check for this record in TargetQueue of Database B (Server B)

select cast(message_body as xml) from TargetQueue

VI. Receive Messages from Server A:

In Database B:

/*****Receive the Message and send a message to the ender**********/

Declare @ConversationHandle as uniqueidentifier

Declare @MessageBody as nvarchar(max)

Declare @MessageType as sysname

Begin Transaction

Print 'Started Receiving ';

The Best of SQLServerCentral – Vol. 5

 304

RECEIVE top (1)

 @MessageType = message_type_name,

 @ConversationHandle = conversation_handle,

 @MessageBody = message_body

FROM TargetQueue;

if @MessageType = 'SenderMessageType'

 Begin

 SEND

 ON CONVERSATION @ConversationHandle

 Message Type ReceiverMessageType

 ('Message is received')

 END Conversation @ConversationHandle

 END

Commit

The above snippet opens a Transaction and Receives the first message from the TargetQueue. After receiving the
message, We can perform some extra logic but in our example to make it simple we are just sending a message back
to the sender that we have received a message.

Now check for records in TargetQueue of DatabaseB (Server B). The record will be removed as it has been
processed successfully. Now check the records in InitiatorQueue of DatabaseA (Server A). Two new records will be
inserted one related to conversation and the other related to end Dialog as we have used End Conversation.

 select cast(message_body as xml) from InitiatorQueue

Conclusions

This article does not talk about the basic concepts of Service Broker. It deals with building a distributed service
broker application.

The Best of SQLServerCentral – Vol. 5

 305

XML

XML is becoming more and more embedded in all SQL Server technologies, as well as other Microsoft products.
Used for everything from configurations to query plans, XML is fast becoming the way in which all applications
settings will be stored.

SQL Server 2005 brings many new capabilities for working with XML as well as having much of the data in its tools
stored in XML. So, we have gathered together some of our best articles on XML from the past year and republished
them for you to work more closely with this technology.

The SQL Server 2005 XML Temptress ... 306
I've Got the XML - Now What? .. 312
XML Argument Protocols for SQL 2005 Stored Procedures ... 317

The Best of SQLServerCentral – Vol. 5

 306

The SQL Server 2005 XML Temptress
By Simon Munro

I am neither a big fan of XML nor an expert. Over the years I have seen XML used and abused yet another silver
bullet to solve all of our problems. I have seen XML fail on many projects because it is too verbose - consuming too
much bandwidth and processing power where good ol' fixed-length records would have been fine. I have also seen
XML as a good solution to interfacing problems and I (almost) unknowingly use it every day interfacing with web
services and configuring systems.

Although XML is interesting, I never found the motivation or need to go out and buy the biggest book on XML that I
can find in order to master what should really be a simple markup language. XML gets complicated fast and before
you know it you are either confused or an XML bigot (where your confusion is hidden behind a veneer of expertise).

I wouldn't call myself a DBA, but I have done enough late night babysitting of production databases to have an idea
how my design and architectural decisions impact the database the least scalable of any part of the architecture. So
in my opinion XML - as a bloated, misunderstood, misinterpreted, over-hyped and often badly implemented
technology should be nowhere near the database. End of discussion no budging. Holding such a view won't get me
fired and will win the welcome support of the production DBAs who could always point fingers at my bad SQL syntax
and data structures as a reason for poor performance.

I confess that I have used XML in the database in my latest project.

There, I have said it and in the company of expert DBAs who have had enough of people like me putting all sorts of
crap into the database. Amongst such company I had better come up with an explanation and fast. Allow me to do so.

There are two situations where XML in SQL 2005 comes in quite handy. They are when implementing classifications
and temporal data designs.

SQL 2005 XML for Classifications

One thing that is missing in SQL databases is a construct to handle classifications. It is a problem that designers
always encounter and the mechanisms for the physical implementations vary extensively.

What do I mean by a classification? Consider a system that has an order and a customer table, where the key from
the customer is put into the order table simple normalization. Now what if your customer can be a person, with a first
name, surname and date of birth or it can be an organization, with a name and company registration number? The
problem is that it doesn't feel right to create a single table with all of the attributes (breaking some relational model
rules in the process) and it is difficult to implement separate [Person] and [Organization] tables.

There are two basic approaches, either a roll-up or a roll-down approach.

In the roll-up approach a single table is created with all of the fields and discriminator or classification attributes to
distinguish between the classes. The individual classes can then be implemented as views as follows: (code at
www.sqlservercentral.com)

In the roll-down approach multiple tables are created with their correct attributes and the 'leaf' tables are unioned
together for an index table as follows:

CREATE TABLE Person(

StakeholderId int,

Firstname varchar(50),

Surname varchar(100),

The Best of SQLServerCentral – Vol. 5

 307

DateOfBirth datetime

)

CREATE TABLE Organization(

StakeholderId int,

Name varchar(100),

RegistrationNo varchar(20),

)

CREATE VIEW Stakeholder

AS

SELECT StakeholderId, Firstname+' '+Surname AS Name, CAST(1 AS bit) AS isPerson, CAST(0 AS bit)
AS isOrganization

FROM Person

UNION

SELECT StakeholderId, Name, CAST(0 AS bit) AS isPerson, CAST(1 AS bit) AS isOrganization

FROM Organization

Combinations of the two approaches also exist where some fields are created on an index table and other fields exist
only on the leaf tables. Things get a bit complicated when implementing complex classification structures. What if
some persons are employees (add an employee number) and what if some employees are contractors (add contract
period)? Not only do complex structures become difficult to implement but CRUD across index tables and views
becomes a pain.

I have implemented such mechanisms on large databases quite successfully - such as a bank that had 14 million
customers. But it can become quite complex and I was looking for a simple classification mechanism that would be
reasonably easy to implement, not contain excessive tables or attributes and would be able to be extended or
replaced. Enter the XML temptress

I create a simple index table with a column to store all the class-specific attributes as follows:

CREATE TABLE Stakeholder(

StakeholderId int IDENTITY(1,1),

Name varchar(100),

ClassAttributes xml,

isPerson bit,

isOrganization bit

)

The Best of SQLServerCentral – Vol. 5

 308

Since my application data access layer uses only sprocs to access the database, some insert and update sprocs for
the person and the organization need to be written. For example with person:

CREATE PROCEDURE InsertPerson

@Firstname varchar(50),

@Surname varchar(100),

@DateOfBirth datetime

AS

DECLARE @Extended xml

SET
@Extended='<person><firstName>'+@FirstName+'</firstName><surname>'+@Surname+'</surname></person>'

IF (@DateOfBirth IS NOT NULL)

 BEGIN

 DECLARE @Dob nvarchar(10)

 SET @Dob=CONVERT(nvarchar(10),@DateOfBirth,20)

 SET @Extended.modify('insert <dateOfBirth>{sql:variable("@Dob")}</dateOfBirth> as last into
(/person)[1]')

 END

INSERT INTO Stakeholder(Name,ClassAttributes,isPerson)

VALUES(@FirstName+' '+@Surname,@Extended,1)

Executing the above sproc like this:

EXEC InsertPerson 'Joe', 'Soap', '1 Jan 1980'

Results in a record with the basic information and an XML structure that neatly contains all of the other bits of
information and would store the following XML:

<person>

 <firstName>Joe</firstName>

 <surname>Soap</surname>

 <dateOfBirth>1980-01-01</dateOfBirth>

</person>

Notice the use of the XQuery insert that only adds the attribute if it is not null, resulting in neater looking XML data.

A similar sproc for organization would store XML something like this:

The Best of SQLServerCentral – Vol. 5

 309

<organization>

 <name>SQLServerCentral</name>

 <registrationNo>ABC1234</registrationNo>

</organization>

My individual [Person] and [Organization] tables are implemented as views like this:

CREATE VIEW Person

AS

SELECT StakeholderId, ClassAttributes.value('(/person/firstName)[1]', 'varchar(50)') AS
FirstName,

 ClassAttributes.value('(/person/surname)[1]', 'varchar(100)') AS Surname,

 ClassAttributes.value('(/person/dateOfBirth)[1]', 'datetime') AS DateOfBirth,

 ClassAttributes.value('(/person/title)[1]', 'varchar(10)') AS Title

FROM Stakeholder

WHERE (isPerson = 1)

CREATE VIEW Organization

AS

SELECT StakeholderId, Name,

 ClassAttributes.value('(/organization/organizationTypeId)[1]', 'int') AS OrganizationTypeId,

 ClassAttributes.value('(/organization/registrationNo)[1]', 'varchar(20)') AS RegistrationNo

FROM Stakeholder

WHERE (isOrganization = 1)

The views are an interesting implementation in that from a relational model point of view they are valid relations and
the syntax to use them will be standard SQL. Consider the query where we want to search on the name of a
stakeholder, but with people we need to query the surname and on organizations we need to query the name. The
following query, even though it has XML innards is a perfectly valid and understandable query.

SELECT StakeholderId, Name

FROM Organization

WHERE Name LIKE 'S%'

UNION

SELECT StakeholderId, Surname

FROM Person

WHERE Surname LIKE 'S%'

The Best of SQLServerCentral – Vol. 5

 310

There are other ways to query the XML directly using XQuery but I want to stay as close to ANSI 92 syntax as
possible.

Even though we are storing non-relational data in our SQL database we don't really break that many relational rules.
Technically the relational model states that the storage of data is independent of the model so, the argument that the
use of views is non-relational is invalid (sort of) - if [Person] and [Organization] are implemented as views, which are
valid relations, then we are not breaking any rules.

By now, any real DBA would be thinking This guy is frikkin insane, it will perform like a dog! This is both a correct and
incorrect thought no, I am not frikkin insane and yes, performance can be an issue. I would not recommend this
approach if you have a structure with millions of records, which would be the case with the stakeholder structure in
large enterprises. But what about structures with fewer rows, even in the tens or hundreds of thousands? Maybe a
product classification or retail outlet classification would perform adequately? You may also notice in this example that
Name is redundant, since it is contained in the XML anyway this has been done on purpose for performance reasons
since most of the queries only want the name which is a common attribute, so there is no point in mucking about with
the XML.

Another key aspect with regard to performance is understanding the interfaces. In my particular implementation, if I
wanted to create proper fields for the attributes there would be no far-reaching impact. The interfaces to the sprocs
wouldn't change and the fact that I may have replaced the Person view with a table would make no difference to
existing SQL.

