
High Performance SQL Server

Performance Tuning
with SQL Server Dynamic
Management Views

Louis Davidson and Tim Ford

Performance Tuning
using SQL Server Dynamic
Management Views

By Louis Davidson and Tim Ford

First published by Simple Talk Publishing 2010

Copyright Louis Davidson and Tim Ford 2010

ISBN 978-1-906434-46-5

The right of Louis Davidson and Tim Ford to be identified as the authors of this work has been asserted by

them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than that in which

it is published and without a similar condition including this condition being imposed on the subsequent

publisher.

Editor: Tony Davis

Technical Review and Additional Material: Glenn Berry

Cover Image: Tim Ford

Typeset & Designed: Matthew Tye & Gower Associates

Table of Contents

Introduction.. 12
Code Examples.. 15

Chapter 1: Using Dynamic Management Objects........................ 16
Compatibility Views, Catalog Views, and DMOs... 17
DMO Security and Permissions.. 21
Performance Tuning with DMOs...22

Navigating through the DMOs.. 24
Point-in-time versus cumulative data... 26
Beware of the watcher effect.. 29
Using DMOs with other performance tools.. 29

Summary... 32

Chapter 2: Connections, Sessions and Requests......................... 33
Sysprocesses versus DMOs.. 35
Connections and Sessions... 37

sys.dm_exec_connections...38
sys.dm_exec_sessions..40
Who is connected?... 42
Who is connected by SSMS?... 44
Session-level settings..45
Logins with more than one session.. 47
Identify sessions with context switching... 48
Identify inactive sessions.. 48
Identify idle sessions with orphaned transactions.. 51

Requests.. 52
Overview of sys.dm_exec_requests... 53
Overview of sys.dm_exec_sql_text..57
Returning the SQL text of ad hoc queries..58
Isolating the executing statement within a SQL handle..61
Investigating work done by requests.. 64

Dissecting user activity.. 66
Summary... 71

Chapter 3: Query Plan Metadata... 72
Why Cached Plan Analysis with DMOs?... 73
An Overview of DMOs for Query Plan Metadata.. 75
Flushing the Cache?..77
Viewing the Text of Cached Queries and Query Plans...78

Returning the plan using sys.dm_exec_query_plan..80
Dissecting the SQL text...83
Returning the plan using sys.dm_exec_text_query_plan..85

Cached Query Plan Statistics... 86
The sys.dm_exec_cached_plans DMV... 87
Investigating plan reuse..90

Query Plan Attributes...97
Gathering Query Execution Statistics.. 100

Overview of sys.dm_exec_query_stats.. 101
Putting sys.dm_exec_query_stats to work...103

Investigating Expensive Cached Stored Procedures..108
Getting Aggregate Query Optimization Statistics for All Optimizations.................... 110
Summary..113

Chapter 4: Transactions..114
What is a transaction, anyway?..115
Investigating Locking and Blocking..117

DMOs, Activity Monitor and sp_who2... 119
An overview of the sys.dm_tran_locks DMV...120
Investigating locking...126
Blocking analysis using sys.dm_tran_locks and sys.dm_os_waiting_tasks...........131

Analyzing Transactional Activity.. 138
Transactional DMOs vs. DBCC OPENTRAN.. 138
sys.dm_tran_session_transactions... 139
sys.dm_tran_active_transactions.. 140
sys.dm_tran_database_transactions.. 143

Assessing transaction log impact..146
Snapshot Isolation and the tempdb Version Store..148

SNAPSHOT and READ_COMMITTED_SNAPSHOT modes...............................149
Investigating snapshot isolation..151

Summary...170

Chapter 5: Indexing Strategy and Maintenance.........................172
The Indexing System Catalog Views.. 173
Using the Indexing DMOs... 178
Index Strategy.. 178

Investigating index usage (index_usage_stats)..182
Determine usage patterns of current indexes (index_operational_stats)............ 190
Find missing indexes... 199

Index Maintenance (index_physical_stats).. 207
A brief overview of index fragmentation...208
Fragmentation statistics (index_physical_stats)..210
Detecting and fixing fragmentation... 212

Summary... 215

Chapter 6: Physical Disk Statistics and Utilization...................217
Minimizing I/O.. 218
Tuning the Disk I/O Subsystem.. 221
Getting Physical Statistics on your Tables and Indexes..222

Size and structure..223
Investigating fragmentation... 230

Diagnosing I/O Bottlenecks..239
An overview of sys.dm_io_virtual_file_stats...240
Using sys.dm_io_virtual_file_stats..241
Investigating physical I/O and I/O stalls...243
Viewing pending I/O requests... 247

Finding the Read:Write Ratio.. 249
Amount of data read versus written.. 251
Number of read and write operations... 253
Number of reads and writes at the table level..254

Getting Stats about tempdb Usage... 257
Summary.. 260

Chapter 7: OS and Hardware Interaction....................................262
Wait Statistics..263

A brief overview of sys.dm_os_wait_stats..265
Finding the most common waits... 267
Finding the longest cumulative waits... 270
Investigating locking waits..271
Investigating CPU pressure...273

SQL Server Performance Counters..274
Directly usable counter types..277
Ratios..280
Per second averages..283
Average number of operations... 286

Monitoring Machine Characteristics.. 288
Investigating CPU Usage..292

An overview of sys.dm_os_schedulers..293
CPU waits.. 295
Insufficient threads.. 297
Context switching.. 297
Is NUMA enabled?...299
CPU utilization history... 300

Investigating Memory Usage... 301
System-wide memory use..303
Process memory use...305
Memory use in the buffer pool... 306
Memory clerks and memory grants.. 308
Investigate memory using cache counters..310

Investigating Latching...315
Summary... 319

viii

About the Authors

Louis Davidson

Louis has been in the IT industry for 16 years as a corporate database developer and
architect. He has been a SQL Server Microsoft MVP for six years and has written four
books on database design. He is currently the Data Architect and sometimes DBA for the
Christian Broadcasting Network supporting offices in Virginia Beach, Virginia and
Nashville, Tennessee. He graduated from the University of Tennessee at Chattanooga
with a Bachelor's degree in Computer Science, with a minor in mathematics.

For more information, visit his website at http://drsql.org/ or email him at
louis@drsql.org.

Tim Ford

Tim is a SQL Server MVP, and has been working with SQL Server for over ten years. He
is the co-founder of SQL Cruise, LLC, a training company for SQL Server specializing in
deep-dive sessions for small groups, hosted in exotic and alternative locations throughout
the world. He is also a Senior SQL Server Professional for Next Wave Logistics, Inc. and
is the owner and Lead Consultant for B-Side Consulting, LLC. He's been writing about
technology since 2007 for a variety of websites and maintains his own blog at http://
thesqlagentman.com/ covering SQL as well as telecommuting and professional
development topics.

Tim is an established SQL Server Community Speaker and long-term volunteer in the
technical community, having held positions in the Professional Association for SQL

ix

Server (PASS) since 2002. He has also been leading the West Michigan SQL Server User
Group (WMSSUG) since 2008.

When not neck-deep in technology, Tim spends his time travelling with his wife, Amy
and sons, Austen and Trevor, be it to Alaska or simply to one of Trevor’s tennis practices
or Austen’s Boy Scout meetings. Tim is passionate about photography, cooking, music,
gaming, and exercise, and either experiences or writes about them often.

Glenn Berry (technical review and
additional material)

Glenn Berry works as a Database Architect at NewsGator Technologies in Denver, CO.
He is a SQL Server MVP, and has a whole collection of Microsoft certifications, including
MCITP, MCDBA, MCSE, MCSD, MCAD, and MCTS, which proves that he likes to take
tests. He is also an Adjunct Faculty member at University College, University of Denver,
where he has been teaching since 2000, and he has completed the Master Teacher
Program. His blog is at http://glennberrysqlperformance.spaces.live.com/ and he is
GlennAlanBerry on Twitter.

x

Acknowledgements

Louis Davidson

To acknowledge all the people who made my part of this book possible would take
forever (plus, I don't think I could just cut and paste the entire list of SQL Server MVPs,
the Microsoft employees, and all of the bloggers out there who blogged about DMVs in
here, and get away with it).

However, I do want to mention three particular people on the technical side. First, Tony
Davis who is both one of the best editors around and one of the most annoying (you take
that back! – Ed). The results he gets from an amateur like me never cease to amaze me,
even if his super attention to detail makes him "fun" to work with.

Next, Glenn Berry, who is a heck of a guy and has done some awesome work with the
DMVs on his website, during his technical review of this book, and in his contributions to
the text and scripts herein.

Finally, Tim Ford, without whom I doubt I would ever have finished this book. It was our
conversations with Tony at the 2008 PASS conference that really got the book started on
the path to completion.

On the less computer-oriented side, I want to thank my wife and daughter for just
being there. After five books, I don't think they even notice I am doing this anymore,
but they do give me strength to keep going at times. And my granddaughter, who
didn't even exist when I first started this book, three years ago; and boy, does that put it
all into perspective!

xi

Tim Ford

I dedicate this book to Amy, Austen, and Trevor. I could (and should) have spent with you
all the hours devoted to working on this book – missing sporting events, school activities,
and just those quiet moments that add up to make a life. Thank you for your patience,
love, and understanding in letting me fulfill a commitment made – and a goal I had set
for myself since I was 13 years old: to write a book. Unfortunately, there are no aliens, car
chases, or explosions in the pages that follow; no dashing young man that gets the girl.
(To my adolescent self I offer my sincerest apologies.)

To my co-author, Louis, who said, "I told you it would be great if you wrote a book, not if
you write a book!" while I was in the midst of writer's block, and to our editor Tony Davis:
to think this all started with a fondness for a decent pint of beer!

To Dad, Pop, Grandma Conrad, and Grandma Ford. I miss not being able to share this and
my many other proud moments with you.

12

Introduction

With the advent of the Dynamic Management Objects (DMOs) in SQL Server 2005,
Microsoft vastly expanded the range and depth of metadata that could be exposed
regarding the connections, sessions, transactions, statements, and processes that are, or
have been, executing against a database instance. These DMOs provide insight into the
resultant workload generated on the server, how it is distributed, where the pressure
points are, and so on, and are a significant and valuable addition to the DBA's
troubleshooting armory.

In order to see a full list of the individual DMOs, from within SSMS, we can run a query
against the sys.objects system catalog view.

SELECT [name] ,
 CASE [type]
 WHEN 'V' THEN 'DMV'
 WHEN 'IF' THEN 'DMF'
 END AS [DMO Type]
FROM [sys].[sysobjects]
WHERE [name] LIKE 'dm_%'
ORDER BY [name] ;

In SQL Server 2005, this returns 89 DMOs and, in SQL Server 2008, 136. Alternatively,
we can view the all of the system catalog views, system compatibility views, INFORMA-
TION _ SCHEMA views, and DMOs through the SSMS object explorer. Navigate to Data-
bases | System Databases | master | Views | System Views to see the Dynamic Management
Views (DMVs), or …| master | Programmability | Functions | System Functions | Table-
valued Functions to see the Dynamic Management Functions (DMFs). In each case, the
relevant objects will be prefixed with sys.dm _ .

In short, if you look hard enough, you will find an almost overwhelming amount of
data regarding user activity on your SQL Server instances, and the CPU, I/O, and memory
use and abuse that results. The focus of this book is squarely on core engine activity, and

13

Introduction

on those objects that, as DBAs, we find most useful in periodic to day-to-day
troubleshooting. We'll describe the most important columns that these DMOs return,
and provide a core set of scripts that can be saved and adapted for your own environment,
to shine some light on previously dark corners of SQL Server performance optimization.

In the process, we'll cover about a third of the total number of available DMOs, spanning
6 of the available 19 categories of DMO, outlined below.

Execution related – Chapters 2 and 3 show how to investigate the activity generated by
SQL statements executed against our SQL Server instances, and how to establish a chain
of ownership, from the user connections, to the sessions they spawn, to the resulting
requests that generate the SQL workload. Chapter 2 focuses on activity that is occurring
right now, on a given instance, and Chapter 3 takes a more historical perspective,
examining CPU, I/O, and memory use by statements for which a plan exists in the cache,
and also investigating critical issues such as plan reuse.

Transaction related – Chapter 4 steps down to the transaction level, showing how
to pinpoint locking and blocking issues, expose open but inactive transactions, and
investigate transactions that are causing substantial transaction log writes. It also
covers those DMOs dedicated to snapshot isolation level, and use of the version store
in tempdb.

Index related – Defining an effective indexing strategy is the best way to ensure that the
most significant and frequent queries in your workload are able to read only the required
data, and in a logical, ordered fashion, thus returning that data quickly and efficiently,
with minimal I/O. The DMOs in this category, covered in Chapter 5, are among the most
frequently used by DBAs, and we'll provide scripts for investigating index use, missing
indexes and index fragmentation.

Database related and I/O related – A critical aspect of SQL Server performance is how
the engine uses the disk I/O subsystem, and the ability of that subsystem to cope with
the I/O throughput (I/Os per second) demanded by the system workload. Chapter 6
investigates those DMOs that expose I/O activity at the file, database, and even table level,

14

Introduction

and also return valuable statistics regarding the size and structure of tables and indexes. It
also has a section dedicated to investigating the use of the critical tempdb database.

SQL Operating System related – This is the largest of all DMO categories, currently con-
taining 29 DMOs for investigating CPU, I/O, and memory usage from the point of view of
the SQL Server Operating System (SQL OS). Chapter 7 covers ten of the most
useful DMOs in this category, including those that expose where and why user sessions
have had to wait (and have thus been delayed in the execution of their task), and those
that expose SQL Server performance counters, as well as possible resource latching issues.

While this list describes the basic structure of the book, you'll find that certain DMOs
crop up in several places throughout the book. For example, the sys.dm _ exec _ que-
ry _ text DMF, which returns the associated T-SQL command corresponding to the
supplied identifier (sql _ handle or a plan _ handle), appears in more or less every
chapter.
In conjunction with the sys.dm _ tran _ locks DMV, it allows us to find out which
commands are causing blocking; used with sys.dm _ os _ waiting _ tasks, it reveals
the T-SQL commands whose execution is delayed due to a particular type of wait, and so
on.

The ability to join a range of DMOs to return, in a single result set, exactly the
information needed to diagnose an issue, makes these objects a highly flexible and
versatile way to investigate SQL Server performance issues.

By illustrating and explaining the various patterns and techniques used to retrieve this
metadata and turn it into useful information, we hope to convince the skeptical DBAs
among you that the added initial complexity of querying the DMOs, compared to using
"old favorite" tools such as sysprocesses and sp _ who2, pays huge dividends in terms
of the depth and granularity of the data returned, and the ease with which it can be ana-
lyzed and acted upon.

15

Introduction

Code Examples

Throughout this book are code examples, demonstrating how to return troubleshooting
data from the various DMOs. All the scripts have been tested on both SQL Server 2005
and SQL Server 2008. In cases where a given script is only relevant to SQL Server 2008
and later, this will be noted in the text.

To get the most out of this book, you will need, as a minimum, access to any edition of
SQL Server 2005 or later, except Compact Edition (which is a totally different engine). A
free 2008 copy of SQL Server Express Edition, plus associated tools, can be downloaded
free from: www.microsoft.com/sqlserver/2008/en/us/express.aspx.

Bear in mind, however, that those scripts that investigate current activity will only return
results when run against an active SQL Server instance. In such cases, the authors present
results taken from live SQL Server 2005 and 2008 Standard and Enterprise Edition
production servers (with all sensitive information omitted or disguised, of course).

To download all the code samples presented in this book, visit:
www.simple-talk.com/redgatebooks/DavidsonFord/DMV_code.zip.

16

Chapter 1: Using Dynamic
Management Objects

Dynamic Management Objects (DMOs) are a set of SQL Server objects, referenced
in the system (sys) schema, which provide the SQL Server DBA with a window into the
activities being performed on their SQL Server instances, and the resources that these
activities are consuming. In other words, these DMOs expose valuable information
concerning the connections, sessions, transactions, SQL statements, and processes that
are (or have been) executing against a database instance, the resultant workload generated
on the server, how it is distributed, where the pressure points are, and so on.
Having revealed a particular pressure point on their SQL Server, the DBA can then take
appropriate steps to alleviate the problem, perhaps by tuning a query, adding an index,
improving the disk subsystem, or simply "killing" a blocking session.

The term "dynamic" refers to the fact that the information reflected in these DMOs
is generated dynamically from a vast range of "instrumentation" points in memory
structures throughout the SQL Server engine. This data is then exposed in tabular
form via these DMOs, either in views, in which case they are referred to as Dynamic
Management Views (DMVs), or in table-values functions, in which case they are referred
to as Dynamic Management Functions (DMFs).

Too many acronyms

The objects, collectively, should be referred to as DMOs, but since this tends to cause some confusion with

the entirely unrelated "Distributed Management Objects," it's still very common for DBAs to refer to the

Dynamic Management Objects, collectively, as "DMVs."

So, DMVs and DMFs are simply system views and system functions and you use them just
like you use any other view and function within SQL Server: querying them, joining to

17

Chapter 1: Using Dynamic Management Objects

them, passing parameters when needed, and ultimately returning a single result set
containing the data you need, to investigate a particular issue regarding the state or
health of your SQL Server instance.

The goal of this short first chapter is to provide a brief, high-level overview of the
following topics:

•	 how metadata is exposed through DMOs, as well as compatibility views and
catalog views

•	 permission required to view data in the DMOs

•	 how and where the DMOs can be used, and the sort of data they provide

•	 how to use the DMOs strategically, to diagnose SQL Server performance bottlenecks

•	 where they fit alongside the number of other performance tools available to the DBA.

Compatibility Views, Catalog Views, and DMOs

In addition to the DMOs that are the focus of this book, SQL Server exposes a range
of metadata through other system views, notably the system compatibility views and
the system catalog views. For the most part, the catalog views and the DMOs have
rendered the compatibility views obsolete. However, the catalog views will frequently
be needed in conjunction with our DMO query because, most of the time, "name" data
simply isn't returned by the DMOs (for example, the name, rather than just the ID, of a
given table or database).

It's worth briefly reviewing the history of the transition from system tables to
compatibility views, to system views and DMOs, as it provides some interesting
insights into the different ways in which the metadata is exposed and presented.

18

Chapter 1: Using Dynamic Management Objects

In releases prior to SQL Server 2005, SQL Server exposed metadata in a range of
physical system tables, stored or referenced in the master database (e.g. master.dbo.
sysobjects or dbo.sysprocesses). Microsoft warned SQL DBAs and developers not
to code against the system objects, as they could not guarantee that they would not be
changed, or that they would even continue to be supported in future releases. However,
most DBAs did just that, and the sysprocesses system table, in particular, became the
"go-to" source of information when troubleshooting performance concerns in SQL
Server. This single table gave the DBA access to the spid (unique identifier for the user
session), cumulative CPU usage, memory, and I/O consumption, client connectivity
information (host name, host program name, login information, and process id) and
a myriad of other important columns that identified, at a quick glance, what was
transpiring on the SQL instance at any given time. Many of us rolled our own
management solutions and queries, based on sysprocesses, allowing us to dig into the
guts of SQL Server.

Microsoft realized the importance of these scripts, and knew that many DBAs relied on
them but, at the same time, wanted to introduce a layer of abstraction between the user
and their metadata. So, starting in SQL Server 2005, they moved the system tables from
the master database into the new resource database that is inaccessible to the end-
user, and even the DBA (there are techniques to access the resource database, if it is
really necessary, but we won't cover them here).

In their place, in the master database, Microsoft created a set of compatibility views,
based on the data in these, now hidden, system tables. These compatibility views are
structured identically to the original system tables they were replacing (column names,
data types, and column order remain constant), but they are now owned by the sys
schema. They were provided purely for backwards compatibility purposes; they do not
reflect any new features and functionality added in SQL Server 2005 and later. However,
with a simple schema change in any applicable code, they allowed DBAs to keep using
their existing set of troubleshooting scripts and tools.

At the same time, with SQL Server 2005, Microsoft introduced a new set of system
catalog views, as well as the DMOs, both of which also live in the master database, but

19

Chapter 1: Using Dynamic Management Objects

source their actual data from the resource database. These catalog views and DMOs
would be fully supported and reflect all new functionality, and Microsoft began
encouraging DBAs to make the switch.

In some cases the switch is fairly subtle; for example, the sys.sysobjects compat-
ibility view becomes the sys.objects catalog view; sys.sysindexes becomes sys.
indexes, and so on. In other cases, the switch is slightly more complex; for example,
master.dbo.sysprocesses became the sys.sysprocesses compatibility view, but
was officially superseded at the same time by the sys.dm _ exec _ requests DMV. In
reality, however, the rather complex sys.sysprocesses compatibility view has been
normalized to
deal with several new constructs such as support for MARS connections, and so on. The
net result is that the information previously found in the single sys.sysprocesses
view is now scattered across sys.dm _ exec _ connections and sys.dm _ exec _
sessions, as well as sys.dm _ exec _ requests.

With the introduction of the catalog views and DMOs, Microsoft took the opportunity
to simplify naming conventions and standardize them across both sets of new views.
So, for example, the uid column in the compatibility views is universally represented as
schema _ id in the catalog views and DMOs. Likewise, spid becomes session _ id;
dbid becomes database _ id; indid becomes index _ id, and so on. What DBAs
appreciate most is the consistency. For example, we know that if we wish to obtain the
name of an object, database, index, column, and so on, from a catalog view or DMO, we
need to query for the name column, regardless of the specific target view.

And so to the DMOs; rumor has it that Microsoft never intended to release them to
the general public. The story goes that they were created internally to allow developers,
technicians, and testers at Microsoft to analyze and troubleshoot issues during the design
phase of SQL Server 2005, and for post-deployment troubleshooting during support calls.
The exact truth of this story is open to debate, but ultimately, and thankfully, the
DMOs were exposed to the end-users, though one could argue that the sometimes
sparse documentation and the confusing interfaces that some of the objects provide,

20

Chapter 1: Using Dynamic Management Objects

hint strongly at an original intention to keep them a deep, dark secret, for use only by the
Microsoft CAT, CSS, and PSS teams.

The DMOs expose a sometimes dizzying array of information; the original
sysprocesses system view, for example, has essentially been normalized, many
new DMOs have been added, and many new columns made available. As the database
engine becomes better and better instrumented, so the amount of data available about
the engine and the work it is doing, will continue to grow.

The added complexity of stitching together data from a disparate array of DMOs,
coupled with initial confusion regarding which columns are exposed where, has led some
DBAs to liken querying DMOs to "collecting mystic spells." It's certainly true that DMO
queries look a lot more complex and tend to have many more joins than equivalent
queries against sysprocesses, but the problem with the latter was that, because of
changes to the engine, a huge number of rows could be returned for a single spid,
making the data very hard to interpret. The big payback with the DMO is that, for a
little added querying complexity, the "normalization" process has made the data that the
DMOs return much easier to analyze and understand, as we hope this book will prove.

Furthermore, catalog and compatibility views are generally siloed by object type: sys.
tables, for example, is the catalog view that pertains to information specifically (and
narrowly) restricted to table objects in a database. The DMOs, on the other hand, relate
to specific ranges or topics about which we may need to obtain information. Need to know
what sessions are currently active? Go to sys.dm _ exec _ sessions. Need to know
what requests they are currently running? Go to sys.dm _ exec _ requests.

In some ways, it helps to think of DMOs as "system views of system views." They pull
together into a logical unit columns sourced from multiple catalog and compatibility
views, plus others, in order to provide insight into specific activities that are occurring on
a SQL Server instance at any point in time.

21

Chapter 1: Using Dynamic Management Objects

DMO Security and Permissions

As noted in the previous section, from SQL Server 2005 onwards, the master database is
no longer the main system database for storing all metadata and operational system data.
All system metadata (except that relating to backups and SQL Agent) which was, and still
is, hosted in the msdb database, is now sourced from the resource database. Inciden-
tally, the fact that metadata on SQL Server Agent jobs and backups is still stored in msdb
explains why you won't find DMOs related to these areas.

The resource database is completely shielded from even those who are granted the
system administrator role rights. It exists as two files, mssqlsystemresource.mdf and
mssqlsystemresource.ldf, stored in the default data folder of any SQL Server 2005+
instance. The resource database can't be queried, nor can it be backed up by anything
other than a file copy. It is completely shielded from use.

In the process, the master database has been transformed into a sort of abstraction
layer, housing the compatibility views, catalog views, and DMOs that ultimately expose
this metadata to the end-user, in a controlled and secure way. In order to view the data
in these views and DMOs, unless you are the system administrator of the server, you will
need to be granted one of two privileges, depending on the scope of the object you are
querying:

•	 server scoped objects require the VIEW SERVER STATE privilege to be granted to the
relevant login; most DMOs covered in this book required this privilege

•	 database scoped objects require the VIEW DATABASE STATE to be granted to the
relevant login.

Note that these privileges allow a DBA to view the state of the server without having
system administrator rights. Using these permissions for all users who only need to access
the DMOs, rather than giving them system administrator privileges, could save you from
the "Oops, I dropped a database by accident" phone call late one evening.

22

Chapter 1: Using Dynamic Management Objects

Performance Tuning with DMOs

In simplistic terms, performance problems are caused by excessive demands on some
shared resource of the SQL Server system, leading to bottlenecks and poor response
times. The biggest problem for most DBAs is in pinpointing the exact cause of the
problem. There are many "shared resources" in SQL Server, from CPU to memory (such
as buffer cache or plan cache), to the disk subsystem, to process schedulers and so on.
Furthermore, a single piece of performance data, considered in isolation, can often lead
the unwary DBA to misdiagnose a performance problem.

Too often, slow query performance is diagnosed as a need for more CPU, or faster disks,
without knowledge of the exact cause of the slow performance. If, on your SQL Server
instance, 90% of the total response time consists of I/O waits and only 10% of the time is
spent on the CPU, then adding CPU capacity or upgrading to faster CPUs won't have the
desired impact.

The really big win with the DMOs is that they allow us to narrow the focus of tuning
and troubleshooting quickly, and adopt a more systematic approach to performance
troubleshooting. Wait statistics are a prime example. Each time a worker needs to wait
for a resource, it is recorded in SQL Server. This information is cached and incremented
until the next SQL Server service restart. We can query and aggregate these metrics via
sys.dm _ os _ wait _ stats, as shown in Listing 1.1.

SELECT wait_type ,
 SUM(wait_time_ms / 1000) AS [wait_time_s]
FROM sys.dm_os_wait_stats DOWS
WHERE wait_type NOT IN ('SLEEP_TASK', 'BROKER_TASK_STOP',
 'SQLTRACE_BUFFER_FLUSH', 'CLR_AUTO_EVENT',
 'CLR_MANUAL_EVENT', 'LAZYWRITER_SLEEP')
GROUP BY wait_type
ORDER BY SUM(wait_time_ms) DESC

Listing 1.1:	 Performance troubleshooting based on wait times.

23

Chapter 1: Using Dynamic Management Objects

As will be discussed in detail in Chapter 7, aggregating and sorting upon wait _ type
and wait _ time _ ms will allow us to prioritize our troubleshooting, by identifying
what type of waits the SQL Server instance is encountering. From there, we can use other
DMOs to further narrow our tuning scope. Depending upon the results of queries against
sys.dm _ os _ wait _ stats, we will probably investigate further the particular issue
indicated, be it CPU, Memory, I/O or other specific concerns, with the DMOs, correlate
the data with that obtained from PerfMon, run Profiler traces, use third-party monitoring
tools, and so on, until the exact cause is diagnosed.

For example, if the top waits consisted of CXPACKET and SOS _ SCHEDULER _ YIELD,
we'd need to look at CPU concerns, specifically parallelism settings. By default, SQL
Server allows all processors to partake in parallel queries. However, it is unusual for OLTP
queries to benefit much from parallel execution. We recently saw behavior identical to
this on one of the nodes that host 50 of our databases that had been consolidated onto
a two-node cluster. On changing the instance's Max Degree of Parallelism setting from
0 (dynamic) to 4 (this was an eight-core server), the CXPACKET waits associated with
parallelism dropped off the top of the list. If we had attempted the same analysis with
PerfMon, we would have had to play that game we DBAs used to always have to play in
the past: Pick a Counter. The SQLServer:Wait Statistics Performance Object has
a dozen counters associated with it. If someone were to ask why we recommend using
the DMOs as a starting point when an instance is performing badly and the cause is
unknown, then this is a prime example.

Of course, SOS _ SCHEDULER _ YIELD waits, indicating that the SQL OS Scheduler is
experiencing pressure and regularly swapping out a running session in order to allow
another session to proceed, could indicate that you are running a lot of CPU-intensive
queries, which are getting assigned to the same scheduler. An issue of this type can be
investigated further using a DMO such as sys.dm _ exec _ query _ stats, to isolate
the most CPU-intensive cached queries.

This ability to analyze a potential issue from several different perspectives is one of the
great advantages of the DMOs (although the flip side to this is that the sheer amount of

24

Chapter 1: Using Dynamic Management Objects

data can be overwhelming), and it applies to investigation of CPU, Memory, I/O, or other
specific concerns, as we will demonstrate throughout the book.