Denormalization of Temporal Data Using XML
Consider a requirement stating "For ordered items, display the part name and the stock on hand". This
may be turned into a query something like this:

SELECT o.OrderId, o.PartId, o.Quantity, o.Cost, p.Name, p.StockAvailable

FROM OrderItem o INNER JOIN Part p ON p.PartId=o.PartId

WHERE OrderId=1

As with most requirements it is not specific enough and should read "For ordered items, display the part name and
the stock on hand when the order was placed".

The problem with the above query is that part information, particularly the available stock, changes continuously and
the query doesn't take this into account. Many similar problems exist with data that is date dependant (temporal data).
Again, there are many ways to resolve this problem you could have [Part] movement records and join based on the
order date to the movement tables, or you could denormalize your structures and create an [OrderItem] table with the
[Part].[Name] and [Part].[StockAvailable] values in fields on [OrderItem]. The most common approach by far is to do
neither and land up with all sorts of issues relating to the temporality of the data which puts the integrity of the entire
database in question by the users.

Generally, unless I need to create a specific structure to handle temporality where it may be important I tend to take
the easy route and denormalize my structures. The problem is figuring out how many of the fields from [Part] should
be stored on [OrderItem] to handle all the various combinations of queries that the users may think up in future. Also,
it looks ugly when [Part] fields are reproduced on the [OrderItem] table apart from breaking a few relational model
rules along the way.

In a recent system there was a need to store some 'snapshot' temporal data, but since other parts of the system were
not specified, never mind developed, we were unsure which fields to store the solution was to store most of them in
an XML field and worry about it later.

So in the above example I would create a table something like this:

CREATE TABLE OrderItem(

OrderId int,

The Best of SQLServerCentral – Vol. 5

 311

PartId int,

Quantity int,

Cost money,

PartStore xml)

With sprocs to handle the inserts and updates,

CREATE PROCEDURE InsertOrderItem

@OrderId int,

@PartId int,

@Quantity int,

@Cost money

AS

DECLARE @PartStore xml

SELECT @PartStore='<part><name>'+Name+'</name><stockAvailable>'+CAST(StockAvailable AS
varchar(10))+'</stockAvailable></part>'

FROM Part

WHERE PartId=@PartId

INSERT INTO OrderItem(OrderId,PartId,Quantity,Cost,PartStore)

VALUES(@OrderId,@PartId,@Quantity,@Cost,@PartStore)

This would create a store of temporal data something like this

<part>

 <name>Part 1</name>

 <stockAvailable>10</stockAvailable>

</part>

When querying data I simply look in the XML for the part data that I need,

SELECT OrderId, PartId, Quantity, Cost,

 PartStore.value('(/part/name)[1]', 'varchar(50)') AS Name,

 PartStore.value('(/part/stockAvailable)[1]', 'int') AS StockAvailable

FROM OrderItem

WHERE OrderId=1

The Best of SQLServerCentral – Vol. 5

 312

And as per the classification examples above, I can wrap the queries into nicely named views if I prefer.

The plan is that over time, provided my interfaces remain the same, I can add Part attributes directly to the OrderItem
table if needed. This can be done on a production database and I would just need to alter the table,

ALTER TABLE OrderItem ADD PartName varchar(50)

UPDATE OrderItem

SET PartName=PartStore.value('(/part/name)[1]', 'varchar(50)')

and change any sprocs or views that reference the table all very backwards compatible.

Summary
A year ago I would have recoiled at the mere suggestion of using XML directly in the database, thinking
that it was the domain of junior asp developers who can't tell a relation from a relationship. Over the last
few months the XML Temptress in SQL 2005 has lured me into her parlour providing a mechanism to
approach old problems in new ways.

I would still be in line violently opposing persisting objects as XML in the database as object oriented bigots would be
tempted to do, after all, they say that the database is just a persistence mechanism for their objects. I can picture
object orientation bigots advocating a database of one table with two attributes, ObjectId (GUID) and ObjectData
(XML) such an image is concerning.

However, I hope that I have demonstrated that if carefully thought through that XML in the database can be useful
and elegant provided that it is done within the context of the overall architecture. The biggest issue with XML in the
database is understanding when performance becomes the overriding factor as to where and how data is stored after
all it is mostly the performance of databases that your DBA has to deal with anyway.

Simon Munro

Simon Munro is currently pursuing the Microsoft Certified Architect (MCA) certification and maintains a blog at
http://www.delphi.co.za/ that covers many interesting ideas on using Microsoft technologies.

I've Got the XML - Now What?
By David McKinney

OK, I've got the XML - Now what can I do with it?!!

In this article, I'm going to show you how can start by extracting XML from your database and finish up with an html
file which documents your database tables.Along the way we'll also be touching upon System Views, XSL, XPATH
and SSIS.

The goal is to give you a taste of what you can do with your XML, and hopefully inspire you to put XML to use, and
pick up where I've left off. The stages are listed below

1. Write the SQL to get the XML.
2. Write the XSL to transform the XML to HTML.
3. Write the SSIS package to make the transformation happen.

http://www.delphi.co.za/PermaLink,guid,85e82a78-7144-4161-b57c-e3fac8f7929d.aspx
http://www.delphi.co.za/
http://www.delphi.co.za/

The Best of SQLServerCentral – Vol. 5

 313

To keep things as simple as possible, the example we'll be working through will just create a list of table and field
names, but I'll also include source code to extract information about Primary keys, indexes, foreign keys etc..

1. Writing the SQL to get the XML

Figure 1 shows the SQL to extract the table and field information. Figure 2 shows example XML that this generates.
The query that extracts the field names is a subquery of the query which extracts the table names. This means the
fields appear as child nodes of the parent table.

select xTable.name as table_name

 , (

 select col.name from sys.columns col

 where col.object_id=xTable.object_id

 ORDER BY col.column_id

 for XML auto, type

)

from sys.tables xTable for

XML auto, type

Figure 1

<ROOT>

 <xTable table_name="Customer">

 <col name="CustomerID" />

 <col name="SalesPersonID" />

 <col name="TerritoryID" />

 <col name="AccountNumber" />

 <col name="CustomerType" />

 <col name="ModifiedDate" />

 <col name="rowguid" />

 </xTable>

 <xTable table_name="CustomerAddress">

 <col name="CustomerID" />

 <col name="AddressID" />

 <col name="AddressTypeID" />

 <col name="rowguid" />

The Best of SQLServerCentral – Vol. 5

 314

 </xTable>

</ROOT>

Figure 2

2. XSL which transforms the XML into HTML.

The XSL is shown in figure 3. Basically we start with the ROOT node, and navigate down through the document.
Inside the root node we put the HTML that we only want to display once in the document -- as we know we will only
have one ROOT node in the XML document. The <XSL:apply-templates select="xTable"> will write the text inside the
<XSL:template match="xTable"> node, for each xTable node in the XML document. The xTable template in turn calls
the col template for each child col node.

You could parallel this to pseudo code like

write header

Foreach xTable in ROOT

write something

 Foreach col in xTable

 write something

 Next

Next

write footer

I'd recommend you get an XML editor such as XML SPY to help you author XSL sheets. (There is a free home
edition, with sufficient functionality.) This will give you access to intellisense, will syntax check your documents, and
will execute transformations. (code at www.sqlservercentral.com)

3. Write the SSIS package to make it happen.

I mentioned earlier that a XML authoring tool can be used to execute a transformation. Sometimes, though, you need
a more automated solution. For example, if you want to carry out multiple transformations on the same document or
on multiple documents. (e.g. if you wanted to create a separate HTML file for each table.) There are several ways to
achieve this. If you don't want to write code, then perhaps SSIS is the easiest method available.

The Best of SQLServerCentral – Vol. 5

 315

Picture 1 - The SSIS package

1. Execute SQL Task

You need an Execute SQL task with a connection to your database. Make sure the ResultSet is set to XML,
SQLSourceType to DirectInput, and paste the SQL statement we constructed earlier into the SQLStatement.

We need to catch the output in a global variable, so create a string variable called XMLAsString, and set the Result
Set Variable Name to this. Note that Result Name must be set to zero. (Don't ask me why. It just does!)

The Best of SQLServerCentral – Vol. 5

 316

2. XML Task

You need an XML Task, with OperationType XSLT (to denote that you're doing a transformation). You need two file
connections, one for the XSL file (which you save to the file system) and another for the output HTML file.

Running this package generates an HTML file like the one below. I agree, it's hardly spectacular. I've included a
more sophisticated SQL query and XSL file which will give you the following style of output.

The Best of SQLServerCentral – Vol. 5

 317

This is still nothing spectacular, but if you can follow the code and are good at HTML, you can quite easily expand on
it to generate much more comprehensive output. I should mention that you don't have to generate HTML. It could be
a csv file, or a generate table script. There is an infinite number of possible applications. If you're interested, you can
download some XSL code for more sophisticated output. So go on - what are you waiting for? Give it a try!

XML Argument Protocols for SQL 2005 Stored Procedures
By Jack Hummer

This article describes using some of the new XML functionality provided by MS SQL Server 2005 as applied to
argument passing to T-SQL stored procedures. One of the more tedious areas of application support is managing
arguments passed to and from T-SQL stored procedures. Unlike other RDBMS engines such as Oracle, T-SQL does
not support the notion of passing in record structures as arguments from a client directly to a T-SQL stored
procedure. Realizing that the new XML functionality might offer some relief in this area, I did some searching to see
what anyone else had come up with. I found some articles related to XML, but the articles I did find used SQL 2000
and had the primary focus of using XML for bulk Inserts with no preliminary data validations or other processing steps
(see References below). As I had some different objectives in mind, and I found no articles highlighting the new SQL
2005 XML features, I decided to present my ideas and results here.

Background

The use of MS SQL Server as a web back-end storage system is well understood. Maintaining the stored procedures
that interact with web clients can be tedious, with the lack of record structure support to and from stored procedures a
contributing factor. There are several consequences to this, including:

• Commonly used procedures have multiple copies created with slightly different arguments
• There are many instances where passing numerous arguments and/or varying number of arguments

to stored procedures can be awkward or nearly impossible
• Altering the arguments to a commonly used procedure can be a high-maintenance task any dependent

code snippets must be changed in parallel

http://www.sqlservercentral.com/columnists/dmckinney/xslcode.zip

The Best of SQLServerCentral – Vol. 5

 318

• T-SQL does not include a formal mechanism to pass in record structures from a client application,
much less support passing in a varying number of records

Transaction support is another labor intensive effort: In a web back end, the database context, or session, only exists
as long as that one procedure call is active. Thus, a transaction that requires multiple procedure calls requires some
way to wrap the transaction/rollback around the multiple invocations. For example, storing an e-commerce transaction
can involve a dozen tables and multiple, varying number of rows per table (e.g. sales line items) which is really
impossible to pack into standard procedure call arguments. Some people use this difficulty as a reason to embed
SQL in their application code instead of placing it into a stored procedures.

Another interesting case arises when you want to send a stored procedure the minimal number of columns in a row to
update. First, we have the issue of variable number of arguments (which columns are getting updated?); next, we are
faced with future maintenance issues as columns are added to (or deleted from) the table; then the update code has
to decipher a tri-state assertion for each column in the table: Do we leave the column alone, update it to a value, or
update it to Null? Traditional argument calling sequences might involve two arguments per column, one to pass the
new value, and an indicator variable to say if we are really updating or not - not pretty. The open structure of XML lets
us define such things easily.

Finally, there is the reverse interface issue of sending back to the calling program multiple values, possibly structured;
for this discussion I will use error messages. Suppose we have a row insert procedure, and we do a number of
validations on the column values before executing the Insert command. What we do not want to do is bail out after
detecting the first error, go back to the user with one error, they fix it and resubmit, we bail out on the next error, etc.
until the user gets dizzy. We would like to do all our data validations and pass back all the conditions and messages
in one pass, so the user can fix them in one try. Here again we need to pass multiple results (independent of a
dataset), which the basic T-SQL Procedure argument list makes difficult if not impossible.

Thus the issues at hand are:

• Number of arguments (complexity), and maintenance issues (add/delete arguments)
• Tendency to create multiple copies of the same procedure for slightly varying input conditions
• Passing a record structure
• Passing a varying number of multiple records
• Adding processing criteria to arguments (e.g. no update; update with value; update to Null)
• Pass back a varying number of (potentially structured) values, e.g. error messages.

XML As A Solution

T-SQL has native support for manipulating XML in SQL 2000, but with the release of SQL 2005, XML support is even
better. T-SQL arrives with additional functions and an actual XML native datatype [essentially an nvarchar(max) with
storage in "optimised UTF-16 characters" per BOL]. There are some curious comments in the BOL about the
overhead of XML processing, but I have not yet tried to measure it. My general rule is, if a certain syntax or process
makes for increases in programming efficiency and reliability as well as reducing long term maintenance, I care less
about a little additional overhead on the machine.

Client Code

On the application (e.g. web page) side, instantiating the MSXML object to create an XML document certainly has
overhead, especially as it supports a lot of esoteric XML syntax that may be seldom used. With the new SQL Server
2005 enhancements, some of the client-side processing can be entirely relieved: XML arguments can be treated as a
string and passed to a stored procedure without any need for complicated objects to help us. You should certainly use
the MSXML object if it fills other requirements the client-side application needs. Note: If you do not use the MSXML
object, then you need to handle the translation of reserved characters into their alternate representations, a.k.a.
'entities' . For example the XML reserved character "<" [less than sign/open angle bracket] in user data must be
replaced with the XML Entity "<". The same holds for ">", "'", """, and "&". You could write a small function to handle
those [hint: process "&" first].

The Best of SQLServerCentral – Vol. 5

 319

Using XML makes the calling convention to stored procedures very simple: As the XML is by its nature structured,
when we extract values out of the XML from inside the procedure, the code need make no assumptions about
ordering of individual data items; handling data element existence or non-existence is also handled gracefully. The
presence of possibly obsolete data items is no longer a bother to the stored procedure - it simply ignores them. All of
this helps reduce maintenance.

Web Server Application Code

We utilize the fact that an XML document can be represented by a character string, and simply append and build it.
Note, if you really wanted, you could instantiate the MSXML object and build your XML with that, but this seems far
too much for the job at hand. My presumption is that all of the user input has been collected and validated to some
extent by the application program, and is then to be passed to the database as a single transaction.

Example: Insert Customer Row [vbscript]

xcmd = "<arg><first_name>" & firstName & "</first_name><last_name>" & lastName &_

"</lastname></arg>"

where arg is the root tag for the whole document, and firstName, lastName etc. are the variables holding the user
input. If a data item is missing, the stored procedure can fill in a default or raise an error, depending on the business
rules involved.

Example: Update Customer Row [vbscript]

xcmd = "<arg><customerid>74285</customerid><first_name>Robert</first_name>" &_

 "<company_name null='yes'/></arg>"

This could be sent to an Update procedure. It provides a primary key, a new first name, and an explicit instruction to
set the company name to Null; all other columns are unmodified.

Example: Create Sales Transaction [vbscript]

xcmd = "<arg><customer><first_name>Mary</first_name>. . . .</customer>" &_

 "<order_header><order_date>08/15/2006</order_date>. . . .</order_header>" &_

 "<order_lines count='6'><line productid='7294' . . .>" &_

 "<line productid='8241' . . .>. . . .</order_lines>" &_

 "<payment><type>Visa</type>. . . .</payment></arg>"

Here we consolidate multiple record types, and multiple records for sales line items, all into one procedure call. This
can then easily be wrapped in a single Transaction in case of unexpected database errors. The line count is optional,
but if you know it then why not send it along, the procedure can make use of it. Otherwise the procedure will have to
loop on searches for order_lines until it runs out of them. Remember that in most cases the non-significant white
space (blanks, new lines, etc. in between elements) are ignored and often disappear when the XML document is
stored in a canonical form, such as an XML variable.

I have written web page scripts that do just this kind of processing. First you call a procedure to add the customer.
Then call another procedure to add the order header. Then a big loop call to insert each sale line item. Yet another

The Best of SQLServerCentral – Vol. 5

 320

procedure to post the payment. And if one of these burps along the way? Go write another procedure to try to clean
up a half-baked transaction! That kind of processing is where this interface really shines.

Example: Error Message Return Results

<err>

 <error>

 <err_code>APP001</err_code><err_msg>First Name is a required field.</err_msg>

 </error>

 <error>

 <err_code>APP002</err_code><err_msg>Last Name is a required field.</err_msg>

 </error>

</err>

This might be returned by a procedure call. Multiple messages can easily be handled, as well as a record structure
(shown here) composed of both an error code as well as the error text message. Successful execution is indicated by
simply returning Null.

Stored Procedure Interface and Code

The calling program (a server-side web page script, for our examples) makes a standard procedure call, passing the
string that has been built as an input XML argument. plus an output XML argument for the error status return. The
variable types could typically be double-wide character, e.g. Unicode.

Here is an excerpt of a stored procedure to validate values then Insert a customer row.

Editor’s Note: This code is available from www.sqlservercentral.com.

For convenience as well as modularity, I created a small T-SQL function to insert one error record into the XML error
document. This will get enhanced in the future, for example returning the error message in the users language, or
optionally writing it to a log file.

Editor’s Note: This code is available at www.sqlservercentral.com.

A few notes on this code and related programming issues:

• The XML data type acts very much like an object, a new twist for T-SQL. It is also very flexible, as it is valid as a
variable, argument, or function return. However, from ASP, ADO did not like it as an output variable type.

• Many of the new methods/arguments require lower case only, an abrupt change from most vendors SQL syntax
which has usually been case insensitive. Not my preference but, hey, they forgot to ask me.

• The .value method utilizes XQuery syntax. If you have not seen this before, it is a complex language used to find
things inside an XML document. Don't try to learn it from BOL, look for an introductory tutorial on the web (but,
most of the introductory material I found progressed very quickly into advanced language features without
completely explaining the fundamentals).

• You will need to experiment a bit to see what happens when you search for element values or attribute values and
they do or do not exist.

• The .modify method uses both standard XQuery plus new extensions that Microsoft had to invent. The standards
people have not yet addressed XML update syntax. Re-read the BOL articles a few times until it starts to make

The Best of SQLServerCentral – Vol. 5

 321

sense. In particular, the first argument must litterally be a string litteral, which seems rather limiting at first, unless
you manage to stumble across the "sql:variable()" work-around.

• Contrary to popular belief, apostrophes (a.k.a. single quote) may optionally be used around XML attribute values.
• The .value method returns the reserved entities back into their original characters.
• Within T-SQL, CAST or CONVERT an XML variable to a character string type leaves the special entities intact.
• The .value method will right-trim the return string according to the data type specification, with no error.

Special Note: when putting together these ideas into some real production code, I found the procedure return
argument as an XML data type did not work coming back through ADO to vbScript, so I changed it to an NVARCHAR.
This worked just fine when loading it into an MSXML object. The .Net infrastructure may provide enhanced support for
passing XML.

Stored Procedure - XML Code Loop

So you may ask, How do I exactly process an unknown number of records in the input XML structure? Given the
restrictive syntax on the built-in XML methods, the only solution I have come up with is sp_executesql. You will
customize this for your situation, but here is a small example:

SET @n = 1

SET @params = N'@x XML, @value INT OUTPUT'

WHILE 1 = 1

 BEGIN

 SET @cmd = N'SET @value = @x.value(''(/arg/cat)[' + CAST(@n AS NVARCHAR(2)) + ']'',
''INT'')'

 EXECUTE sp_executesql @cmd, @params, @x = @xarg, @value = @id_cat OUTPUT

 IF @id_cat IS NULL

 BREAK

 -- do some processing

 SET @n = @n + 1

END -- while

Example: ASP Calls the Stored Procedure [vbscript]

Editor’s Note: Code at www.sqlservercentral.com

The above is a very simple example, but demonstrates everything we have discussed. The error display to the web
page could be wrapped in a small function, and as an alternative could be handled nicely with some XSLT code as
well.

What About Schemas?

Yes, for added data validation you could add schema definitions. But for something as transient as argument passing,
it seems like too much extra overhead. But for some very critical processing it may be appropriate.

The Best of SQLServerCentral – Vol. 5

 322

Speaking of Overhead

The extra overhead of converting native data types into XML and back, as well as the overhead of instantiating the
MSXML object seems to be the only noticable downside to this approach. For me, the added capability of passing
variable amounts of data plus any reduction in long term maintenance makes it a winner. But probably no worse than
the creation of a recordset to return structured data. Certainly many if not most procedure calls will not need complex
variable input arguments, and the XML output processing is only invoked if there is an error, presumably only a small
per centage of the time.