Navigating through the DMOs

In some ways, working through the DMOs for the diagnostic data you need is a process
of "peeling back layers." At the outer layer, we can find out what and who is connected to
our SQL Server instances, and how; what sessions are running against them, and what
requests are being performed by these sessions. From here, we can find out the details of
the SQL statements being executed by these requests, the query plans that are being used
to run them, and so on (Chapters 2 and 3).

Dropping down a layer, we have the transaction level, where we can find out what locks
are being held as a result of these transactions, investigate any potential blocking, and so
on (Chapter 4).

A critical aspect of optimizing SQL Server is minimizing the amount of I/O that the
engine has to perform (fetching data to and from the disks or, preferably, the data
cache). An effective indexing strategy is fundamental to the drive to minimize I/O, and
DMOs are provided to investigate which indexes are and aren't being used by the query
optimizer, plus details of indexes that optimizer would find useful but are missing
(Chapter 5). Furthermore, DMOs are provided to investigate disk I/O activity directly,
at the file level (Chapter 6) allowing the DBA to assess whether the disk subsystem is
providing sufficient I/O throughput capacity to cope with the demands of SQL Server, as
well as any other applications that may share the use of that subsystem.

Dropping down another layer, we can find how the workload represented by the
submitted requests translates into actual work in the operating system (Chapter 7).

25

Chapter 1: Using Dynamic Management Objects

We can find out, for example:

•	 what actual tasks (threads) are being executed in order to fulfill the requests

•	 what work they are performing in terms of I/O, CPU, and memory usage

•	 how I/O is distributed among the various files

•	 how long threads spend waiting, unable to proceed, and why.

It is the job of the DBA to join together all the pieces of data from the various different
layers, to provide the results needed to highlight the specific problems in the system.

As you can probably gather from this discussion, you'll only occasionally use a given
DMO in isolation. You'll need to join to other DMVs and DMFs, in order to pull together
the set of data you need to diagnose the problem. Many DMOs have useful "foreign keys"
that can be used to join to data in their parent objects, or to other DMOs and system
catalog views.

Other times, we will need to pass correlated parameters to a DMF to return a certain
column, then join it to our existing data set. For example, several of the execution-related
DMVs, sys.dm _ exec _ requests, sys.dm _ exec _ query _ stats and sys.
dm _ exec _ cached _ plans store tokens, called handles, that are used to uniquely
identify the batch or stored procedure to which a query belongs (a sql _ handle),
or the cached query plan for a batch or stored procedure that has been executed (a
plan _ handle). We can retrieve a handle from one of these DMVs and then supply it as
a parameter to another, function-based DMV, sys.dm _ exec _ sql _ text in order to
extract information about a specific SQL statement or query plan.

Fortunately, once you start to write your own scripts, you'll see the same tricks, and
similar join patterns, being used time and again. This means that a relatively small core
set of scripts can be readily adapted to suit many requirements.

26

Chapter 1: Using Dynamic Management Objects

Point-in-time versus cumulative data

We can query data held on the DMOs just as we would any other table, view, or function.
However, always remember that the data returned is "dynamic" in nature. It is collected
from a range of different structures in the database engine and represents, in the main, a
point-in-time "snapshot" of the activity that was occurring on the server at the time the
DMO query was executed.

Sometimes, this is exactly what is required; we have a performance issue right now, and
want to find out what sessions and queries are running, right now, on the server that
could be causing it. Bear in mind, though, that this point-in-time data can, and likely
will, change each time you query it, as the state of the server changes. You should expect
to occasionally see anomalous or non-representative results, and you may need to run a
script many times to get a true picture of activity on your instance.

Also, it is quite difficult to query the data in these point-in-time DMOs in the hope
that the problem will simply "jump out at you." If, for example, you have a performance
problem and you want to check for any "unusual" locking patterns, then it's unlikely
that a "select [columns] from [locking DMV]" will tell you much, unless you're already
very familiar with what "normal" locking looks like on your system, and you can therefore
easily spot anomalies.

In other cases, the DMOs are cumulative. In other words, the data in a given column is
cumulative and incremented whenever a certain event occurs. For example, every time
a session waits a period of time for a resource to become available, this is recorded in a
column of the sys.dm _ os _ wait _ stats DMV. When querying such a DMV, you
will be seeing, for instance, the total amount of time spent waiting for various resources,
across all sessions, since SQL Server was started or restarted. While this will give you a
broad overview of where time has been spent waiting, over a long period, it will make it
hard to see the smaller details. If you want to measure the impact of a certain change to
the database (a new index for example), you'll need to take a baseline measurement, make
the change, and then measure the difference.

27

Chapter 1: Using Dynamic Management Objects

For example, in Chapter 6, we use a DMO named sys.dm _ io _ virtual _ file _
stats to return, amongst other things, the number of reads in a database file. This value
returned reflects the total number of cumulative reads on the file since the server was
started. In order to measure a "time slice" of activity, we take a baseline measurement,
inserting data into a temporary table, as shown in Listing 1.2.

SELECT DB_NAME(mf.database_id) AS databaseName ,
 mf.physical_name ,
 divfs.num_of_reads ,
 --other columns removed in this section. See Listing 6.14 for complete code
 GETDATE() AS baselineDate
INTO #baseline
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 JOIN sys.master_files AS mf ON mf.database_id = divfs.database_id
 AND mf.file_id = divfs.file_id

Listing 1.2:	 Taking the baseline measurement.

Next, after an appropriate time lag, we use a Common Table Expression (CTE) to capture
the current values, then join it to the temporary table and calculate the difference in the
readings, as shown in Listing 1.3.

WITH currentLine
 AS (SELECT DB_NAME(mf.database_id) AS databaseName ,
 mf.physical_name ,
 num_of_reads ,
 --other columms removed
 GETDATE() AS currentlineDate
 FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 JOIN sys.master_files AS mf
 ON mf.database_id = divfs.database_id
 AND mf.file_id = divfs.file_id
)
 SELECT currentLine.databaseName ,
 currentLine.physical_name ,
 --gets the time difference in milliseconds since the baseline was taken
 DATEDIFF(millisecond,baseLineDate,currentLineDate) AS elapsed_ms,

28

Chapter 1: Using Dynamic Management Objects

 --gets the change in time since the baseline was taken
 currentLine.num_of_reads - #baseline.num_of_reads AS num_of_reads
 --other columns removed
 FROM currentLine
 INNER JOIN #baseline ON #baseLine.databaseName = currentLine.databaseName
 AND #baseLine.physical_name = currentLine.physical_name

Listing 1.3:	 Returning accumulated file reads since the baseline measurement.

This basic pattern is applicable to obtaining time slice measurements from any of the
accumulating counters covered in this book.

In some cases, it is possible and useful to manually clear out the accumulated statistics.
A classic case in point, described in detail in Chapter 3, is when analyzing activity
associated with cached plans. If a server has been up and running for a long period of
time, it is very hard to compare the relative expense of each plan because it will not be
a "level playing field." Different plans will have been in the cache for different periods of
time, executed different numbers of times, and the stats will have been accumulating for
different periods of time. Unless you are able to flush the cache, thus removing all plans
and their associated statistics, the results will be heavily skewed towards plans that have
been cached for a long period. Of course, many DBAs would be wary of doing this, as
it means all the plans will have to be recompiled, but others, mainly those blessed with
modern, high-power processors, feel that the benefits outweigh the costs.

Finally, always bear in mind that much of the data you're seeing in the DMOs is
aggregate data, collected across many sessions, many requests, and many transac-
tions. The previously mentioned wait _ stats DMV, for example, will show you at an
instance level where SQL Server spent time waiting, aggregated across all sessions. You
cannot track the wait times at an individual session level, unless you happen to be work-
ing on an isolated server and you are the only session on there!

29

Chapter 1: Using Dynamic Management Objects

Beware of the watcher effect

Generally, running DMO queries will require far fewer server resources than, for
example, capturing Profiler traces. Nevertheless, the DBA should exercise due caution
when capturing DMO data, in order to avoid the "watcher" effect, whereby the collecting
of performance data adversely affects the performance of the server.

If your DMO queries are complex, and collect and aggregate data from many databases,
look out for expensive sorts, hashes and spools while they are running, and for any
possible performance impact on the server.

Using DMOs with other performance tools

As useful as they are, DMOs are not a replacement for other tools such as PerfMon,
Profiler, and so on; they are complementary tools and, in fact, it's not always wise to
reach a conclusion as to the required action, based on a DMO measurement, without
first correlating it with evidence gathered from these other tools.

Profiler, for example, is an invaluable tool for tracing a defined set of actions (events) that
are occurring in SQL Server in response to a certain SQL workload. It is a powerful tool
for diagnosing poorly performing queries, locking, blocking, and a lot more. Indeed, DBAs
ought to continue to use Profiler regularly, alongside the DMOs. The DMOs tell you a
great deal about the state of your instance and provide, as you'll see early in the book,
significant information about the sessions, requests, and transactions that comprise the
activity in your SQL Server instance. However, Profiler is unequalled in its ability to offer
real-time insight into the activity on your instance. It is not a lightweight tool, though,
and you will need to have the most concise set of filters, and to return the correct
columns and rows for your trace, in order to prevent the "watcher" effect mentioned
in the previous section. In this respect, the DMOs are often useful in providing initial
detailed, rapid insight into where we should apply the magic sponge to the injured athlete
that is our SQL Server instance.

30

Chapter 1: Using Dynamic Management Objects

DMOs do offer further advantages over Profiler. One of the limitations of Profiler is that
it can only collect performance statistics while it is running, actively capturing query
activity. If a "bad query" suddenly executes on the server, causing performance issues,
the DBA will usually find out about it after the event. He or she will need to run a trace,
and hope the problem occurs again so that it can be captured and analyzed. With the
DMOs, as long as the query plan is still in the cache, you can retrieve it and find out what
resources the queries used when it ran, and who ran it. Another advantage is the fact
that running DMO queries will, in general, have a much lower impact on the server than
running Profiler traces. Finally, for certain issues, DMOs offer a much more granular level
of detail than Profiler. For example, with DMOs, we can investigate I/O activity at the file
system level, whereas Profiler will only summarize it at the drive level.

Performance Monitor (PerfMon) allows us to graphically identify a large number of
metrics, but primarily at the server level. Remember that PerfMon is first and foremost a
Windows troubleshooting tool. There are Microsoft SQL Server Performance objects that
you can utilize to look at SQL-centric metrics but, again, they are not at the same level of
granularity that you get from the DMOs. Note that we can also get SQL Server-centric
PerfMon counters from the DMOs, as will be demonstrated in Chapter 7.

Nevertheless, PerfMon is a valuable tool and it is common for DBAs to correlate
evidence gathered from various counters with that obtained from the DMOs. An excel-
lent white paper, SQL Server 2005 Waits and Queues, http://technet.microsoft.com/
en-us/library/cc966413.aspx, explains a powerful performance-tuning methodology,
based on correlating data regarding the points where SQL Server is spending a lot of time
waiting (the waits, obtained from the DMOs), with the resource "queues" indicated by
tracking various PerfMon counters.

Activity Monitor is one native tool, built into SSMS, which uses DMOs (as well as
PerfMon counters) "under the covers." Graphical representations of % CPU Time,
Waiting Tasks Count, Database I/O MB/sec, and Batch Requests/sec – counters you
would typically enlist first in PerfMon – are included along with output from queries
against sys.dm _ exec _ sessions, sys.dm _ exec _ requests, sys.dm _
os _ wait _ stats, sys.dm _ exec _ query _ stats, and many others. These are

31

Chapter 1: Using Dynamic Management Objects

segregated into categories for Processes, Waits, Data File I/O, and Recent Query Costs.
Activity Monitor is not a bad place to start a performance investigation, but just doesn't
offer the same degree of control and filtering that you'll get from using DMOs and good
old T-SQL.

Some DBAs still use tools such as sp _ who2, or some of the DBCC commands, to extract
similar information to that which you can get from a few of the DMOs. Again, these
former tools are simply rather limited in the information they return, compared to the
DMOs. For example, DBCC OPENTRAN can return some of the information that you can
get from the transaction-related DMOs, with regard to active transactions in the system.
However, the DBCC command fails to give a complete picture, missing, for example,
"sleeping" transactions that may still be holding locks, and also not providing valuable
information such as how many log records or how many bytes have been written by a
given transaction, which is very useful when diagnosing a rapidly filling transaction
log file.

Finally, many third-party monitoring tools have dashboards that will tie directly in to
the DMOs, along with functionality to allow for Profiler tracing activity, because
Profiler and the DMOs are so vital for rapid, successful identification and remediation of
performance issues in Microsoft SQL Server. Such tools can remove some of the pain of
having to construct and maintain custom scripts, schedule them, and collate the results in
meaningful form, and so on. They will scrape the data out of the DMOs under the covers,
present it to the DBA in a digestible form and, critically, warn in advance of impending
problems. Of course, the DBA will still want to know how things work under the covers,
and will still need to occasionally write their own custom queries directly against the
DMVs, because what you lose with a tool, inevitably, is the exact granularity and control
of the data returned that you get when writing your own queries.

32

Chapter 1: Using Dynamic Management Objects

Summary

Ultimately, it is the granularity of the data, and level of programmatic control, which
makes the DMOs such an important addition to the DBA's performance tuning
toolkit. DMOs do not necessarily replace other performance tools, but they do offer a
level of detail that is largely unavailable elsewhere, or at least from the native tool set.
Furthermore, you don't need to master a new GUI, or a new language in order to use
them; it's all done in a language every DBA knows and mostly loves – T-SQL.

Hopefully, this chapter has provided a brief, broad overview of the sort of data that
the DMOs covered in this book can offer. It is up the rest of the book to provide the
scripts, explanations and details that will allow you to collect the information you need
to troubleshoot SQL Server problems on your servers.

33

Chapter 2: Connections, Sessions
and Requests

Within the outer layers of our investigation into SQL Server performance monitoring
using the DMOs, the logical hierarchy of user interaction within SQL Server is broken
down into:

•	 the connections that are accessing our database instances and who/what owns them

•	 the sessions that are spawned inside these connections

•	 the requests that are executed by these sessions, for work to be performed by SQL
Server; these requests can comprise a single query, a batch, a call to a stored procedure,
and so on.

As this hierarchy suggests, there is more to user interaction with SQL Server than just
query execution. An entity, be it an application or, perhaps, a DBA using SQL Server
Management Studio, must first make a connection to the SQL Server instance.
Consequently, a session, or multiple sessions, can be established in the context of that
user connection. Only then can the user submit requests and retrieve information from
the database.

The Dynamic Management Objects (DMOs) and scripts presented in this chapter will
allow DBAs to paint a very clear picture of the activity that is occurring right now on
their SQL Server instances, from the point of view of the sessions and connections that
instigated the activity. We'll examine how users are connected to a SQL Server instance,
how many sessions each connection has and the attributes of these sessions, which
requests are running on the server right now, and what SQL they are running. We'll
gather some raw performance data, in terms of CPU, I/O, and memory being used by the
SQL queries and batches executed by these requests, to show which currently executing
queries are the most expensive. In this way, we can create a trail leading from the current

34

Chapter 2: Connections, Sessions and Requests

expensive queries to the sessions, connections and users that own them. All of this is
accomplished via the following DMOs, which belong to the "Execution-related" category
of objects, and therefore all start with sys.dm_exec_.

•	 sys.dm_exec_connections – provides information about network traffic and
protocols, as well as user attributes from the calling source of the connection.
Additional details are available from Microsoft Books Online: http://msdn.micro-
soft.com/en-us/library/foo6bd46fe1-417d-452d-a9e6-5375ee8690d8.aspx.

•	 sys.dm_exec_sessions – returns information about each user and internal system
session on a SQL Server instance including session settings, security, and cumulative
CPU, memory, and I/O usage. More on this DMV is available from Microsoft Books
Online: http://msdn.microsoft.com/en-us/library/ms176013.aspx.

•	 sys.dm_exec_requests – provides a range of query execution statistics, such
as elapsed time, wait time, CPU time, and so on. It returns one row for every query
currently executing. More information about this DMV is available in the following
Microsoft KB: http://technet.microsoft.com/en-us/library/ms177648(SQL.90).
aspx.

•	 sys.dm_exec_sql_text – returns the text of the SQL batch identified by a
sql_handle; see http://msdn.microsoft.com/en-us/library/ms181929.aspx.

•	 sys.dm_exec_query_plan – returns, in XML format, the query plan, identified by a
plan_handle, for a SQL batch (this DMO is covered in more detail in Chapter 3).

Of course, the journey does not end there. In Chapter 3, we'll delve deeper into query
execution and, in particular, into the execution plans that SQL Server generates, stores
and, hopefully, reuses, during this process. This allows a broader analysis of your query
workload, from the point of view of what is in the plan cache, rather than just those
queries that are executing right now. In Chapter 4, we'll step down to an even lower
granularity, to look at the transactions that are initiated once a query is assigned a plan
and sent on to the engine for processing. Transactions do (hopefully) complete and
requests are fulfilled, yet the associated user can, and usually does, still maintain
connectivity to the SQL Server instance.

35

Chapter 2: Connections, Sessions and Requests

Sysprocesses versus DMOs

Before we get started in earnest with the sys.dm_exec_connections, sys.dm_
exec_sessions, and sys.dm_exec_requests DMOs, it's worth saying a few words
about the system compatibility view that these DMOs have superseded, namely sys.
sysprocesses.

As was noted in Chapter 1, the sys.sysprocesses system compatibility view was,
for a long time, the "go to" source of information regarding activity on a SQL Server
instance, and it is hard for some DBAs to get out of the habit of using their "old standby."
It provides a nicely concise picture of what is going on with the server, and it is arguably
quicker to query than the DMVs when you just need a quick ad hoc view of server activity.

Many of the columns available in these three DMOs are also represented in
sys.sysprocesses. However, the scope of each of the three DMOs, along with
the ability to return, for each session, command text and query plan information,
through relationships with sys.dm_exec_sql_text and sys.dm_exec_query_
plan, make the querying of the DMVs far more powerful and detailed than relying on
sys.sysprocesses alone.

Aside from some of the naming convention differences between sysprocesses and
the DMOs, as discussed in Chapter 1, another issue DBAs struggle with initially is where
certain columns are, and aren't, exposed. To give a brief, simple example: open two tabs
in SQL Server Management Studio (SSMS) and target them both at the same database
(SimpleTalk, in this example). In Tab #1, interrogate the sysprocesses. Leave Tab #2
empty. For the sake of our discussion here, the session_id (spid, in pre-SQL Server
2005 parlance) is 54 for Tab #1; 56 for Tab #2 (results may differ in your environment).

SELECT spid ,
 cmd ,
 sql_handle
FROM sys.sysprocesses
WHERE DB_NAME(dbid) = 'SimpleTalk'

36

Chapter 2: Connections, Sessions and Requests

Listing 2.1:	 Running the query against sysprocesses.

Now, also in Tab #1, run the equivalent query against sys.dm_exec_requests.

SELECT session_id ,
 command ,
 sql_handle
FROM sys.dm_exec_requests
WHERE DB_NAME(database_id) = 'SimpleTalk'

Listing 2.2:	 Running the query against sys.dm_exec_requests.

In sysprocesses, the sql_handle is available at session-scope and so we see an entry
for the "empty session" (Tab #2) as well as for the query being executed in the current
session. With sys.dm_exec_requests, a request is only observable while the query
engine is processing each transaction associated with it. Once the final commit for the
last transaction associated with the request is made, the request is no more. Thus, the
second idle session is invisible to sys.dm_exec_requests, since no requests are
currently being processed.

Furthermore, sql_handle is not available from sys.dm_exec_sessions, so we could
not run the equivalent query against that view. Both sysprocesses and sys.dm_exec_
requests will, of course, detect currently executing queries, but, interestingly, if the
second session (56) contained, for example, a modification that had completed, but not
committed (or rolled back), then it would not be detected by a simple query against
sys.dm_exec_requests.

37

Chapter 2: Connections, Sessions and Requests

In addition, there are a couple of key fields from sys.sysprocesses that are not
included in any of the sys.dm_exec DMVs covered in this chapter:

•	 kpid – identifies the Microsoft Windows thread on which the session is executing;
this is not exposed in the DMVs we cover here, but it can be discovered through
additional joins back to the sys.dm_os_threads DMV

•	 physical_io – a combined metric for cumulative disk reads and writes for the
session; this column is handled better within the DMVs, however, in that reads and
writes are separated into individual columns in both sys.dm_exec_sessions and
sys.dm_exec_requests.

All other columns of interest provided by sys.sysprocesses exist within at least one
(and often more) of the Dynamic Management Objects, often by a different name. For
example, spid in sys.sysprocesses is referred to throughout many of the DMVs and
DMFs as session_id.

Connections and Sessions

Over the course of this chapter and the ones that follow, we will drill down through the
layers of user interactivity within our SQL Server instances. That journey starts at the
"outside" with the connections that are being established to our SQL Server instances,
and then the sessions that are associated with them.

The sys.dm_exec_connections DMV returns server-scoped information about
physical connections into SQL Server and is "network-centric" in the information it
returns. The sys.dm_exec_sessions DMV is server-scoped; it returns a row for every
session on your SQL Server instance, and provides a vast array of information regarding
session ownership, the state of these sessions, and the work they are performing. It is rare
to query either of these DMVs in isolation and, in fact, you will often join them to other

38

Chapter 2: Connections, Sessions and Requests

DMOs to get an initial, session-level view of the work currently being executed on your
instances, and from which connections this work originated.

Let's first take a brief overview of each of these DMVs, and then we'll get to the set of
diagnostic scripts that use them.

sys.dm_exec_connections

The sys.dm_exec_connections DMV uses the following three identification
columns, to uniquely identify a connection and to facilitate joins to the information
in related DMOs:

•	 connection_id – uniquely identifies the connection at the instance level; use this
column when joining to sys.dm_exec_requests

•	 session_id – identifies the session associated with this connection; it is the foreign
key referencing sys.dm_exec_sessions and is used to join sys.dm_exec_con-
nections to that DMV

•	 most_recent_session_id – the session_id for the most recent request associ-
ated with the connection; when dealing with SOAP (Simple Object Access Protocol)
sessions, it's possible for a session to outlast a connection to SQL Server (connections
may span several sessions, in fact); coverage of SOAP is outside the scope of this book,
but Microsoft TechNet offers a good primer: http://technet.microsoft.com/en-us/
library/ms187904(SQL.90).aspx.

Rows in sys.dm_exec_connections correlate to the session information exposed in
sys.dm_exec_sessions via the session_id and most_recent_session_id. It is
appropriate to use the most_recent_session_id column on joins between these two
DMVs as sessions will reuse open connections as seen fit, and the most_recent_ses-
sion_id column will store the more accurate information to complete the join.

39

Chapter 2: Connections, Sessions and Requests

The most_recent_sql_handle column returned by this DMV is the handle
associated with the last request executed against SQL Server on this connection. This
column is always associated with the most_recent_session_id column, and not
necessarily the session_id column. The text of this sql_handle can be returned by
passing the handle to the sys.dm_exec_sql_text Dynamic Management Function,
as will be demonstrated a little later.

The sys.dm_exec_connections DMV returns detailed information regarding the
physical connections to SQL Server, including the protocols and security used, network
packet information, and so on. The following columns represent a small selection of the
more commonly-used ones:

•	 encrypt_option – Boolean column that identifies whether encryption is used on
this connection

•	 auth_scheme – authentication scheme for the connection; Windows authenti-
cation (NTLM, KERBEROS, DIGEST, BASIC, NEGOTIATE) or SQL, for SQL Server
authentication

•	 num_reads – number of packet reads that have occurred across this connection;
note that this is not the same as sys.dm_exec_session.reads

•	 num_writes – number of data packet writes that have occurred over this
connection; note that this is not the same as sys.dm_exec_session.writes

•	 last_read – time that the last read occurred over this connection

•	 last_write – time of the last write occurring over this connection

•	 client_net_address – IP address of the client connecting to the
SQL Server instance.

40

Chapter 2: Connections, Sessions and Requests

sys.dm_exec_sessions

The sys.dm_exec_sessions DMV is server-scoped and returns a row for every session
on your SQL Server instance. Microsoft recommends using sys.dm_exec_sessions
to initially identify "sessions of interest," then performing more detailed analysis on these
sessions via queries utilizing the other DMVs, which is a pretty accurate description of the
approach we'll take in this book.

An interesting point to note is that the values in the sessions DMV are updated only
when their associated requests have finished executing, whereas the requests DMV
(covered later) provides a real-time view of what is happening right now on your system.

As was the case with sys.dm_exec_connections we will be working with just a subset
of the columns available in sys.dm_exec_sessions. There is a full list of the columns
available with this DMV at http://msdn.microsoft.com/en-us/library/ms176013.aspx,
and here we'll include a summary of only the most important columns for the DBA in the
text that follows.

The DMV provides a unique identifier for the session on a given instance (session_id).
This column corresponds to the spid column from the sys.sysprocesses system
compatibility view. Based on this session_id, the DMV can reveal such information as
the client program that initiated it (program_name), the status of the session (status),
and the SQL Server login under which the session is executing (login_name), which
may, due to context switching via such commands as EXECUTE AS, be different from the
login that initiated the session (available from original_login_name).

The status column is worthy of special mention, as it relates to SQL Server wait time
analysis, which will be discussed in detail in Chapter 7. If the "work" owned by a session
is currently being executed (i.e. is "on the CPU") then the session's status is listed as
running. If none of the session's requests are currently running, then the status is
sleeping. There is also a third status value of dormant, indicating a session that
"has been reset due to connection pooling." A status column also appears in the

41

Chapter 2: Connections, Sessions and Requests

sys.dm_exec_requests DMV, and provides a slightly more detailed view of the
current state of a request.

The sessions DMV also provides a host of columns that reveal the value, for each session,
of various session-level settings. Again, these are self-explanatory and include the value
of DATEFORMAT (date_format), ANSI_WARNINGS (ansi_warnings), the transaction
isolation level for the session (transaction_isolation_level), how long the ses-
sion will wait for a lock to release before timing out (lock_timeout), and the deadlock
priority of the session (deadlock_priority), which determines how likely it is that the
session will be chosen as a deadlock victim.

Perhaps most interestingly for the DBA, this DMV provides a number of columns that
reveal the workload and activity at the session level, as follows:

•	 total_elapsed_time – time in milliseconds since the session was initiated

•	 last_request_start_time – start time of the most recent request to execute on
this session (the current request, if the session is in a running state)

•	 last_request_end_time – a DATETIME column that shows the time that the most
recent request completed

•	 cpu_time – amount of CPU time, recorded in milliseconds, used by all of the requests
associated with this session

•	 memory_usage – number of 8 KB pages of memory used by all requests associated
with this session

•	 total_scheduled_time – total time in milliseconds that the requests associated
with this session were scheduled for execution

•	 logical_reads – number of reads from the data cache performed by all requests
associated with the session

•	 reads – total number of reads from disk performed by all requests in the session

•	 writes – total number of writes performed by all requests in the session.

42

Chapter 2: Connections, Sessions and Requests

Note that many of the columns in this DMV may have a NULL value associated with them
if the sessions are internal to Microsoft SQL Server (those with session_id < 51).

Who is connected?

The most immediately obvious use for these DMVs is to help identify who and what is
connecting to an instance of SQL Server, and to gather some useful information about
each connection. While it is not necessary for DBAs to know the intimate details of
every application, application server and workstation in the environments they support,
they do at least need some way of knowing which ones are accessing their SQL Server
instances, when, and how often. The query in Listing 2.3 identifies sources of multiple
connections to your SQL Server instance and so will allow the DBA to identify where the
bulk of the connections originate, for each of their instances.

-- Get a count of SQL connections by IP address
SELECT dec.client_net_address ,
 des.program_name ,
 des.host_name ,
 --des.login_name ,
 COUNT(dec.session_id) AS connection_count
FROM sys.dm_exec_sessions AS des
 INNER JOIN sys.dm_exec_connections AS dec
 ON des.session_id = dec.session_id
-- WHERE LEFT(des.host_name, 2) = 'WK'
GROUP BY dec.client_net_address ,
 des.program_name ,
 des.host_name
 -- des.login_name
-- HAVING COUNT(dec.session_id) > 1
ORDER BY des.program_name,
 dec.client_net_address ;

43

Chapter 2: Connections, Sessions and Requests

Listing 2.3:	 Who is connected?

This particular query provides the IP address and name of the machine from which
the connection is being made, to a given SQL Server instance, the name of the program
that is connecting, and the number of open sessions for each connection. This query,
in our environment, is limited to workstation-class clients only. However, you can
easily manipulate the WHERE clause of the statement to fit the naming conventions of
the hardware in your environment.

I find this to be extremely useful information in several ways. It lets you see which
middle-tier servers are connecting to your server, and how many sessions each one of
them has, which is very helpful when you are trying to help your developers debug
application or connectivity issues. It lets you see if anyone is using SSMS to connect to
your instance.

From these results, I would immediately review the possibility of an issue relating to
the Helpsofton 2on 2 application, at address 63.3.83.240, as it is a workstation-class box
generating 24 connections on software I know does not require such activity. Likewise, I

44

Chapter 2: Connections, Sessions and Requests

would review the activity associated with the Transport View application to
determine whether or not multiple connections, and multiple sources of said
connections, are appropriate.