In Conclusion

MS SQL Server T-SQL does not provide a robust interface for passing in varying numbers of arguments or any kind
of record structure. On output we may also desire a logical multiple record structure, separate from a data recordset.
And the more arguments a procedure takes, the bigger the maintenance chore.

An XML input argument provides a simple way to send from application code a variable number of arguments,
including arbitrarily complex logical record structures. An XML output argument likewise is a good container for
multiple return values, again including optional record structures. Since the stored procedure just ignores any input
elements it does not need, and can often provide defaults for elements not passed, you have a greater chance of
being able to make changes to the stored procedure and/or underlying database structure and have relatively little or
no impact on existing programs that use it.

References:

These all reference SQL 2000, and mostly use the XML input to just do a direct bulk Insert without preliminary data
validations.

http://www.devx.com/dotnet/Article/16155/0/page/2
http://www.sql-server-performance.com/jb_openxml.asp
http://msdn.microsoft.com/msdnmag/issues/05/06/DataPoints/
http://www.devx.com/dotnet/Article/16032/1954?pf=true

A Microsoft article on XML functionality overview in SQL Server, emphasis on SQL 2005.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql2k5xmloptions.asp

Introduction to XQuery in SQL Server 2005

http://msdn.microsoft.com/SQL/default.aspx?pull=/library/en-us/dnsql90/html/sql2k5_xqueryintro.asp

http://www.devx.com/dotnet/Article/16155/0/page/2
http://www.sql-server-performance.com/jb_openxml.asp
http://msdn.microsoft.com/msdnmag/issues/05/06/DataPoints/
http://www.devx.com/dotnet/Article/16032/1954?pf=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql2k5xmloptions.asp
http://msdn.microsoft.com/SQL/default.aspx?pull=/library/en-us/dnsql90/html/sql2k5_xqueryintro.asp

The Best of SQLServerCentral – Vol. 5

 323

Misc.

Every year we publish a number of articles on topics that aren’t directly related to SQL Server technologies. Career
advice, certification, tools, and various other topics are game here.

This year we’ve brought you the best of the “other” articles that were very popular with our readers.

Windows Utilities for the SQL Server DBA .. 324
From DBA to DBAA ... 326
What's a Good Manager.. 328
Mind Your Manners ... 332

And now this..the only section devoted to (n)etiquette for those who respond!!! 336

The Best of SQLServerCentral – Vol. 5

 324

Windows Utilities for the SQL Server DBA
By Chad Miller

This article is a short summary of Windows utilities both GUI and command line intended for new SQL Server DBAs
or those interested in learning some useful techniques. All examples use native Windows utilities/command or are
available through Resource Kits, Administration Tools or Support Tools. Let's look at some examples.

FOR and FORFILES Commands
This simple command is used to delete old backups with .trn, sqb and bak extensions older than two days
for files in the current directory and all subdirectories.

for %I in (TRN sqb bak) do FORFILES /S /D -2 /M *.%I /C "cmd /c del @file"

The for %I in (TRN sqb bak) command executes Forfiles three times once for trn, sqb and bak. The forfiles
command includes several switches:

• /S -- include all subdirectories
• /D -2 -- select files with date older than two days
• /M -- match .trn, sqb or bak extension

I've seen complicated T-SQL xp_cmdshells, Perl, VBScripts and bat files to do what turns out to be
included in the OS! The FORFILES command is included in Windows 2003 and the Windows Resource
Kit. It is not included in Windows XP,however you can simply copy the forfiles.exe file from any Windows
2003 Server and it will run on Windows XP also. The for command is included in Windows 2000, 2003
and XP.
Need to execute a SQL script against a bunch of SQL Servers, try this command:

for /f %i in (servers.txt) do SQLCMD -S%i -i C:\myscript.sql

Resource Kit Utilities

There are four Windows tools I'll install on every workstation I use:

• Windows Server 2003 Administration Tools Pack available as a download from Microsoft
• Windows Server 2003 Resource Kit Tools also available as a download from Microsoft
• Windows Server 2003 Support Tools which available from the Windows 2003 CD
• Windows Server 2000 Resource Kit Tools which unfortunately isn't available as a free download,

however it can be downloaded from MSDN, if you have a current subscription

There are only four primary tools I'll regularly use as a DBA from the Windows 2003 Administration Tools
Tools pack:

• Cluster Administrator for well, administering a cluster
• Terminal Services Manager for viewing who is using the Administrative Terminal Services connections

and disconnecting someone who has forgotten to log off one of the connections
• Active Directory Users and Computers for viewing accounts, lockout status, group membership.

Although I prefer to do most of this via the command line through other tools
• Computer Manager for connecting to remote systems to view the Event log, manage services and

change local accounts

The Best of SQLServerCentral – Vol. 5

 325

The Windows Server 2003 Resource Kit Tools and Windows Server Support Tools include many utilities,
however there isn't one that I use on regular basis. The Windows Server 2000 Resource Kit Tools,
however has three utilities which I find invaluable as a DBA:

• SHOWMBRS -- displays NT/AD group membership from the command line. Used primarily to assist in
troubleshooting or assigning AD groups to SQL Server

• SHOWGRPS -- displays an NT/AD login groups from the command line. Used like SHOWMBRS only
from the login perspective

• SRVINFO -- displays a wealth of information on the OS, hotfixes, drives, services, and uptime of
remote systems from the command prompt

WMIC

WMIC is probably one of the most powerful, yet least used series of commands by administrators. It is included with
Windows XP and Windows 2003 and can be used for shutting down services, monitoring process, or just getting
information.
Need to shutdown the SQL Server services on all SQL Servers remotely? Try this single one-line command:

wmic /node:@C:\servers.txt service WHERE "Name Like 'MSSQL%'

 And Name<> 'MSSQLServerADHelper'" CALL StopService

Need to know all of the SQL services running on a server?

wmic /node:MyServer service WHERE "(Name Like 'MSSQL%' OR Name Like 'SQLAgent%'

 OR Name Like 'SQLServer%' OR Name = 'MSDTC') And Name<> 'MSSQLServerADHelper'" get
DisplayName, Name, State

Here's one of my favorites, a disk command that displays output similar the UNIX df -kH command, it's a little more
complex than the previous examples in that it uses a custom XSL transform. One of the interesting thing about WMIC
is that it can output XML which in turn can be transformed using XSL, so I created an XSL file called logicaldisk.xsl.
Copy the xsl file to the C:\Windows\System32\Wbem directory to use this command.

wmic /node:MyServer logicaldisk get Caption, VolumeName, FreeSpace, Size, SystemName
/format:logicaldisk.xsl

And the output of the command will look something like this:

Caption FreeSpace Size SystemName VolumeName Free%

A: MYSERVER

C: 0.8G 8.4G MYSERVER 10%

E: MYSERVER

F: 6.6G 11.2G MYSERVER EMC_12 59%

I: 57.8G 67.4G MYSERVER EMC_67 86%

J: 62.0G 67.4G MYSERVER EMC_67 92%

http://www.sqlservercentral.com/columnists/cmiller/logicaldisk.xsl

The Best of SQLServerCentral – Vol. 5

 326

Windows Command-Line Scripts

Yes, Windows command-line script aka bat files are still relevant in today's world of VBScript and WMI, a few lines in
a bat file can be quickest way to write a useful tool. And WMIC is a great way to do a lot of things quickly, however
remembering all of the commands and having to type a long command string doesn't seem too appealing. Here's
where command line scripts really shine, abstracting away a complex command to simple one word command
accepting parameters. For example the command listing disk information can be wrapped in a command line script as
follows: (code at www.sqlservercentral.com)

We're still basically executing the same one-line command as before, we've just added some icing to our original
solution, so that we can enter a single command disk to display disk information. By the default the local machine
disk information is displayed. To display disk information for a remote server enter disk MyServer1 or to display disk
information from multiple machines by entering each server separated by a space, disk MyServer1 MyServer2

Conclusion

There are many more Windows utilities and commands than can be covered here, this article has demonstrated only
a few commands and Windows utilities which are relevant to a SQL Server DBA. The CLIforDBA.zip file contains
several examples of Windows script files.

From DBA to DBAA
By Jeffrey Yang

Introduction

With more business relying on data, we DBAs seem to have a more promising future. But a question naturally comes
out, "Where is the next career stop for a DBA in terms of challenges and self-value realization?" In this article, I'd
explore one possible career transition path for DBAs, i.e. from a database administrator (DBA) to a database
administration architect (DBAA), and I will try to address the following questions: what is a DBAA, the major work and
responsibility of a DBAA, the values of a DBAA. and how to be a DBAA.

What is a DBAA?

A DBAA is a professional who is responsible for designing a solution framework that maximizes the efficiency of the
resources dedicated to the data system administration to meet the business challenges, such as cost, performance,
security and regulatory compliance requirements etc.

The main responsibility of a DBAA is to achieve the highest possible ROI with the available resource in the context of
the various business requirements. The details of this responsibility may include

Define the administration scope in terms of targets and risks / costs
Build up an optimized processes model which can maximize the ROI for the current resources
Pioneer in evaluating / choosing the right mix of technology
Explore / create innovative methodology to adapt to business environment.
Act as a facilitator / advisor for the stakeholders to best use the data system / asset.

The values of a DBAA

A DBAA's values lie in three fronts:

First to the business: a DBAA focuses more on business instead of servers, which means a DBAA is to take care of

http://www.sqlservercentral.com/columnists/cmiller/CLIforDBA.zip

The Best of SQLServerCentral – Vol. 5

 327

the business needs from database administration perspective. This can range from designing processes to meet
special business needs (e.g. auditing purpose), ensuring database system performance / security quality, to
facilitating other system architects for better business projects etc.

Second to the team: a mentor for valuable advice; a resource for in-depth technical discussion (have you ever had the
feeling that it is tough to find someone knowledgeable enough to discuss your "exciting" technical ideas?); a hero who
may help the team out of the hot water from time to time.

Third to the management: an assistant to the management success, a manager succeeds only when his/her team
members succeed. With a DBAA providing robust and innovative solutions to manage the business core asset, i.e.
data, it will be easier for the manager to demonstrate the value of his/her team to the company.

Professional traits of a DBAA

A DBAA should basically have the following three fundamental traits:

1. An imagination dreamer: a DBAA's capability is only limited by his imagination. Most of the time, it is not difficult to
solve a known problem, but it is hard to foresee a potential problem, which, if solved, may bring huge value to the
business.