It is quite common that many, if not most, of the Application Servers in your
environment will be generating multiple connections into your SQL Server boxes.
However, if you observe the same behavior from a workstation, you may need to
investigate the usage patterns of the application with the application analyst or
vendor representative, to determine if this is an architectural issue or a result of
misuse by the end-user (opening multiple instances of the application in an attempt
to increase productivity).

Who is connected by SSMS?

Closely related to the previous script, Listing 2.4 focuses on those who are directly
connected to the SQL Server instances I support, via SSMS. If I see results that reference
a server-class box, I would be apt to question the activity. Red flags would also be
generated if I encounter rows that are not associated with workstations assigned to
DBAs, developers, or other authorized SQL Server professionals in my environment.

SELECT dec.client_net_address ,
 des.host_name ,
 dest.text
FROM sys.dm_exec_sessions des
 INNER JOIN sys.dm_exec_connections dec
 ON des.session_id = dec.session_id
 CROSS APPLY sys.dm_exec_sql_text(dec.most_recent_sql_handle) dest
WHERE des.program_name LIKE 'Microsoft SQL Server Management Studio%'
ORDER BY des.program_name ,
 dec.client_net_address

45

Chapter 2: Connections, Sessions and Requests

Listing 2.4:	 Who is executing what via SSMS?

Notice the use of the CROSS APPLY operator to join to the results returned by the sys.
dm_exec_sql_text table-valued function (discussed later). The function is invoked
once for each row in our "outer" table, and we pass in to the function the most_recent_
sql_handle parameter so that we can return the text of the most recently-executed
query in our result set. The use of CROSS APPLY (as opposed to OUTER APPLY) means
that a row will only be returned from the "outer" table if the function produces a result
for that row.

You will see this CROSS APPLY pattern repeated many times in DMO queries, though
there are a few DMOs, for example sys.dm_db_index_operational_stats (see
Chapter 5, DMOs for Indexing), which do not allow joins to table-valued functions in
this manner.

Session-level settings

Listing 2.5 is really just a "dump" of some useful columns from the sys.dm_exec_
sessions DMV for the current session, via the @@spid system variable. Nevertheless,
it is useful as a quick, one-stop source for determining the session settings for the
current connection, or when troubleshooting a specific session. You could easily supply
a session_id in place of @@SPID if diagnosing a performance issue on an identified
session_id.

46

Chapter 2: Connections, Sessions and Requests

SELECT des.text_size ,
 des.language ,
 des.date_format ,
 des.date_first ,
 des.quoted_identifier ,
 des.arithabort ,
 des.ansi_null_dflt_on ,
 des.ansi_defaults ,
 des.ansi_warnings ,
 des.ansi_padding ,
 des.ansi_nulls ,
 des.concat_null_yields_null ,
 des.transaction_isolation_level ,
 des.lock_timeout ,
 des.deadlock_priority
FROM sys.dm_exec_sessions des
WHERE des.session_id = @@SPID

Listing 2.5:	 Return session-level settings for the current session.

The various session settings determine, not only how the session handles requests and
transactions that flow along its ownership chain, but also how the session interacts with
other sessions running concurrently on the SQL Server instance. Sessions with elevated
deadlock priority, for example, are able to run roughshod over any other sessions with
which they may conflict in a deadlock situation. This may be by design, but it may be
indicative of a user manipulating their session settings to "play the bully." It's also
useful to know if any sessions are running transactions using the READ UNCOMMITTED
isolation level, meaning that the requests running on the session may return data
compromised by dirty reads.

47

Chapter 2: Connections, Sessions and Requests

Logins with more than one session

The simple query in Listing 2.6 reports on the number of sessions being run by each login
on your SQL Server instance. It's especially useful for seeking out those logins that own
more than a single session.

SELECT login_name ,
 COUNT(session_id) AS session_count
FROM sys.dm_exec_sessions
WHERE is_user_process = 1
GROUP BY login_name
ORDER BY login_name

Listing 2.6:	 Logins with more than one session.

Note that much published code uses WHERE session_id > 50 to filter out system
processes. However, certain system features, such as Database Mirroring or Service
Broker can, and will, use a session_id of greater than 50 under certain circumstances,
such as when a large number of tasks are involved. Hence the use here of is_user_
process = 1.

This can be useful, especially if you use application level logins for different applications
that use your database instance. If you know your baseline values for the number of
connections per login, it is easier to see when something has changed. While not an
indicator of a problem in its own right, multiple open sessions may be an indicator of
either poor design or improper usage habits by the end-user, such as running multiple
instances of an application or, impatient with the performance, clicking a link or
command button repeatedly and expecting the application to respond quicker.

48

Chapter 2: Connections, Sessions and Requests

Identify sessions with context switching

Context switching is the act of executing T-SQL code under the guise of another user
connection, in order to utilize their credentials and level of rights. While full coverage of
context switching is outside the scope of this book (and is explained in greater detail in
Books Online at http://msdn.microsoft.com/en-us/library/ms181362.aspx), the simple
script in Listing 2.7 will at least allow DBAs to identify its occurrence.

SELECT session_id ,
 login_name ,
 original_login_name
FROM sys.dm_exec_sessions
WHERE is_user_process = 1
 AND login_name <> original_login_name

Listing 2.7:	 Identify sessions with context switching.

Identify inactive sessions

The query shown in Listing 2.8 identifies all sessions that are open and have associ-
ated transactions, but have had no active requests running in the last n days. The script
joins to the sys.dm_tran_session_transactions DMV, which will be discussed in
Chapter 4, Transactions. In the script, we extract the "day" portion of the last_request_
end_time and use it to hunt down any sessions where the last request completed more
than five days ago and where there are no requests currently running. We achieve the
latter simply by returning sessions with any Status other than Running (i.e. Sleeping,
Dormant or, in SQL Server 2008, Preconnect sessions).

49

Chapter 2: Connections, Sessions and Requests

DECLARE @days_old SMALLINT
SELECT @days_old = 5

SELECT des.session_id ,
 des.login_time ,
 des.last_request_start_time ,
 des.last_request_end_time ,
 des.[status] ,
 des.[program_name] ,
 des.cpu_time ,
 des.total_elapsed_time ,
 des.memory_usage ,
 des.total_scheduled_time ,
 des.total_elapsed_time ,
 des.reads ,
 des.writes ,
 des.logical_reads ,
 des.row_count ,
 des.is_user_process
FROM sys.dm_exec_sessions des
 INNER JOIN sys.dm_tran_session_transactions dtst
 ON des.session_id = dtst.session_id
WHERE des.is_user_process = 1
 AND DATEDIFF(dd, des.last_request_end_time, GETDATE()) > @days_old
 AND des.status != 'Running'
ORDER BY des.last_request_end_time

50

Chapter 2: Connections, Sessions and Requests

Listing 2.8:	 Sessions that are open but have been inactive for more than 5 days.

I included the workload/activity columns in the query in order to determine whether the
application may hold a session for a long period of time, perhaps permanently, or if the
session is truly idle and possibly stagnant.

If cumulative activity is high, as indicated by the values of cpu_time, total_elapsed_
time, total_scheduled_time, and so on, but the session has been inactive for a
while, then it may be an application that keeps a more-or-less permanent session open,
and therefore there is little to be done about it. From this perspective, the AustenPro
session in the sample data may be "acceptable," and I would proceed to identify possible
issues with the first five rows in the results.

From these results, I can surmise that there may have been an event on 6/28/2009 at
15:13 that interrupted connectivity to the server and resulted in a number of "orphaned
sessions." In this case, this event was a scheduled downtime in our environment for
monthly server patching. The transactions associated with these orphaned sessions
should have been rolled back as part of the undo portion of recovery, when bringing the
instance back online after the patching. I killed these sessions, based upon the knowledge
of the environmental activity and the fact that the sessions were currently not running
any requests (as evidenced by the value of the status column being sleeping).

As always, it's not enough just to understand the metadata values for the DMOs; before
acting on this data, you must also know and understand your environment, your data, and
your users.

51

Chapter 2: Connections, Sessions and Requests

Identify idle sessions with orphaned transactions

The following query joins sys.dm_exec_sessions to sys.dm_exec_requests and
sys.dm_tran_session_transactions. The requests DMV will be discussed in
more detail shortly, and the session_transactions DMV will be introduced fully in
Chapter 4.

The inner join to sys.dm_tran_session_transactions returns all sessions with
corresponding open transactions. By performing a left join to sys.dm_exec_requests
and returning results where a NULL foreign key is encountered, we limit the results to
only those sessions that have open transactions, yet no corresponding request associated
with the session.

SELECT des.session_id ,
 des.login_time ,
 des.last_request_start_time ,
 des.last_request_end_time ,
 des.host_name ,
 des.login_name
FROM sys.dm_exec_sessions des
 INNER JOIN sys.dm_tran_session_transactions dtst
 ON des.session_id = dtst.session_id
 LEFT JOIN sys.dm_exec_requests der
 ON dtst.session_id = der.session_id
WHERE der.session_id IS NULL
ORDER BY des.session_id

52

Chapter 2: Connections, Sessions and Requests

Listing 2.9:	 Identifying sessions with orphaned transactions.

Microsoft offers a version of this query in Books Online, but I have a few issues with
their version. It returns all columns from sys.dm_exec_sessions, which is completely
unnecessary, and its join structure is, in my opinion, convoluted.

Requests

Now we reach the level of the requests that are made against the SQL Server engine, and
the batches, queries, and stored procedures that are executed within these requests.

Query tuning is the heart and soul of optimizing SQL Server performance. If your typical
workload consists of ill-designed, inefficient queries then, for a number of reasons, you
will have performance and scalability issues. If your queries are longer, more numerous,
and more complex than necessary, they will require more CPU resources during execu-
tion, and so will take longer to run. Ill-designed queries, along with a failure to make
proper use of indexes (see Chapter 5, DMOs for Indexing), will cause more data to be read
more often than is necessary. If this data is read from the buffer cache, this is referred
to as logical I/O, and can be an expensive operation. If the data is not in memory, and
so needs to be read from disk (or, of course, if data needs to be written), this is physical
I/O and is even more expensive. In addition, if you have many queries that return huge
amounts of data, it could cause memory pressure on the buffer cache, and result in SQL
Server flushing data out of the cache, which will affect the performance of other queries.

53

Chapter 2: Connections, Sessions and Requests

The problems do not even end there; as your SQL workload executes, it will need to
obtain locks or latches on various shared resources (a data page, a plan in the cache, and
so on). Poorly-designed SQL will acquire more locks/latches than necessary and hold
them for longer than necessary, thus forcing other requests to wait longer than necessary
before proceeding, and so limiting the scalability of the system.

The set of DMVs in the "Execution-related" category, including those in this chapter and
the next, will help you to track down the sessions, requests and queries that are the most
resource intensive, and take the longest time to execute. Central to this task are the two
DMOs we'll discuss next: sys.dm_exec_requests, a DMV that returns one row for
every request currently executing and provides a range of execution statistics for that
request, such as elapsed time, wait time, CPU time and so on; and sys.dm_exec_sql_
text, which is a DMF that returns the text of the SQL batch or procedure identified by
a sql_handle, obtained from sys.dm_exec_requests (or from another DMO) and
passed in as a parameter.

Overview of sys.dm_exec_requests

The sys.dm_exec_requests DMV supplies a row for each user and system request
currently executing within a SQL Server instance. Of the three DMVs discussed in this
chapter, sys.dm_exec_requests is undoubtedly the workhorse. It provides much of
the same information that we find in sys.dm_exec_sessions but that information
was cumulative for all the requests that have been satisfied from the time the session was
opened. The sys.dm_exec_requests DMV shows us what is currently running
on the SQL Server instance, its impact on memory, CPU, disk, and cache. The previous
two DMVs we've discussed in this chapter may only be updated with this cumulative
information once the queries complete and the requests running on the associated
connections and sessions are satisfied. The information returned from sys.dm_exec_
requests is real time; it's not returned after the fact.

54

Chapter 2: Connections, Sessions and Requests

SQL and plan handles

As noted, the sys.dm_exec_requests is one of the DMOs that expose the sql_
handle column, which identifies the currently executing batch or procedure (or one
that is in the cache – see Chapter 3). We pass this handle to the sys.dm_exec_sql_text
DMF, to obtain the SQL text of the executing batch. This batch or procedure may
consist of tens or even hundreds of SQL statements, so we'll get back the text for all those
statements. A common pattern is to use the SUBSTRING function and the byte offset
columns (statement_start_offset and statement_end_offset), supplied by
sys.dm_exec_requests, to extract the text for only that statement within that batch
that is currently executing.

The changing data type of sql_handle

In SQL Server 2005, the sql_handle is a binary(20) value, but in SQL Server 2008 it is documented

as a varbinary(64).

Also exposed is the plan_handle column, which identifies the execution plan for the
procedure or batch. We will use this column briefly in this chapter, when exposing the
graphical execution plan associated with sessions of interest, but it is covered in detail
in Chapter 3.

Identification columns

The primary key of the sys.dm_exec_requests DMV is the request_id column,
which uniquely identifies a request within a session. However, this value is very rarely
used in practice. More useful are the three foreign keys:

•	 session_id – session on which the request is run; used to join to _sessions

55

Chapter 2: Connections, Sessions and Requests

•	 connection_id – connection associated with the request; used to join
to _connections

•	 transaction_id – transaction associated with the request; used in several objects
including the complete suite of sys.dm_tran… Dynamic Management Objects, as
well as tools such as Profiler; this column is often used to join to sys.dm_tran_
active_transactions to get more detailed information about the transaction(s)
associated with a given request detailed in sys._dm_exec_requests.

The sys.dm_exec_requests DMV offers a huge amount of information regarding
the currently executing requests and the work they are performing. As usual, we'll refer
you to the relevant page on Books Online (http://msdn.microsoft.com/en-us/library/
ms177648.aspx) for the full listing, and only review here those columns we use most often.

Blocking and locking columns

The _requests DMV exposes columns that describe the blocking state and the wait
status of the active requests (if waiting on a resource before it can be fulfilled). As you'll
see in Chapter 7 of this book, much of performance tuning and system performance
review begins with the information that comes from wait stats analysis.

The status column of this DMV reveals the status of a given request within a session.
If a request is currently executing, its status is running. If it is in the "runnable" queue,
which simply means it is in the queue to get on the processor, its status is runnable.
This is referred to as a signal wait. If it is waiting for another resource, such as a locked
page, to become available in order to proceed, or if a running request needs to perform
I/O, then it is moved to the waiter list; this is a resource wait and the waiting request's
status will be recorded as suspended.

56

Chapter 2: Connections, Sessions and Requests

The following columns can reveal details of the nature of such waits:

•	 blocking_session_id – lists the session_id that is blocking the request; if no
blocking exists, the value will be NULL; there are three other possible values for this
column besides NULL and the session_id of the blocking session (per Books Online)

•	 -2 – the block is owned by an orphaned distributed transaction

•	 -3 – the block is owned by a deferred recovery transaction

•	 -4 – the session_id of the blocking latch owner could not be identified.

•	 wait_type – identifies the wait type for a request that is currently waiting for a
resource being used by another process; this column also appears in the sys.dm_os_
wait_stats DMV, covered in Chapter 7, where there is an in-depth discussion of wait
analysis as a key initial indicator of resource pressure on a SQL Server instance

•	 wait_time – the amount of time the request has been waiting, in milliseconds, cumu-
latively, for all waits encountered during the request processing to date

•	 wait_resource – the last resource that the session waited on; this column can
contain various different types of items, from pages in a table, to a session_id on a
different server for a distributed transaction.

Activity and workload columns

Finally, we have a number of useful columns that report on the work being performed,
and resources used, by a given request:

•	 percent_complete – can be used as a metric for completion status for certain
operations; a partial list of the operations includes:

•	 database backups/restores

•	 dbcc checkdb / checktable / etc.

57

Chapter 2: Connections, Sessions and Requests

•	 dbcc shrinkdatabase / shrinkfile

•	 dbcc indexdefrag / alter index reorganize

•	 transaction rollbacks.

•	 cpu_time – the total amount of processing time spent on this request
(in milliseconds)

•	 row_count – the number of rows that were processed for the request

•	 granted_query_memory – number of pages allocated to the execution of the
request; since this metric is measured in 8 KB pages, you'll need to convert accordingly;
I tend to want to review my metrics in MB, therefore I perform the following
conversion from pages to MB: MB = (Number of 8 KB Pages)/1024 * 8

•	 reads – total physical disk reads performed for this request

•	 writes – total physical writes performed for this request

•	 logical_reads – total number of reads from the data cache for this request.

Overview of sys.dm_exec_sql_text

Having retrieved the sql_handle from the sys.dm_exec_requests DMV (or any
other DMV that exposes it), we can then provide it as a parameter into the sys.dm_
exec_sql_text function, in order to retrieve the SQL text for a given batch/procedure.

The sys.dm_exec_sql_text table-valued function returns two columns that are only
interesting if the sql_handle refers to an object, such as a stored procedure, rather than
ad hoc SQL statements:

•	 dbid – the identifier (or surrogate key) for the database, if applicable; (note that this is
usually database_id in other objects)

58

Chapter 2: Connections, Sessions and Requests

•	 objectid – identifier/surrogate key for the object in a database, if applicable;
(note that this is usually spelled object_id in other objects).

And two other columns that are always interesting:

•	 encrypted – 1 if plan is encrypted, which will prevent viewing of the query
text, 0 otherwise

•	 text – the text of the query, unless the object is encrypted, in which case it
will be NULL.

In the following sections, we will demonstrate returning the text of ad hoc SQL batches,
then show how to "dissect" the sql_handle so that we see only the text of the currently
executing statement within the batch or procedure.

Returning the SQL text of ad hoc queries

As a simple example, the query shown in Listing 2.10 uses the sys.dm_exec_requests
DMV and sys.dm_exec_sql_text function to retrieve the text of the statement that
the current session is executing.

SELECT dest.text ,
 dest.dbid ,
 dest.objectid
FROM sys.dm_exec_requests AS der
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) AS dest
WHERE session_id = @@spid ;

Listing 2.10:	 Retrieving the text for a currently executing ad hoc query.

59

Chapter 2: Connections, Sessions and Requests

If no other statements are executing in the same session, this will simply return the text
of this very same query. If you modify this query to return the dbid and objectid,
columns, you'll see that they are both NULL. Of course, with this WHERE clause, it isn't a
tremendously useful query, but the intent was really just to show that you get back the
exact query you ran. Usually, the equality operator in the WHERE clause would be replaced
with a not equal operator (<>) because you want to see the other queries.

Using sys.dm_exec_sql_text to retrieve the text of the commands currently being
executed is a tremendous leap forward compared to the rather limited view available with
DBCC INPUTBUFFER from early versions of SQL Server, where we could only get the first
256 characters.

Consider the case where you want to find all executing batches that contain some
specific construct or text. In this example, we'll look for all currently executing queries
that contain a WAITFOR command (a very useful command when demonstrating
DMVs since it gives you enough time to start a query, and then switch to a different
connection and search for it). So, on one connection (in tempdb, ideally), execute the
following batch:

DECLARE @time CHAR(8) ;
SET @time = '00:10:00' ;
WAITFOR DELAY @time ;

Then, on a different connection, just execute a "naked" WAITFOR command:

WAITFOR DELAY '00:10:00'

Within ten minutes of executing the first batch, you can retrieve the text of this batch,
plus the second WAITFOR command, using the code shown in Listing 2.11.

60

Chapter 2: Connections, Sessions and Requests

SELECT dest.text
FROM sys.dm_exec_requests AS der
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) AS dest
WHERE session_id <> @@spid
 AND text LIKE '%waitfor%' ;

Listing 2.11:	 Retrieving the text for a currently executing batch.

We can perform a similar trick to retrieve the text of a stored procedure; create the
following small object in tempdb, as shown in Listing 2.12 (note that I access some data,
just to make sure that the plan has a cost).

CREATE PROCEDURE dbo.test
AS
 SELECT *
 FROM sys.objects
 WAITFOR DELAY '00:10:00';

Listing 2.12:	 Creating the test stored procedure.

Then, execute the procedure (EXEC dbo.test;), which will also ensure a plan gets
cached and, while it is still running, execute, from a second tab, the script shown in
Listing 2.13.

SELECT dest.dbid ,
 dest.objectid ,
 dest.encrypted ,
 dest.text
FROM sys.dm_exec_requests AS der
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle)
 AS dest
WHERE objectid = object_id('test', 'p');

Listing 2.13:	 Returning the text of an executing stored procedure.

61

Chapter 2: Connections, Sessions and Requests

This will return (with a different objectid, most likely!):

dbid objectid number encrypted text

------ ----------- ------ --------- ----

2 1077578877 1 0 CREATE PROCEDURE

 test

 AS

 SELECT *

 FROM sys.objects

 WAITFOR DELAY

 '00:10:00'

Liberties were taken with the formatting of the text column, but you can see that the
entire object's text is returned.

Isolating the executing statement within a
SQL handle

As explained earlier, the sql_handle column presents us with the complete T-SQL
batch submitted to the Query Engine via the request. This batch could comprise tens
or even hundreds of individual statements. In order to isolate the statement within the
batch that is currently executing, we use the statement_start_offset and state-
ment_end_offset columns which, according to Books Online, are INT data types that
store the number of characters into the currently executing batch or stored procedure at which
the currently executing statement starts and ends, respectively.

If the value returned by statement_start_offset is 0, the active statement is at the
start of the batch. If the value returned in the statement_end_offset column is -1,
the end of the full batch is the ending character of the active statement. There are four
possible combinations of outcomes for the combination of statement_start_offset
and statement_end_offset.

62

Chapter 2: Connections, Sessions and Requests

•	 statement_start_offset = 0 and statement_end_offset = - 1
The full query text returned by sys.dm_exec_sql_text is currently being executed.

•	 statement_start_offset = 0 and statement_end_offset <> - 1
The active statement is the first statement in the full query text returned by sys.dm_
exec_sql_text. The end of the active statement occurs n characters from the start
of the full query where statement_end_offset = n.

•	 statement_start_offset <> 0 and statement_end_offset = - 1
The active portion of the query text returned by sys.dm_exec_sql_text starts m
characters from the start of the full query where statement_start_offset = m
and ends at the end of the full query text.

•	 statement_start_offset <> 0 and statement_end_offset <> - 1
The active portion of the query text returned by sys.dm_exec_sql_text starts m
characters from the start of the full query where statement_start_offset = m.
The end of the active statement occurs n characters from the start of the full query
where statement_end_offset = n.

Be aware, though, that extracting the relevant portion of the text is not quite as simple as
it sounds. The values in these offset columns are actually Unicode, with each character
represented as two bytes (plus trailing and leading space characters if they exist), which
causes complications when parsing the SQL text returned by sys.dm_exec_sql_text,
which is a nvarchar(max) type, in that we have to divide the offset values by two.

So, in order to parse the string containing our SQL text, we use the SUBSTRING function,
passing in for the first two parameters the SQL text, and the starting offset value (divided
by two). What we pass in for the third parameter, where we specify the number of charac-
ters to return, depends on the situation. If the _end_offset is -1, then we just return the
total number of bytes in the SQL text minus the start offset. Otherwise, we just return
the end offset minus the start offset. In either case, we divide the result by two to account
for the Unicode-text conversion.

63

Chapter 2: Connections, Sessions and Requests

SELECT der.statement_start_offset ,
 der.statement_end_offset ,
 SUBSTRING(dest.text, der.statement_start_offset / 2,
 (CASE WHEN der.statement_end_offset = -1
 THEN DATALENGTH(dest.text)
 ELSE der.statement_end_offset
 END - der.statement_start_offset) / 2)
 AS statement_executing ,
 dest.text AS [full statement code]
FROM sys.dm_exec_requests der
 INNER JOIN sys.dm_exec_sessions des
 ON des.session_id = der.session_id
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) dest
WHERE des.is_user_process = 1
 AND der.session_id <> @@spid
ORDER BY der.session_id ;

Listing 2.14:	 Parsing the SQL text using statement_start_offset and statement_end_offset.

If you change the "<>" to "=" in the WHERE clause and run Listing 2.14, you'll simply get
back the text of that query, with 0 for the start offset and -1 for the end offset. If you want
to really see these offsets in action, open a tab in SSMS and run the query in Listing 2.15.

WAITFOR DELAY '00:01' ;
BEGIN TRANSACTION
-- WAITFOR DELAY '00:01' ;
INSERT INTO AdventureWorks.Production.ProductCategory
 (Name, ModifiedDate)
VALUES ('Reflectors', GETDATE())
ROLLBACK TRANSACTION

SELECT Name ,
 ModifiedDate
FROM AdventureWorks.Production.ProductCategory
WHERE Name = 'Reflectors' ;
-- WAITFOR DELAY '00:01' ;

Listing 2.15:	 Investigating offsets.

64

Chapter 2: Connections, Sessions and Requests

While this code is waiting for 1 minute, open a second tab and execute our DMO query, as
shown in Listing 2.14 (with <> @@spid), and you should see the following results:

The statement_start_offset shows the active statement for the batch is at the
very beginning of the batch. The associated statement_end_offset tells us that the
active statement is only 25 characters in length (remember, this is a Unicode value so each
character consists of two bytes and includes trailing and leading space characters if they
exist). This corresponds to the WAITFOR DELAY '00:01'; statement at the beginning of
the batch. Move the delay further into the batch and repeat the experiment, and you'll see
the same WAITFOR statement returned each time, with offsets that reflect its position in
the batch.

Now that we have a tool for parsing the active statement for a given request, let's move on
to look at queries against sys.dm_exec_requests that give us insight into the state of
active queries in our SQL instance.

Investigating work done by requests

The activity-based columns of sys.dm_exec_requests provide us with a means to
query for requests that are consuming the triumvirate of resources with which we are so
concerned as SQL Server Database Administrators: CPU, Memory, and I/O. Using sys.
dm_exec_requests and sys.dm_exec_sql_text, we can isolate those statements
consuming resources at a higher level than concurrent statements on the instance, at a
given point in time. The join to sys.dm_exec_query_plan allows us to return the
query plan (for each row returned, the query plan will be the plan for the entire batch or
procedure to which the individual statement belongs).

65

Chapter 2: Connections, Sessions and Requests

By adapting the script in Listing 2.16, we can examine the activity of each currently active
request in each active session in terms of CPU usage, number of pages allocated to the
request in memory, amount of time spent waiting, current execution time, or number of
physical reads.

Note that physical and logical reads are exposed separately in sys.dm_exec_requests.
Physical reads, in other words those reads that require SQL Server to go to disk rather
than cache to satisfy a read, are always more expensive and are therefore of a higher
interest than those logical reads being satisfied from memory. Physical reads rely on the
speed of your disk subsystem, which is often the slowest resource in the RDBMS stack.

SELECT der.session_id ,
 DB_NAME(der.database_id) AS database_name ,
 deqp.query_plan ,
 SUBSTRING(dest.text, der.statement_start_offset / 2,
 (CASE WHEN der.statement_end_offset = -1
 THEN DATALENGTH(dest.text)
 ELSE der.statement_end_offset
 END - der.statement_start_offset) / 2)
 AS [statement executing] ,
 der.cpu_time
 --der.granted_query_memory
 --der.wait_time
 --der.total_elapsed_time
 --der.reads
FROM sys.dm_exec_requests der
 INNER JOIN sys.dm_exec_sessions des
 ON des.session_id = der.session_id
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) dest
 CROSS APPLY sys.dm_exec_query_plan(der.plan_handle) deqp
WHERE des.is_user_process = 1
 AND der.session_id <> @@spid
ORDER BY der.cpu_time DESC ;
-- ORDER BY der.granted_query_memory DESC ;
-- ORDER BY der.wait_time DESC;
-- ORDER BY der.total_elapsed_time DESC;
-- ORDER BY der.reads DESC;

66

Chapter 2: Connections, Sessions and Requests

Listing 2.16:	 Requests by CPU consumption.

Dissecting user activity

We've explored the three DMVs that provide insight into user activity on a SQL
Server instance, from the initial connections, to the sessions that they spawn, to the
requests that are used to submit queries for transaction processing. Now it's time to
put it all together to gain some deeper insight into point-in-time user activity on a
SQL Server instance.

67

Chapter 2: Connections, Sessions and Requests

Who is running what, right now?

Listing 2.17 makes use of sys.dm_exec_requests and sys.dm_exec_sql_text,
alongside our connections and sessions DMVs to provide a very useful "first look" at
which sessions are running what on a given instance.

-- Who is running what at this instant
SELECT dest.text AS [Command text] ,
 des.login_time ,
 des.[host_name] ,
 des.[program_name] ,
 der.session_id ,
 dec.client_net_address ,
 der.status ,
 der.command ,
 DB_NAME(der.database_id) AS DatabaseName
FROM sys.dm_exec_requests der
 INNER JOIN sys.dm_exec_connections dec
 ON der.session_id = dec.session_id
 INNER JOIN sys.dm_exec_sessions des
 ON des.session_id = der.session_id
 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS dest
WHERE des.is_user_process = 1

Listing 2.17:	 Who is running what?