2. An innovation explorer: with all "dreams" at hand, a DBAA needs to explore all the possibilities to realize the
dreams. For example, to do a full backup, you can use T-SQL, but you can also use DMO / SMO with VBScript or
PowerShell, and you may even use SQL Writer with VB.Net. Which method to use? The famous answer is "It
depends".

3. An implementation practitioner: Once a solution is chosen, the capability to implement the solution is critical. A
good example here is you may have exact ideas of how to decorate your house, but to implement the decoration is
totally different from the pure decoration ideas. To do decoration yourself, you may need to know how to do hardwood
flooring, how to do drywalls, how to do painting, where to purchase the best affordable materials etc, etc.

The path to be a DBAA

There is no existing way to be a DBAA, but a road is always created by pioneers' footprints.
A DBAA should first establish his/her working philosophy and then proceed his/her work with this philosophy.
To me, a DBAA's work domain can be summarized as dealing with a simple formula.

Expected Goals = Methodology (Resources, Constraints)

Assuming Methodology is the function, Resources and Constraints are the inputs for the function, and Expected
Goals is the result of the function. ("Resources" and "constraints" can be considered as the same depending which
side you are on.)

Expected Goals = the sum of known business requirements + Visions of future

Resources (Constraints) = Current human capital + Time + Budget + Current system environment + Corporate policy
Both "Expected Goals" and "Resources" are constrained by boundary factors, such as availability, deadline and
policy.

So in essence, a DBAA needs to work out a customized formula to maximize the returns (i.e. "Expected Goals") out
of the input.
However, it is important to realize that in real life, any solution is a compromise among the various stakeholders with
different interests.

Some potential research fields for a DBAA
I think the following areas may be very worthwhile for a DBAA to explore because the researches are significant to
build an applicable methodology , which is the primary work for a DBAA.

The Best of SQLServerCentral – Vol. 5

 328

Database administration quality model: How to evaluate an existing administration practices? How is the current
practice benchmarked against various best practices?

Database administration patterns: Can you find out the proven and repeatable way to solve some common issue? For
example, trouble-shooting performance, database system deployment or auditing configuration change?

Database administration operation management: research on the highest value-adding activities / resources
distribution in database administration work

Database administration maturity model: a model against which we use to evaluate the general quality of the
database administration?

Difference between DBA and DBAA

The difference between a DBA and a DBAA lies in the pattern of thought each role may have and the way each will
adopt to approach an issue.
A DBA tackles on day-to-day problems while a DBAA strives for long-lasting methodologies.

A DBA is a solution provider while a DBAA is a process inventor.

A DBA is more of a practitioner with theory while a DBAA is more of a theorist with practices.
In essence, a DBA creates values by providing solutions to tactical issue while a DBAA creates values by
architecting a healthy and high quality database administration eco-system,

Summary

A DBAA is the governor of the data administration kingdom. To better manage the kingdom, s/he needs to define
"laws" for his/her jurisdiction. With these "laws", it is expected to build a healthy and efficient database management
environment together with a culture that will last beyond the scope of the DBAA's regular responsibility and may be
merged with the corporate culture. After these "laws" have been tested and proved to be fair and efficient in the
database administration world, as a "law-maker",

the person can be considered as successfully transitioning from a DBA to a DBAA role

Post-Note

In the last PASS conference (Nov, 2006 in Seattle, WA), I was fortunate to be chosen to attend a SIG meeting
organized by Microsoft to discuss about future high-level SQL Server professional certification, unfortunately I was
unable to attend due to my company's urgent business. I promised the organizer from MS, to submit an article on
SSC detailing my thoughts about the next level of certification for SQL Server professionals.

So in this article, I discussed what we as DBAs can aim for in our next career step, details about DBAA (what it is, its
value and how to achieve it) are discussed.

In short words, a DBAA is a leader that can inspire a team and cultivate a administration culture suitable for the
corresponding business environment; a DBAA is a CFO who ensures the best ROI out of his/her resources in
database administration, a DBAA is a theorist who pursues the practical methodology that can be applied to real-life
world, and finally a DBAA is a practitioner who is capable to see his/her agenda to decision and to final
implementation.

What's a Good Manager
By Janet Wong

The Best of SQLServerCentral – Vol. 5

 329

For the Long Term...

Recently I read Steve's editorial topic, "For the long term". It really got me thinking. In the editorial, Steve talked
about Andy's presentation on "Successful Team Management" and how important it is for a manager to manage his
people first, and attend to the technical stuff later. As Steve said,

"[T]he technical stuff is for today, for this project, for now. Managing people is helping them in their
careers, which will hopefully last decades. Managing people is a challenge, one that I'm not sure I'd like to

do again, but if you find yourself in that job, be sure you accept the responsibility for your people. Think
about them, take care of them, and be sure you spend the time on them they deserve."

Wow! How true and important that statement is! Unfortunately, my experience is that, at least as far as developers are
concerned, fewer and fewer managers are paying any attention to the needs and careers of the people they manage.

I started working as a developer many, many years ago and in that time I have worked for many managers. Some
were very good, some were not so good, and quite a few were awful. I don't think being a good manager has much to
do with your technical skills or background. If you have technical skills and you are a good manager you are a
blessing to all. If you have no technical skills and are a good manager you are still a blessing to all. Bad managers are
a curse regardless of their technical skills or background.

I had some good managers in my earlier years and they were a blessing. I also had a few bad managers in my career
and they gave me nightmares. But what really bothers me is that I think I see that the number of bad managers has
been increasing in recent years. Is this my imagination or has there been a change for the worse? Certainly, if I use
Steve's definition of a good manager as one who helps their people in their careers, there has been a change. Here is
a summary of my experience with managers over the years.

The Good

I worked in a very small company for my first job. I was the 21st employee of that company. My department consisted
of my manager, a computer operator, and me. I wrote COBOL programs and used an HP 3000 workstation and an
IBM mainframe. My manager taught me a lot of programming. But he was also very tough and did not allow people to
make mistakes. I got yelled at every time I made a mistake, no matter if it was big or small.

That was fine so long as I had made a mistake; it made me check my work carefully. But one time one of the
production jobs went down and he blamed me. He said that I had done something to the job. Two days later the
senior programmer found out it was not my fault and told my manager. My manager apologized to me, but I was too
upset and decided to leave the company. I was young and could not get this incident out of my mind. The day I left he
gave me a "Precious Moment" doll. It is still on my book shelf. He was a good man and I think he was a good
manager even though his management style was tough on a young programmer. He certainly taught me to check my
work carefully.

My next job was in the IT department of a big company. My group was responsible for the finance department. I failed
accounting in college so this was a challenge. My manager was an accountant, not a developer. He had no
programming skills and he wanted it to stay that way. Whenever I had any technical questions, I had to ask the senior
programmers. However, my manager tested all my programs and was the best tester I ever had.

My job was writing CICS online programs. When he tested my first program he pressed the escape key and my
program blew up. He told me when I wrote any online program that I had to think like a user and not a programmer. A
user might do anything. A programmer cannot imagine all the things a user might do with their program but you have
to try. I never forgot some of the things he did in his tests. I learned how to test my programs from him. Even though
he had no technical skills, he was a good manager; he cared about the company and made sure his people delivered
quality products.

My next job was with a software development company that developed software for colleges, such as, college
registration and student admission programs. There were a lot of talented programmers in that company. I loved to

http://www.sqlservercentral.com/forums/shwmessage.aspx?forumid=263&messageid=323325

The Best of SQLServerCentral – Vol. 5

 330

work with them. I was amazed at how they solved difficult problems. Those people were the ones I called "techies".
They touched and tried every new technology. But most of important of all, they did not mind helping others, including
me, whenever we had a problem or a question. We could talk, laugh, and learn from each other. Although we did not
become very close friends, I trusted them. Some had the opportunities to become managers and some did; but most
remained as programmers because they loved the excitement of working with leading-edge technology.

I remember one of my projects. It involved writing COBOL programs and sending information to a Kiosk machine. The
company had an Oracle database system. Another co-worker was assigned to write the Oracle queries needed to
send the data to the Kiosk machine. But he had a big production problem and could not work on the project. So the
company tried to hire an Oracle contractor. There were lots of COBOL programmers available for hiring, but they
could not find any Oracle programmers. On the day before my manager took off on vacation, she came over to tell me
they would hire a COBOL programmer to take over my work, and that I was now assigned to work on the Oracle part
of the project. She gave me a couple of Oracle programs as examples, taught me how to compile and run the
program on a UNIX machine and went on vacation for two weeks.

I was stunned! I ran to the bookstore and found any book I could on Oracle and UNIX. By the time my manager came
back from vacation I had finished two of the Oracle programs. She told me she had confidence in me and knew I
would be able to do it. I thanked her for giving me an opportunity to work in Oracle. From then on I became a
database developer writing Oracle Pro C and PL/SQL programs. I also started writing web pages using Oracle
PL/SQL when Internet explorer was version 2. And I started building data warehouses using Oracle and Java when
the concept was still very new. Our manager encouraged all of us to take on new challenges and to grow in every
way we could.

I loved all these challenges. I especially enjoyed working in my group where we all learned these new things together.
Even though we did not agree all the time, we shared our knowledge and produced a very fine product. It was a good
time, but of course the good times never last long enough.

The Bad

A new VP who used to be the manager of another department in the company replaced our old VP. Shortly thereafter
my entire department was eliminated. My manager became a programmer. The new VP moved each of us to different
departments. I do not know why he did this because that department was the best I was ever in. Maybe he did not like
our department, or, maybe he was jealous that we did such a good job. It made no sense to me or anyone I talked
with. None of us liked the changes and we were angry that our department was eliminated. He also put in some new
policies that programmers in other departments were not happy with. Immediately thereafter, resignation letters were
flying all over the company, my own among them. Although the end was not pleasant, I learned a lot in this company,
both from my manager and the developers I worked with. I was sorry to leave it. The ironic thing was the company got
rid of that VP a year later.

I left that company in 2000. The level of management seemed to change rapidly after that. I think I saw more and
more bad managers. Maybe the dot-com-bust was taking its toll.

My next job was as a Data Warehouse developer in a Fortune 500 company. I understood when I was hired that the
company had gone through some serious changes; they had eliminated some departments that did not make money,
and many employees had been laid off. But when I was hired into my department, I was told it was a solid
department, and was making good profits for the company. I did not think it was likely to be eliminated.