A better version of sp_who2

Many of us DBAs are familiar with the sp_who and sp_who2 system stored procedures
for interrogating SQL Server activity. Listing 2.18 provides the syntax, and sample results,
from an execution of sp_who.

68

Chapter 2: Connections, Sessions and Requests

EXEC sp_who;

Listing 2.18:	 sp_who results.

Likewise Listing 2.19 shows the additional columns and level of detail afforded
through sp_who2.

EXEC sp_who2;

Listing 2.19:	 sp_who2 results.

Just as with sys.dm_exec_sessions, we see results for all sessions, user as well as
system, on the SQL instance. Both sp_who2 and sp_who use the old-style terminology
and the information returned is not as detailed or as customizable as that returned from
the DMOs.

The script provided in Listing 2.20, essentially provides a more detailed version of
sp_who2. It returns all of the columns provided by sp_who2, and augments it with the
executing portion of the T-SQL text associated with the request and the query plan in
XML format. Unlike in sp_who2, this query breaks down the Disk I/O information into
reads and writes. Finally, it also includes wait metrics and the transaction_isola-
tion_level, to provide insight into how this session is interacting with other sessions

69

Chapter 2: Connections, Sessions and Requests

currently running on the instance. As a whole, this information offers a very useful
snapshot of activity, resource impact, and processing health on the SQL instance.

SELECT des.session_id ,
 des.status ,
 des.login_name ,
 des.[HOST_NAME] ,
 der.blocking_session_id ,
 DB_NAME(der.database_id) AS database_name ,
 der.command ,
 des.cpu_time ,
 des.reads ,
 des.writes ,
 dec.last_write ,
 des.[program_name] ,
 der.wait_type ,
 der.wait_time ,
 der.last_wait_type ,
 der.wait_resource ,
 CASE des.transaction_isolation_level
 WHEN 0 THEN 'Unspecified'
 WHEN 1 THEN 'ReadUncommitted'
 WHEN 2 THEN 'ReadCommitted'
 WHEN 3 THEN 'Repeatable'
 WHEN 4 THEN 'Serializable'
 WHEN 5 THEN 'Snapshot'
 END AS transaction_isolation_level ,
 OBJECT_NAME(dest.objectid, der.database_id) AS OBJECT_NAME ,
 SUBSTRING(dest.text, der.statement_start_offset / 2,
 (CASE WHEN der.statement_end_offset = -1
 THEN DATALENGTH(dest.text)
 ELSE der.statement_end_offset
 END - der.statement_start_offset) / 2)
 AS [executing statement] ,
 deqp.query_plan
FROM sys.dm_exec_sessions des
 LEFT JOIN sys.dm_exec_requests der
 ON des.session_id = der.session_id
 LEFT JOIN sys.dm_exec_connections dec
 ON des.session_id = dec.session_id
 CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) dest
 CROSS APPLY sys.dm_exec_query_plan(der.plan_handle) deqp

70

Chapter 2: Connections, Sessions and Requests

WHERE des.session_id <> @@SPID
ORDER BY des.session_id

Listing 2.20:	 A better sp_who2.

Others have taken this much further; in particular, SQL Server MVP Adam Machanic
has created a script called Who Is Active, which is available here: http://tinyurl.com/
WhoIsActive.

Who Is Active returns, not only all columns provided by my script, but also detailed
information on tempDB impact, context switches, memory consumption, thread
metadata, and the query text rendered as XML. I strongly recommend taking the time
to download this script.

71

Chapter 2: Connections, Sessions and Requests

Summary

Ultimately, if your SQL workload consists of poorly-designed queries, then they will
cause needless extra I/O, CPU and memory overhead, and execution times will be slow.
The situation will get worse and worse as the number of users grows, and their requests
are forced to wait for access to the shared resources that your queries are monopolizing.
Conversely, if you can minimize the number of individual SQL statements you need to
get a particular job done, and then minimize the work done by each of those individual
SQL statements, you are much more likely to have a fast, responsive SQL Server system
which scales gracefully as the number of users grows.

First, however, you need to track down those queries that are causing the problems on
your system. In some respects, the DMOs and scripts presented in this chapter represent
our front-line response to issues that are occurring on our servers right now. For example,
if we note that a particular instance is suffering a spike in CPU, I/O, or memory usage (for
example, by using some of the scripts presented in Chapter 7), then we can use the scripts
presented here to find out what requests are currently being executed on that instance,
which of the queries being run might be causing the issue, and who owns the session that
is running them.

With this information in hand, the DBA can respond appropriately, by dealing with
the immediate problem, and then investigating further, to work out how to tune the
offending statements so that the problem does not recur.

For longer term, more strategic performance tuning efforts, however, we need
information beyond what is happening on the server at the current time. In Chapter 3,
we'll take a broader look at our query workload, from the point of view of the plans that
exist in the cache.

72

Chapter 3: Query Plan Metadata

The DMOs described in this chapter provide metadata and statistics regarding any
query that has previously executed on your server, and the execution plan used to run it,
provided that the plan for that query is in the plan cache. For example, if a stored
procedure has been executed, and the plan for it is cached, then not only can we return
and examine that plan, but we can also obtain statistics regarding execution of the stored
procedure associated with the plan, such as total number of disk reads performed, total
time spent executing, and so on.

We'll show how such statistics and query plan metadata can be used to answer questions
like those below (the relevant DMO is indicated in brackets).

•	 What are the "top x" most expensive queries in the cache in terms of
CPU / IO / memory? (query_stats)

•	 Which are the most "expensive" stored procedures? (procedure_stats)

•	 Are plans getting reused? (cached_plans and plan_attributes)

•	 How many ad hoc, single-use queries are taking up space in the plan cache?
(cached_plans).

In each section, we'll provide T-SQL scripts to retrieve this data, and discuss how you can
use it to get a feeling for certain aspects of your system's performance.

The focus in the previous chapter was "What is executing on my instance right now, and
what is it doing?" The DMOs in this chapter can give you a broader perspective on your
typical query workload, based on the plans that are stored in the cache. The really big win
for the average DBA is the fact that you can access the statistics on what queries were
run, what plans and system resources were used, and so on, after the event. Before DMOs,
when a DBA was notified of a bad problem that occurred a little earlier, there were few
tools to hand to help find out what happened, unless they happened to be running

73

Chapter 3: Query Plan Metadata

Profiler traces to capture the event. Now, by querying these DMOs, we can retrospectively
examine the damage that a rogue query did, and the impact on the server of running such
queries will generally be far less than using a tool such as Profiler.

Why Cached Plan Analysis with DMOs?

As was discussed in Chapter 1, there are several strategies that one may use when seek-
ing to resolve a SQL Server performance issue using the DMOs. However, regardless of
the origin of an issue, whether it's related to CPU, I/O, memory, blocking, and so on, the
final destination is most often a detailed examination of the queries that are causing the
problem, and of possible ways to tune them.

The execution plans generated by the SQL Server Query optimizer and stored in memory
in the plan cache are the DBA's premier window into the world of query optimization.
If you are looking to improve your skills as a SQL Server programmer or DBA, then
acquiring an understanding of query plans is an essential first step. There is a natural
progression from being able to run a query, to understanding all the steps that SQL Server
has to undertake in order to execute that query and serve up the results. In fact, I regard
knowledge of query plans as a barometer by which to judge a programmer's ability to
write optimal queries.

It is only with a deep knowledge of the operations that are being performed to execute
a query, and the order in which these operations occur that you can really begin to look
for opportunities to optimize the data access path for that query. Of course, the graphical
execution plan is available by other, arguably simpler means, such as through SQL Server
Management Studio (SSMS) or Profiler. However, with each of these tools, the actual,
as opposed to the estimated, plan that was used to execute a given query can only be
captured in real time, while the query is running. With the DMOs in this chapter, you
can retrieve the actual plan for any query for which the plan is cached.

74

Chapter 3: Query Plan Metadata

Furthermore, the metadata and statistics that these DMOs can provide alongside the
plan are, as we will demonstrate, very useful in helping direct your query tuning efforts;
in working out whether you need to reduce the computational complexity of the query
to reduce CPU usage; add indexes, replace cursors with set-based constructs, tuning
the search predicate to return less data, to reduce I/O; eliminate expensive sorts, reduce
gratuitous use of temporary tables to reduce memory usage, and so on.

Again, you may be thinking that a similar set of statistics is available from the perform-
ance reports that can be accessed in Management Studio by right-clicking on the Server
node and selecting Reports | Standard Reports.

SSMS reports

These reports are standard in SQL Server 2008 and are an add-in to SQL Server 2005, where they are

referred to as Performance Dashboard Reports.

In fact, these reports use the DMVs under the covers. The problem is that they have
significant limitations on how you can filter them and use the output. In this chapter, we
will look at techniques to build your own queries against the DMOs that will allow you to
view only the data you want to see. Once you've developed a core set of scripts it is very
easy to refine them as required, to save the results to your own tables, so that you can
compare current results with previous results, track performance over time, and so on.

Finally, but very importantly, remember that it's not only ensuring that the plans are
good that is critical; it is ensuring that these plans are used, and reused time and again.
As noted, SQL Server stores plans for previously executed queries in a shared memory
area called the plan cache. Whenever a query is submitted for execution, SQL Server
checks in the plan cache to see if there is an existing plan it can use to execute the query.
Every time it cannot find a match, the submitted query must be parsed and optimized,
and a plan generated.

75

Chapter 3: Query Plan Metadata

Parsing and optimizing SQL statements is a CPU-intensive process, so it is not a "high
concurrency" operation. Furthermore, each time it does this, SQL Server acquires
latches on the plan cache to protect the relevant area of memory from other updates.
The more this happens, the more it will restrict other processes from accessing the cache.
Well-designed SQL needs to promote plan reuse ("parse once, use many times") as far
as possible. If you have a lot of ad hoc, non-parameterized SQL in your workload, it will
result in much higher CPU consumption and many more latches acquired, as a plan will
be generated each time. At the same time, your cache will fill up with single-use plans
that will probably never be used again.

It's even possible that, in such circumstances, useful plans could get flushed out of
the cache. SQL Server flushes plans out of the cache when it needs space, based on an
algorithm that considers the cost of recalculating the plan, how recently the plan was
used, and other unpublicized factors. Generally speaking, the least interesting queries
will be the ones removed from the cache first.

In any event, the DMOs and scripts in this chapter will help you uncover these sorts of
problems, and help you ensure that the plans for your day-to-day query workload are in
the cache, and are getting used.

An Overview of DMOs for Query Plan Metadata

In addition to the sys.dm_exec_requests DMV and sys.dm_exec_sql_text DMF,
introduced in the previous chapter, we will extract our statistics and query plan metadata
from the DMVs below, which belong to the "execution-related" category (this is why their
names all begin with "sys.dm_exec_").

•	 sys.dm_exec_query_stats – returns aggregated performance statistics for a
cached query plan. Returns one row per statement within the plan.

76

Chapter 3: Query Plan Metadata

•	 sys.dm_exec_procedure_stats – returns aggregated performance statistics
for cached stored procedures (SQL Server 2008 only). Returns one row per
stored procedure.

•	 sys.dm_exec_cached_plans – provides detailed information about a cached plan,
such as the number of times it has been used, its size, and so on. Returns a row for each
cached plan.

•	 sys.dm_exec_query_optimizer_info – returns statistics regarding the operation
of the query optimizer, to identify any potential optimization problems. For example,
you can find out how many queries have been optimized since the last time the server
was restarted.

In order to return the query plan for a given batch, as well as some interesting attributes
of these plans, we can pass the identifier for that plan batch, the plan_handle, to one of
the DMFs below.

•	 sys.dm_exec_query_plan – returns in XML format the query plan, identified
by a plan_handle, for a SQL batch.

•	 sys.dm_exec_text_query_plan – returns in text format the query plan,
identified by a plan_handle, for a SQL batch or, via the use of this DMF's offset
columns, a specific statement within that batch.

•	 sys.dm_exec_plan_attributes – provides information about various attributes of
a query plan, identified by a plan_handle, such as the number of queries currently
using a given execution plan. It returns one row for each attribute.

To the query optimizer, a query and a query plan are not synonymous. When a batch
is executed, it gets a plan. This plan comprises one or more individual queries, each of
which will have a query plan of its own. The DMVs for query plans, such as cached_
plans, return one row per distinct batch or object. The DMVs for queries, such as
query_stats, return one row per independent query that is embedded in that plan.
If, in our queries, we "join" from query_stats to the query_plan DMF, in order to
return the plan, each row returned by query_stats will contain a link to the plan for

77

Chapter 3: Query Plan Metadata

the batch to which the row (i.e. individual query) belongs. If, instead, we join to text_
query_plan, it's possible to extract from the batch the plan for only the individual query
in question (but there are complications, as will soon be demonstrated).

As we progress through the chapter, we'll provide brief descriptions of some of the
more useful (or confusing) columns that these DMOs provide, but we've tried to avoid
rehashing Books Online as far as possible. A complete listing and reference for the DMOs
covered in this chapter can be found at http://msdn.microsoft.com/en-us/library/
ms188068.aspx.

Flushing the Cache?

Before we get started in earnest, it is important to realize that troubleshooting problem
queries using the DMOs is not a perfect science. Firstly, we can only examine plans for
queries that are in the cache; while the cache will usually hold plans for all the most
active/costly queries, less costly/reused queries can fall out of the cache, and some
queries with nominal plans are never cached in the first place; in short, some queries
will be missed.

Secondly, plans may remain in the cache from when they are first compiled until the
object is dropped or recompiled, or the cache is flushed. This means that some plans,
especially frequently used ones, may remain in the cache for a long time. If your
SQL Server instance has been up and running for long, it will contain lots of plans of
different ages which will make it hard to analyze the statistics. For example, if you're
looking for the plans for the most CPU-intensive procedures, the results will be heavily
skewed towards those procedures that have been cached for a long period, compared to
plans that have, for some reason, been recently recompiled.

One way around this might be to clear the cache, using DBCC FREEPROCCACHE for all
databases on an instance, or using DBCC FLUSHPROCINDB for a single database, as shown
in Listing 3.1.

78

Chapter 3: Query Plan Metadata

--Determine the id of your database
DECLARE @intDBID INTEGER
SET @intDBID = (SELECT dbid
 FROM master.dbo.sysdatabases
 WHERE name = 'mydatabasename'
)

--Flush the procedure cache for your database
DBCC FLUSHPROCINDB (@intDBID)

Listing 3.1:	 Flushing the cache of plans belonging to a particular database.

The flushed plans will go back into the cache the next time they are executed, the result
being that most of the stored procedures that are run frequently and are part of your
normal workload will have a similar cache time. This will make the statistics much easier
to interpret (until and unless they get recompiled again for some other reason).

Flushing the cache is a controversial suggestion; many DBAs avoid doing it on a produc-
tion server. After all, clearing the cache means that new plans need to be determined and
created, which has an associated cost. It's true that recompiling all of the query plans will
cause some extra work for your processor(s), but many modern processors shrug this off
with little effect beyond a brief (few seconds) spike of CPU activity.

Viewing the Text of Cached Queries
and Query Plans

The root cause of many performance problems is the fact that the plan you get when
query execution is optimized under a full production server load can be very different
from the one you saw in Management Studio while building the query. For example, on
your development server, you may have only a single CPU, several orders of magnitude
fewer rows, different amounts of RAM, statistics that are completely up to date, fewer
concurrent users, and so on.

79

Chapter 3: Query Plan Metadata

Unfortunately, the excuse "it worked on my machine" is not acceptable with database
applications, so it is very useful to be able to see the query plan that was actually used to
optimize a query, when it was executed. This way you can find out why a query is
performing as it is, and begin the process of optimization. This is also useful when
troubleshooting poor performance caused by parameter sniffing, whereby the initial set
of parameters chosen as a "guide" when first compiling the plan for a stored procedure
turn out to be anomalous, and not representative of the parameters' values supplied
during normal execution.

The process of retrieving the plan is very similar to that for retrieving the SQL text, which
we discussed in Chapter 2. We simply extract the plan_handle from the sys.dm_
exec_query_stats DMV (covered in detail later in this chapter). The plan_handle
uniquely identifies the query plan for a given batch or stored procedure. We then pass it
as a parameter to one of the following DMFs:

•	 sys.dm_exec_query_plan, which accepts the plan_handle as its only parameter
and will return the plan for the identified batch or procedure, as XML. Note that Books
Online states that it returns the plan in "text format." This is a little confusing since it
refers to the type of column returned, not the format in which you will view the plan,
which is XML.

•	 sys.dm_exec_text_query_plan, which accepts the plan_handle and adds two
additional parameters, statement_start_offset and statement_end_offset,
which mark the start and end points of individual SQL statements within the batch or
procedure. This DMF returns the plan in text format (a nvarchar(max) typed object)
and is available in SQL Server 2005 SP2 and later.

When returning the plan from the sys.dm_exec_query_plan DMF, SSMS will display
a link to the plan, which you can click onto immediately to display the graphical plan. In
any event, with either DMF, the output can be saved as a .SQLPLAN file that can be used
to view the graphical plan in SSMS.

80

Chapter 3: Query Plan Metadata

Note

One unfortunate limitation of these functions is that, in the absence of SSMS or another third-party tool

that understands the .SQLPLAN format, they do not give you the type of easily readable output that you

get when using the SHOWPLAN_TEXT setting in a query window.

As for the sys.dm_exec_sql_text function, described in Chapter 2, both of these
functions return dbid, objectid, and encrypted columns. However, in place of the
text column, in each case, the functions return a query_plan column, containing the
current cached query plan.

The sys.dm_exec_query_plan function returns the plan as an XML typed value,
which limits the size of the plan that can be returned, since the XML datatype does
not support XML documents with more than 128 levels. The sys.dm_exec_text_
query_plan object returns the plan as a nvarchar(max) typed object, thus removing
these restrictions.

Returning the plan using sys.dm_exec_query_plan

Using the sys.dm_exec_query_plan DMF, we can return the plan for a given batch
or procedure (which will contain "subplans" for each query comprising the batch). As an
example, let's create a stored procedure, ShowQueryText, execute it, so the plan gets
cached, and then extract the plan that was used to execute that stored procedure, as
shown in Listing 3.2.

CREATE PROCEDURE ShowQueryText
AS
 SELECT TOP 10
 object_id ,
 name
 FROM sys.objects ;
 --waitfor delay '00:00:00'

81

Chapter 3: Query Plan Metadata

 SELECT TOP 10
 object_id ,
 name
 FROM sys.objects ;
 SELECT TOP 10
 object_id ,
 name
 FROM sys.procedures ;
GO
EXEC dbo.ShowQueryText ;
GO
SELECT deqp.dbid ,
 deqp.objectid ,
 deqp.encrypted ,
 deqp.query_plan
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
WHERE objectid = OBJECT_ID('ShowQueryText', 'p') ;

Listing 3.2:	 Retrieving the query plan for a cached stored procedure.

You will see that we get three rows returned by query_stats, and each row contains
a link to a query plan; in each case this will be the same plan, i.e. the plan for the
entire procedure.

Obtaining the plan_handle

As well as sys.dm_exec_query_stats, the plan_handle can also be retrieved from

sys.dm_exec_requests, sys.dm_exec_query_memory_grants and sys.

dm_exec_cached_plan.

82

Chapter 3: Query Plan Metadata

In SQL Server 2005 Management Studio, you can click on the link to the query plan,
thus opening it up as an XML document in SSMS, and then save it with a .SQLPLAN
extension (by default it will be saved with an XML extension). You can open it up in SSMS
and view the graphical plan. SQL Server 2008 Management Studio realizes the schema is
a SQL plan, and so allows us to simply click the XML output to get a display that shows
the graphical version of the plan, as shown in Figure 3.1 (cropped to save space).

Figure 3.1:	 Viewing the query plan in Management Studio.

In this way, we can find out precisely how a stored procedure was executed at the time of
being cached.

83

Chapter 3: Query Plan Metadata

Dissecting the SQL text

In Chapter 2, we saw how to use the sql_handle from sys.dm_exec_requests to
return the SQL text for the batch, from sys.dm_exec_sql_text, and then to dissect
the text using the "statement offset" columns provided by the former, to get at the text of
just the currently executing query.

We'll have to do the same thing when using sys.dm_exec_query_stats, in order to
extract query statistics about individual statements within a cached batch/procedure.
Let's take a look at the sql_handle, plan_handle and associated SQL text, returned
for each query in our stored procedure, as shown in Listing 3.3.

SELECT deqs.plan_handle ,
 deqs.sql_handle ,
 execText.text
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS execText
WHERE execText.text LIKE 'CREATE PROCEDURE ShowQueryText%'

Listing 3.3:	 Viewing the sql_handle and plan_handle.

As you can see, each row has the same sql_handle, same plan_handle and the same
SQL text (referring to the whole procedure). I'm only showing two of the rows here:

plan_handle sql_handle text

-------------- ------------- -----------------

0x050002003... 0x03000200... CREATE PROCEDURE

 ShowQueryText as…

0x050002003... 0x03000200... CREATE PROCEDURE

 ShowQueryText as…

84

Chapter 3: Query Plan Metadata

When you supply a sql_handle you are identifying the batch or procedure to which a
query belongs; in just the same way, when you supply a plan_handle you are identifying
the plan associated with a batch or procedure, and this batch or procedure may contain
multiple queries. When you identify a plan for a batch, you identify the associated SQL
text for the whole batch, and we'll need to extract the text for individual queries in that
batch, in order to work with the query_stats DMV. Listing 3.4 shows how to do this.

SELECT CHAR(13) + CHAR(10)
 + CASE WHEN deqs.statement_start_offset = 0
 AND deqs.statement_end_offset = -1
 THEN '-- see objectText column--'
 ELSE '-- query --' + CHAR(13) + CHAR(10)
 + SUBSTRING(execText.text, deqs.statement_start_offset / 2,
 ((CASE WHEN deqs.statement_end_offset = -1
 THEN DATALENGTH(execText.text)
 ELSE deqs.statement_end_offset
 END) - deqs.statement_start_offset) / 2)
 END AS queryText ,
 deqp.query_plan
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS execText
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) deqp
WHERE execText.text LIKE 'CREATE PROCEDURE ShowQueryText%'

Listing 3.4:	 Extracting the SQL text for individual queries in a batch.

We pass the plan_handle to the sql_text DMF (we could equally well pass the
sql_handle), which returns the SQL text associated with the plan for that batch. We
then extract the text for the individual queries in the same way as in Chapter 2, using the
SUBSTRING function, and remembering to divide the offset values by 2 (the start offset,
and then the difference between the end and start offsets in the SUBSTRING operation)
before we use them, since they are stored in Unicode.

This query should return the three separate queries shown in Figure 3.2.

85

Chapter 3: Query Plan Metadata

Figure 3.2:	 Three queries returned by sys.dm_exec_query_stats.

Click on the plan links and you'll see that the plan returned for each row is still the plan
for the whole batch.

Returning the plan using
sys.dm_exec_text_query_plan

If we want, for each row, to show only the "subplan" for each individual query, it is a
little trickier, and we have to use the sys.dm_exec_query_plan DMF, which returns
the plan in text form and supports offset parameters, which we can use to dissect it.
Unfortunately, the sys.dm_exec_query_plan DMF returns the plan in a form we can
save and use, but not view in SSMS. Just for demo purposes here, we've cast the returned
plan to an XML type, but this isn't a "safe" application.

SELECT deqp.dbid ,
 deqp.objectid ,
 CAST(detqp.query_plan AS XML) AS singleStatementPlan ,
 deqp.query_plan AS batch_query_plan ,
 --this won't actually work in all cases because nominal plans aren't
 -- cached, so you won't see a plan for waitfor if you uncomment it
 ROW_NUMBER() OVER (ORDER BY Statement_Start_offset)
 AS query_position ,
 CASE WHEN deqs.statement_start_offset = 0
 AND deqs.statement_end_offset = -1
 THEN '-- see objectText column--'
 ELSE '-- query --' + CHAR(13) + CHAR(10)
 + SUBSTRING(execText.text, deqs.statement_start_offset / 2,

86

Chapter 3: Query Plan Metadata

 ((CASE WHEN deqs.statement_end_offset = -1
 THEN DATALENGTH(execText.text)
 ELSE deqs.statement_end_offset
 END) - deqs.statement_start_offset) / 2)
 END AS queryText
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_text_query_plan(deqs.plan_handle,
 deqs.statement_start_offset,
 deqs.statement_end_offset)
 AS detqp
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS execText
WHERE deqp.objectid = OBJECT_ID('ShowQueryText', 'p') ;

Listing 3.5:	 Returning the plan using sys.dm_exec_text_query_plan.

This time, for each row returned, we get the individual plan for each query, as well as the
batch plan, as shown in Figure 3.3.

Figure 3.3:	 Seeing the individual query plans.

Cached Query Plan Statistics

In the previous section, we explained how to use the sys.dm_exec_query_plan
function and sys.dm_exec_query_stats DMV to get the text of the plan for a given
batch. In this section, we'll start retrieving some meatier information about the query
plans that have been used to execute queries on the server.

87

Chapter 3: Query Plan Metadata

The ability to retrieve the text of a query or query plan becomes more interesting when
combined with data stored in the sys.dm_exec_cached_plans DMV. It returns basic
metadata regarding each plan, such as its size and the type of object to which it's attached,
but also, and most interestingly, a usecounts column that lets us investigate plan reuse.

The sys.dm_exec_cached_plans DMV

The sys.dm_exec_cached_plans DMV "supersedes" the syscacheobjects object,
available in versions of SQL Server prior to 2005. In many ways, syscacheobjects is
easier to work with as it includes the text of the query and several attributes about the
cached plan, but it is more limited, in that it doesn't quite give access to the rich array of
information that is available through sys.dm_exec_cached_plans, especially when
used in concert with sys.dm_exec_query_plan, sys.dm_exec_sql_text and sys.
dm_exec_plan_attributes.

The data that the sys.dm_exec_cached_plans view will return is a snapshot of
values, based on the current contents of the plan cache. The columns in this view are all
pretty useful for seeing how plans are being cached, and are listed below.

•	 bucketid – the id of the hash bucket where the plan is held. You can see the
maximum number of buckets available in the sys.dm_os_memory_cache_hash_
tables view. Ideally, cached items (such as plans, and anything else that SQL Server
puts into cache) will be spread evenly amongst the hash buckets.

•	 refcounts – number of cache objects that reference this cached plan.

•	 usecounts – number of times the plan has been used since its creation. This counter
is incremented every time the query is executed, and a match to the plan is made.

•	 size_in_bytes – size of the plan.

88

Chapter 3: Query Plan Metadata

•	 memory_object_address – internal address of the cached object. Can be used
to reference sys.dm_os_memory_objects and sys.dm_os_memory_cache_
entries to see the objects in the SQL Server cache.

•	 cacheobjtype – type of object in the cache. The domain is:

•	 Compiled Plan

•	 Parse Tree

•	 Extended Proc

•	 CLR Compiled Func

•	 CLR Compiled Proc.

•	 objtype – the type of object. The domain is:

•	 Proc (stored procedure, function)

•	 Prepared (prepared statement)

•	 Adhoc (query)

•	 Repl Proc (replication filter procedure)

•	 Trigger

•	 View

•	 Default

•	 UsrTab (user table)

•	 SysTab (system table)

•	 CHECK

•	 Rule.

89

Chapter 3: Query Plan Metadata

•	 plan_handle – can be used with query plan functions, including sys.dm_exec_
query_plan and sys.dm_exec_sql_text, to get the plan of the query or the text
of the query, respectively.

•	 pool_id – the resource governor pool to which the plan is tied. You can use sys.
resource_governor_resource_pools to decipher the value, if you are utilizing
resource governor. Note that this column is in SQL Server 2008 only and is part of the
Enterprise-only resource governor feature.

A few of these columns merit a bit more discussion. The cachobtype column describes
the type of plan that is cached, which can be a normal SQL plan (compiled plan), a parse
tree or the stored plan for an extended procedure or CLR object. A parse tree is a bare-
bones plan for an object such as a view. It specifies the objects referenced by the view, but
does not specify a full execution plan. Views are compiled into the query at run time; they
do not have plans of their own.

The objtype column, in turn, specifies the type of object, determining whether it is
typical T-SQL or a compiled object such as a stored procedure or prepared statement.
Note that a prepared statement (an ad hoc statement from the client, where they have
used the API to prepare a plan ahead of time) has a different plan than an ad hoc query.

Zero cost and stale plans

Remember, again, that not all queries that have been executed on your server will have saved a plan. Zero

cost plans like "SELECT 'hi'" would not, for sure. Also, as plans become stale, they could be removed

from the cache, particularly if the server is under memory pressure.

So, for example, you can retrieve the plans for any compiled object, using the query
shown in Listing 3.6.

90

Chapter 3: Query Plan Metadata

SELECT refcounts ,
 usecounts ,
 size_in_bytes ,
 cacheobjtype ,
 objtype
FROM sys.dm_exec_cached_plans
WHERE objtype IN ('proc', 'prepared') ;

Listing 3.6:	 Retrieving the plans for compiled objects.

You are likely to find that there are compiled plans for both procedures and prepared
statements, as well as some extended and CLR objects, if you use them.

Investigating