It was an eye opener for me to work in that department. Few people worked very hard and few cared about the
company. People would have meeting after meeting to discuss the same things over and over again and they never
came up with a solution. I later learned that the manager of the department was hired because he had a friend
working in upper management. He had no experience working as an IT manager and did not have any technical or
management skills that I could see. The programmers did not respect or listen to him. Some people paid more
attention to fantasy football than working on their job. The company spent lots of money hiring a lot of contractors to
do what we could and should have done.

The Best of SQLServerCentral – Vol. 5

 331

Within a couple of months after I started working there, the company announced that it was going to sell off my entire
department as a unit. Everyone in the department was shocked although I don't know why. It ended up that no one
wanted to buy it and, within six months, the company closed down the whole department.

How did it get like this? Did the people stop working because they knew management was going to dump them, or,
did management decide to dump them because they were not working? I don't know where the managers were
during all this. I think it was caused by bad management from top to bottom. Fortunately, I left the company and got a
new job before the department closed down. I don't know whether to call my experience with this company the result
of bad management, or, no management. Certainly, no one cared about my career.

My next job was with another large Fortune 500 company. Management did not get better. There were serious
conflicts between departments. Instead of working together for the company, each department tried to put down the
other departments. For example, one department was building a data warehouse. My manager knew that I had
worked on data warehouses before so he asked me to build a data warehouse and told me not to tell anyone. I built
the data warehouse using SQL Server and DTS. The other department built the data warehouse using SQL server
and Ab Initio. My manager wanted to prove to upper management that his department was better than the other
department. He showed my work to the vice president, told the vice president that his department could do a much
better job than the other department, and could save a lot of money. The manager of the other department found out,
was furious, and complained to the vice president. So I had to stop working on the data warehouse project. The
project was a duplication of effort, a waste of time, and should not have been started in the first place. I call this bad
management at all levels.

There were many other examples in this company. Upper management decided to outsource development work to
India in order to save money. They promised there would be no layoffs. However the good employees knew better
and started to leave. You could not say anything about the quality of the work of the offshore programmers, even to
your manager. If you said something that suggested they did not do things right, the offshore company people said
you were a racist and prejudiced against Indians. So you just kept quiet about it and corrected their mistakes. If the
project did not go well, the upper management would blame the managers and the US employees even the
development work was done by the offshore programmers. The managers in this company only cared about their own
careers. They did not care about the company and the people working for them. They did whatever the upper
management wanted, and upper management only cared about a nice quarterly earning report.

I simply could not work in that environment and left as soon as I could. I think about the only thing I learned at this
company was to keep my mouth shut.

And The Ugly

I went from the frying pan into the fire. My next job was in a medium size company. Unfortunately, professionalism
was missing in the department I worked in.

My manager was an SQL Server DBA. His style was to yell at people in front of others. When he made a mistake, he
hid it under the carpet. When other people made a mistake, he emailed the whole department.

For example, he wrote a defective procedure to update some production data. When it failed, he did not tell the user
he wrote a bad procedure. Instead, he told the user he did not have time to write the procedure and an update with
the procedure would be issued in the following week. But it was different when others made mistakes. Once I wrote a
script to put my work into production and forgot to 'grant permissions' to the users in the script. After it went in
production, the users could naturally not access the database. My manager yelled at me in public and emailed the
whole department that my implementation failed because I did not check my work carefully.

I think he liked to try to intimidate people in his department. One of my co-workers and friends got a very bad
appraisal. In his appraisal my manager stated that my friend did not do a good job and he could not get along with his
fellow co-workers. We all thought he did a very decent job and he got along well with us. We told him so, and we had
no problems working with him. He thought my manager was biased against him because he disagreed with the
manager a couple times, so he complained to HR about the bad appraisal. Unknown to him, the HR manager was a
good friend of my manager. As soon as my friend made the complaint, the two managers came to my friend's office
and told him that he was fired because of his bad appraisal.

The Best of SQLServerCentral – Vol. 5

 332

This manager was probably the worst I ever had. He only thought of himself. He liked to intimidate people on his
team. I think I reached managerial bottom in that company.

Needless to say, I did not last long at this company.

What has happened?

I don't think I just ran into a bunch of bad-apple managers in recent years. It is clear to me that fewer managers are
"managing for the long term" today than were doing so a few years ago. I know I am not the only one to notice this
deterioration in management. I think most developers today have observed the same deterioration in the quality of
their management. What has happened here? Are we developers facing a permanent deterioration of our
professional environment? I surely hope not.

A lot of people would put the blame on the dot-com-bust and the increasing pressure on IT departments to cut costs.
Managers in IT departments have tough jobs, especially now when most companies seem only to worry about how to
put out a good earnings report every quarter. If the companies fire people, outsource to other countries, or cut
benefits, they can easily cut costs and boost earnings. Is this incompatible with managing for the long term, with as
Steve observed, being concerned and responsible for the careers of their employees? Are the duties of the manager
to his company at odds with the duty of the manager to his or her employees? I doubt it. Why then is this deterioration
taking place?

Maybe there is just too much pressure on the managers today. Maybe they don't have the time or energy left to be
concerned with our careers. I knew two managers in my old companies who stepped down to become developers.
They said they did not make much more money than the senior developer, but the job was too stressful. At another
company, one manager I knew took six months off on short term disability. When he came back, he resigned. At
another company I knew a manager who had to take Prozac just to survive his daily work. I think all these people
were trying to be good managers, working hard for the company and trying to take care of their employee developers.
But the pressure was too great; the corporate culture just did not allow them to do so. This may cause the loss of
some good managers, and prevent others who might have been good managers from trying. But at best, that is only
part of an answer.

When I think about this question, I keep coming back to the one thing that was different at all the companies I worked
for that had good managers. There was trust and respect between the manager and the employees in each of those
cases. Where there were bad managers there was no trust and respect. Maybe trust and respect are simply the
effects and not the cause of good management, but I don't think so. Wherever the managers trusted and respected
me, I trusted and respected them. And when they trusted and respected me they were expressing concern for me and
my career in the most positive way. In my view, they were clearly "managing for the long term" in every sense of Andy
and Steve's description.

So I don't think that there is any incompatibility between a manager's duty to the company and his or her duty to the
employees. I don't think the deterioration in the quality of management that I see is due to the pressures of cost-
cutting and meeting earnings projections. I think the deterioration is caused by a deterioration of trust and respect
between the managers and the employees they manage. These days, with company downsizing and corporate
scandals, people may view trust and respect as impractical values. But they are not. I think they are the foundation of
good management and the foundation of "managing for the long term."

Mind Your Manners
By Sushila Iyer

I often compare logging on to this site to visiting a pub during happy hour. When I am on the site and I see a familiar
name light up in green, it takes all I have to keep myself from shouting out a "hey there - long time no see" or some
such. Sometimes you get to interact with some of your faceless friends while you're responding to the same post -
sometimes you raise a silent toast to a brilliant solution. At other times you just hang out - listening to the heated

The Best of SQLServerCentral – Vol. 5

 333

argument at the next table about whose solution performs better - eavesdropping on some friendly bickering going on
at that far forum in the corner and sometimes even being privy to personal tidbits and details unfold. What draws us
all to this watering hole is gaining and/or sharing knowledge related to SQL Server.

For each rookie with a question or problem, there're any number of eager beavers (ranging from the merely
enthusiastic to those with advanced savoir-faire to acknowledged savants) competing in an unpublicized race - for the
coveted prize of being "first responder". For the most part things go along fairly well at this SQL-Xanadu - till you
come across those notes of discord - some annoying, some just a tad unpleasant and some downright striking.

After years of silently seething over these deviant notes, it struck me that it was possible that some people may not be
aware of what constitutes "acceptable norms". Even though it's almost no different from when you're sitting vis-a-vis
someone - you may be separated by a table or miles of ether - but the rules for interaction and social skills are mostly
similar. I compiled a list of dos and don'ts for all such deviants in order to provide them with a comprehensive catalog.
To illustrate by examples, I have used only contents in actual posts on SSC so I can't be accused of making stuff up.
Everything in double quotes from here on is therefore, an excerpt from one of the many forums.

Know your subject:

Please post in the relevant forum - make a point of reading the title before posting - they are all divided very
comprehensibly between 2000 and 2005 - within these you have Administration, Programming, General, Replication
etc. There is nothing more annoying than trotting off to lend a helping hand in a 2000 related t-sql forum only to find
that it's all about Yukon integration services or vice-versa. The Suggestions forum is the one where I find the most
mis-postings. This one is for the members to make suggestions to the site-owners about a wishlist, changes they'd
like to see, ideas on improving the site etc. More often than not, people seem to think this is to be used for asking for
suggestions - I have seen "coalesce is not working"; "IF statement in a function"; "How we can restrict a single
ROW in SQL server 2005?" posted here and it's really a measure of how dedicated and thorough the SSC members
are, that these get answered at all.

The truth, the whole truth and nothing but..:

The more detailed your query, the quicker someone will post a solution. Vague and cryptic posts end up being
frustrating and time-consuming for both the poser as well as the people trying to help. Here're some quotable
responses from people who want to help but cannot because they don't have enough information:

1) "Please post DDL, so that people do not have to guess what the keys, constraints, Declarative Referential
Integrity, datatypes, etc. in your schema are. Sample data is also a good idea, along with clear
specifications."

2) "Post : - Table definitions - sample data - wrong resultset - expected resultset. It's like asking a mechanic
to fix your flat tire without bringing the car in. That's just not gonna work."

Then the question from someone who wanted to know why his procedure was taking so long to execute without really
giving much more information on run time etc. In trying to extract more information, one member said that time is
really very relative and went on to exemplify - "Einsteins thoughts on the relativity of time: If you hold your hand
on a hot stove for a second that is a long time. If you spend the night with a beautiful woman that is a very
short time."

Help us help you:

This request is joined at the hip with the previous one. Please know that when you post ddl and sample data etc. it
saves the troubleshooter valuable time and you get a double action response in record time. The link that is
referenced here - "SQL ETIQUETTE SITE" is obviously not visited enough. Newbies, in particular, should make it
a point of stopping here first and making it step 1 in the process of posting their query. I've often toyed with the idea of
suggesting to the site-owners that they have a pop-up window that reminds people to visit this site first before
posting. Maybe they could filter it by forum title and number of post counts so (eg.) anyone posting in the newbie

http://www.aspfaq.com/etiquette.asp?id=5006

The Best of SQLServerCentral – Vol. 5

 334

forum that has a post count of less than 100 (or thereabouts) will get this link - like an annoying close cousin of the
intrusive Office paperclip!!! Here's a query from someone who not only needs help but really knows how to ask for it :

**

"I need this for my monthly report. Any help is greatly appreciated.

/* Schema */

DECLARE @MyCalls TABLE

(

CallDate DATETIME,

Calls INT

)

DECLARE @MyCars TABLE

(

DataDate DATETIME,

Qty INT

)

/* Data */

INSERT @MyCalls

SELECT '06/01/2006', 1 UNION ALL

SELECT '06/02/2006', 12 UNION ALL

SELECT '06/03/2006', 5 UNION ALL

SELECT '06/04/2006', 4 UNION ALL

SELECT '06/05/2006', 2

INSERT @MyCars

SELECT '06/04/2006', 1256 UNION ALL

SELECT '06/11/2006', 1267 UNION ALL

SELECT '06/18/2006', 1282 UNION ALL

The Best of SQLServerCentral – Vol. 5

 335

SELECT '06/25/2006', 1298............

/* Requirement */

Calls are recorded daily and cars are counted weekly

I have to create a report how many calls were received per car

daily.

If the parameter is passed as 'PAST'

SELECT A.CallDate, A.Calls / B.Qty (Qty as of previous reorded date from call date)

FROM

 @MyCalls A

JOIN

 @MyCars B

If the parameter........"

**

Eggs in one basket:

DO NOT POST IN MULTIPLE FORUMS. I cannot emphasize this one enough. It really does send many of the
problem solvers into a downright hissy fit (yes - even the men) if they've just spent some measurable time answering
a question to discover that it's been posted in four different forums and was already addressed in one of the others.
It's one thing to have enough ambiguity in the question that you feel that it may be appropriate under multiple forums
and quite another to think that your post would have more visibility if you have an "in-your-face" approach and thrust it
under everyones' collective nose. If you're not sure where to post it, mention that in your post, and if it's too much off
the topic it will be pointed out.

Mind your Ps and Qs:

You ask a question and someone takes the trouble to answer it - sometimes immediately and sometimes after going
back and forth for a long time to help you resolve it. It really does behoove you to thank the person as well as post the
working solution so others can benefit from your post. I know one member who spends an inordinate amount of time
running scripts and doing comprehensive analyses before posting his solution. He's (almost) always unfailingly polite
but even he reached the end of his tether when he got neither a feedback nor a thank you - "Ok, then... you ask a
question, I bust a hump giving you a pretty good answer... did it work for you or what?" At the very least, let
the person know that you're working on it and will get back as soon as you have everything sorted out.

The Best of SQLServerCentral – Vol. 5

 336

Do your homework:

If you have the leeway and can spend some time using the various search features on the site you'll find that many
questions have been answered in part or fully at some time in the past. If those answers don't satisfy your
requirements then you can post your own query. Another good source is Books Online - abbreviated to BOL - the
help documentation that ships with SQL Server and provides invaluable reference. You will be looked upon much
more kindly if you make known the fact that you've tried your best to solve something on your own before seeking
help. Otherwise you may come across harsh but justifiable comments like these:

1) "Dude, get a book and learn, this isn't a school for newbies. We don't mind helping but we actually paid
and worked to get our information."

2) "I think it's time you start TRYING to learn on your own. I'm not paid to show you every little details of sql
programmings and I surely won't do it."

3) "Would you mind to open BOL? Or you prefer somebody else to do it for you and copy-paste the topic
here?"

4) "Sorry for being blunt but you need a wake up call."

Temper that tone:

You're the one seeking help. Set your attitude aside and realize that arrogance on your part will only antagonize
those who are trying to help. There have been some downright rude and appalling posts that on any other site would
not even have merited a response.

1) "..before replying to the question think and if dont know the answer wait for the answer."

2) "I request to those who suggest me to read books online pls dont reply."

3) "Ur answer makes me laugh."

Given the diverse backgrounds of members as well as the fact that the English language is not everyones' strong suit
it is possible to make allowances, but only to an extent. Having adopted (what I thought) a particularly clever
signature line, it was a rude awakening to realize that some actually misread it as a personal attack.

4) "I m no doubt polite, but I may be rude bcoz of following quotation ASCII stupid question, get a stupid
ANSI !!!"

And now this..the only section devoted to (n)etiquette for those who respond!!!

Just because you're a SQL God...:

is no reason to not be patient and courteous with those who are struggling to understand. Anyone who chooses to
help does so because he/she wants to - no one is compelled to help and for the most part most of the members are
extremely helpful without being condescending or unkind. There are those, however, who are inarguably far superior
in their SQL skills and often their chastisement of the uninitiated is so harsh and severe that these people flee in terror
never to come back. Does this not defeat the very purpose of a site like this ?! Here're some classic excerpts from
posts where the newbies have been put through the shredder..

The Best of SQLServerCentral – Vol. 5

 337

Q)"magic tables will created automatically when trigger fires, i want to know that naming convention
means tablename_insert like that, i want correct formation"

A) "We do not work and live in FairyLand where elephants drop out of the sky by magic. Please stop
programming before you hurt someone and take the time to read at least one book on RDBMS and data
modeling."

"Stop progamming and start reading. Then start re-writting all of your code. Have you noticed that most of
the posting are not for help, but for kludges? Scenario: The poster has coded himself into a corner
because he did not bother with even a basic book. He then goes to a newsgroup and posts what Chris
Date calls "do my homework for me" requests."

Sure - these gurus are justifiably angry with all those poorly designed databases out there that're limping along
defying with every lame stumble the very foundations of RDMS - when they take the trouble to explain themselves,
you can actually feel their angst:

"If this were a woodworking newsgroup and someone posted a request for the best kinds of rocks to
smash screws into fine furniture, would you tell them "Granite! Big chucks of it?" Or would you tell them
to look up screwdrivers, pre-drilled holes and specialty screws? And try to get that rock out of their hands
..."

Here's another SQL heavyweight with a sarcastic observation:

"It's funny, but I never have read from anybody designed those databases, everybody just inherited and
does not have a chance to change anything."

and the impassioned comeback from a clearly angered poster who aptly sums up the frustrations of the real world
scenarios that most of us have to face:

"..he also apparently lives in a fantasyland where everyone is hired by a company that is just beginning to
use SQL Server, and therefore has full and utter control over the design, where no one is a short term
consultant that has to work within the existing framework no matter how badly designed, and where there
aren't a million applications already in existence that are running against a database, thus making design
changes extremely tricky. He also seems to forget that there is a state in the learning process that is
between "I don't have a freaking clue about SQL Server" and "I'm a a SQL Server god". In reality, the vast
majority of SQL folks are at some point between the two, and helping them towards the latter goal is why
this board is here. While it's always a good idea to attempt to fix problems with design rather than to work
around them, some of us in the real world are perfectly willing to let you know what would help if you do
have the option of fixing things, while at the same time helping you solve your immediate problem if you
don't. Most of us have been in both pairs of shoes."

As this previous posting points out there are people at such an introductory level, that they really don't have a
"freaking clue about SQL Server" - I had once compiled a list of my favourite top 10 newbie questions that, in
accordance with Murphy's laws, vanished mysteriously a couple of days before I sat down to write this. I did, however,
find two others -

1) "Stupid question, but what is books on line?"

2) "...select 1

 from

The Best of SQLServerCentral – Vol. 5

 338

 dbo.Page_History pgh2

 where

 pgh1.startdate = max(pgh2.startdate)

 and pgh1.starttime = max(pgh2.starttime)

 and pgh1.pageid = pgh2.pageid...

What are the pgh1 and pgh2? Am I supposed to substitute anything here?"

Are these questions enough cause for launching a diatribe?! Maybe..but it takes courage to ask a question and even
more to admit ignorance. These laudable reasons alone should earn them some kindness but if you're not feeling
charitable enough, try and recall these quotes to aid you: Kindness is a language that the deaf can hear and the
blind can see - attributed to Mark Twain and another that's less preachy - Courtesy is a small act but it packs a
mighty wallop (source unknown).For those who want to get downright colloquial, here's one from one of the SSC
members - "Manners, dude. Learn them. Might be helpful one day." Tact and diplomacy are really not that hard to
master and here's a post by Phil Factor that's an exemplary illustration of how you can be one of the SQL greats and
yet not look down on the hoi polloi:

"Forgive me for presuming to re-write your routine, but I don't see why you need the table at all. If all you are
doing is getting the datetime value of the previous monday then something like this would do the trick:"

Conclusive evidence:

Ultimately, it's all about communication skills as much as it is about manners and etiquette. It's only fitting, therefore,
to conclude with this great bit on communications posted by a member, that is presented here in its entirety:

"No matter what language you use; precision of communication is important. Let me give you an example of
imprecise communication:

"Mommy where did I come from?" Her six year old asks. She thinks that it is way too early for that particular
lecture and is about to tell him to wait when he continues. "Bobby came from Ireland, June came from
France, where did I come from?"

Just as it is important to know what the questioner is asking, it is very important to listen and get all the data
before you act. If you can not communicate precisely it is impossible to answer the question. No matter what
the language."

	Table of Contents
	Introduction
	Administration
	SQL 2000 to SQL 2005: Where have all the old features gone?
	Introduction
	Taskpad functionality
	Table Info tab
	Check disk space
	Time of creation of stored procedures:
	Summary
	WHY You Stress Test Drives HOW You Stress Test
	Production Environments
	Non-Production Environments
	Pre-Stress Test Questions
	A Good Stress Test is Measurable
	Which Performance Counters To Use?
	Which Thresholds To Use?
	Conclusion
	Introduction
	Overview
	Initial Setup
	Database Mail Accounts and Profiles
	Configuring Database Mail
	Summary

	The OUPUT Command
	OUTPUT Command in SQL Server 2005
	SQL Server 2000
	SQL Server 2005
	Conclusion

	Running a Query Using a Text File for Input
	Starting SQL Server in Minimal Configuration
	Summary
	Over-Committing Memory
	My Server Configuration:
	Configuring AWE for SQL Server 2000
	Solution

	How SQL Server Chooses the Type of Join
	The problem
	Finding the Real Problem
	The Solution

	Indexes and Fragmentation in SQL Server 2000 Part 1
	Conclusion

	Indexing in SQL Server 2005
	Introduction:
	Identifying Potential Indexes: sys.dm_db_missing_index_details
	Identifying Potential Indexes: SET STATISTICS XML ON
	Removing Unused or Problem Indexes: sys.dm_db_index_usage_stats
	Summary:
	Time to Give Your Databases a New Home?
	Understanding What is Involved

	Database Snapshots
	Database Snapshots

	Database Snapshots in SQL Server 2005
	Introduction
	Uses:
	How Database Snapshots Work?
	Advantages
	Disadvantages
	Creating a Database Snapshot-TSQL
	Viewing Snapshots from SQL Server Management Studio
	Restoring from the Database Snapshot
	Dropping the Snapshot
	Frequently Asked Questions on Snapshots

	Customizable Error Log Scanning
	Background
	The Need To Know
	The Magic
	Create the Job
	Conclusions

	A Guide to Application Memory Tuning
	The /3GB Switch
	The /PAE Switch
	Configure SQL Server to Use More Memory
	Conclusion
	References

	Eliminating Tape
	Disk-based Backup in a Small-Business Environment
	Overview:
	Environment
	Objective
	Solution:
	Final note

	Full Text Search Follies
	SQL Stored Procedure to Log Updates, Independent of Database Structure
	THE LOG TABLE
	THE PLAN
	THE ROUTING STORED PROCEDURE
	THE TRIGGER
	LIMITATIONS
	IN CONCLUSION

	Identifying Unused Objects in a Database
	Conclusion.

	Upgrading a Database SQL 2000 to SQL 2005
	Introduction
	Why Upgrade to SQL Server 2005
	Methods to Upgrade
	Choosing an Upgrade Method
	Preparing for Upgrade Upgrade Advisor
	Things To Do
	Conclusion

	Maximum Row Size in SQL Server 2005
	Dynamic Management Views and Functions in SQL Server 2005
	Introduction
	Database Related DMVs and functions
	Execution related DMVs and functions
	Index Related DMVs and Functions
	Operating System Related DMVs and functions
	Transaction Related DMVs and Functions
	Conclusion

	Backing Up a Database with SMO
	Building your application installation file

	Document Your Database
	Introduction
	Consider a scenario:
	How to Document?
	Conclusion

	A Transactional Replication Primer
	Introduction
	Before Starting
	Configure Transactional Replication
	Distributor and Publisher
	Configure Publishing and Distribution
	Publication Databases
	Subscriber
	Create and Manage Publications - New Publication
	Assure synchronism between Publisher and Subscriber
	Backup
	Transaction Log
	Full Backup
	Subscription - Push Subscription
	Schedule Distribution Agent
	Initialize Subscription
	Replication Agents in Details Pane
	Restore DB
	Stored Procedures
	Script custom stored procedures at Publisher
	Applying scripts at Subscriber
	Last Note
	Testing
	Replication Insert
	Replication delete and update
	Conclusion

	T-SQL
	Keyword Searching in SQL Server
	Introduction
	Setting up our tables
	Now for the trigger
	Getting the data in there
	Getting the data out of there
	Conclusions

	Recursive Queries in SQL: 1999 and SQL Server 2005
	CONCLUSIONS

	Serializing Procedure Calls Without Unnecessary Blocking
	Introduction
	Conclusions

	The Truth Table
	Background
	Truth Table

	Introduction to Bitmasking in SQL Server 2005
	Why Bitmask?
	A Review of Bits, Numbers and Counting
	Our Problem
	Preparing to code our mask
	Explanation of the key
	Coding the Mask
	Steps to mask values
	Decoding the Mask
	Steps to decode mask values
	Conclusion

	Self Eliminated Parameters
	Finding Primes
	Introduction
	How to find prime numbers
	The T-SQL Solution
	Is the solution accurate?
	What about a cursor?
	Conclusion

	CTE Performance
	Introduction
	Performance Test
	Test Environment
	Test Case Design
	Test Results
	Conclusion

	The Effect of NOLOCK on Performance
	Updated with an author's note
	Introduction - How locking works
	Faster reading of data with NOLOCK
	The Results
	Conclusion

	Converting Hexadecimal String Values to Alpha (ASCII) Strings
	Overview
	My Solution
	Some Analysis
	Conclusion

	A Refresher on Joins
	Step - 1
	Step - 2
	Step - 3 - LEFT OUTER JOIN
	Step - 4 - RIGHT OUTER JOIN
	Step - 5
	Step - 6 - SELF JOINS
	Step - 7 - CROSS JOINS

	Using CLR integration to compress BLOBs/CLOBs in SQL Server 2005
	Introduction
	The new data types
	Compressing a BLOB
	Decompressing a BLOB
	Limitations

	When To Use Cursors
	Everybody Reports to Somebody
	Not In v Not Equal
	Full Control Over a Randomly Generated Password
	Performance Effects of NOCOUNT
	Lies, damn lies and statistics
	Methodology
	Points to consider
	Qualified objects vs non-qualified objects
	Conclusions

	Passing a Table to A Stored Procedure
	Introduction
	The Problem
	The Caller
	The Callee
	Execute
	Updated Procedure
	Conclusions

	New Column Updates
	What is the fastest way to update a newly added column in to a very large table?
	35 million rows were updated within less than 35 minutes..!!!

	The T-SQL Quiz
	Practical Methods: Naming Conventions
	Databases
	Backup Files
	Users and Logins
	Tables
	Columns
	Indexes
	Constraints
	Views
	Stored Procedures
	User-Defined Functions
	Triggers
	General Notes
	Behind The Scenes
	References and Additional Reading
	About "Practical Methods"

	Large Object Data
	Introduction
	Conclusion

	Row-By-Row Processing Without Cursor
	INTRODUCTION
	CONCLUSION

	Beauty is in the Eye of the Beholder
	Security
	SQL 2005 Symmetric Encryption
	Introduction
	Part 1: Service and Database Master Keys
	The SQL 2005 Encryption Hierarchy
	Service Master Key
	Database Master Keys
	Automatic Key Management
	Part 2: Certificates
	Creating Certificates
	Encryption and Decryption by Certificate

	Part 3: Symmetric Keys
	Creating Symmetric Keys
	Symmetric Key Encryption

	Conclusions

	Ownership Chaining
	Preventing Identity Theft Using SQL Server
	ETL and BI
	A Common Architecture for Loading Data
	Framework functionalities
	Conclusions

	Overview of SSIS
	Let's start
	Accessing SSIS via SQL Server Management Studio (SSMS)
	Executing the SSIS package from Command Prompt
	Syntax for command line
	Passing variable as a parameter in a stored procedure
	Logging Package Information
	Deploying the package
	Running the package from a SQL Agent job

	SSIS - Transfer SQL Server Objects Debugged
	SSIS Is Not Just for SQL Server
	Conclusions

	SSIS Programming
	Overview
	DTS vs. SSIS Programming
	Getting Started
	Conclusion

	Loading a 24x7 Data Warehouse
	Conclusion

	More Problems with Data Warehousing
	Make Sure You Have a Universal Primary Key Across All Data Sources
	Make Sure You Know How Reliable your Base Information is
	Compare Like For Like
	Errors are Obvious
	Don't be Nasty About Spreadsheets
	Manage your Stored Procedures
	Conclusion

	Storage Modes in SSAS 2005
	Overview
	What exactly do we store?
	1. MOLAP (Multi dimensional OLAP)
	2. Scheduled MOLAP
	3. Automatic MOLAP
	4. Medium Latency MOLAP
	5. Low Latency MOLAP
	6. Real Time HOLAP
	7. Real Time ROLAP
	Just a bit more before finishing
	Conclusion

	Dynamic Connection Strings in Reporting Services 2005
	Example
	Steps

	Populating Fact Tables
	Basic Steps
	Logging and closing
	Slim Lookup Tables
	Natural Key Changes
	Unknown Records
	Deletion
	Deduplication
	Fact Table Indexes
	Fact Table Partitioning
	Internal Data Warehouse Entities
	Loading Snapsnot and Delta Fact Tables
	Purging Or Pruning A Fact Table
	Reloading Fact Table History

	Reporting Services 2005 101 with a Smart Client
	Introduction
	Lets roll up our sleeves, its reporting time
	Step 1: Create Windows Application Project
	Step 2: Add Report Viewer to the Form
	Step 3: Add DataSet to the Project
	Step 4: Add Report to the Project
	Step 5: Lets write some C# code to bring life to our report
	Conclusion

	Data Driven Subscriptions for Reporting Services (2000 and 2005)
	Introduction
	Assumptions
	Instructions
	Conclusion
	Acknowledgements

	Service Broker
	Adventures With Service Broker
	Introduction
	How to use this article
	First things I did for service broker exploration
	Phase one: a simple LOCAL service broker scenario.
	Phase two: sender and receiver in separate databases.
	Phase three: sender and receiver in separate instances
	Transport security
	Phase four: Forwarding
	My conclusion

	Building a Distributed Service Broker Application
	Advanced Service Broker Objects
	Security
	Steps to create a Distributed Service Broker Application
	Example
	Conclusions

	XML
	The SQL Server 2005 XML Temptress
	SQL 2005 XML for Classifications
	Denormalization of Temporal Data Using XML
	Summary

	I've Got the XML - Now What?
	XML Argument Protocols for SQL 2005 Stored Procedures
	Background
	XML As A Solution
	Client Code
	Web Server Application Code
	Stored Procedure Interface and Code
	Stored Procedure - XML Code Loop
	Example: ASP Calls the Stored Procedure [vbscript]
	What About Schemas?
	Speaking of Overhead
	In Conclusion
	References:

	Misc.
	Windows Utilities for the SQL Server DBA
	FOR and FORFILES Commands
	Resource Kit Utilities
	WMIC
	Windows Command-Line Scripts
	Conclusion

	From DBA to DBAA
	Introduction
	Summary

	What's a Good Manager
	For the Long Term...
	The Good
	The Bad
	And The Ugly
	What has happened?

	Mind Your Manners
	Know your subject:
	The truth, the whole truth and nothing but..:
	Help us help you:
	Eggs in one basket:
	Mind your Ps and Qs:
	Do your homework:
	Temper that tone:
	And now this..the only section devoted to (n)etiquette for those who respond!!!
	Just because you're a SQL God...:
	Conclusive evidence:

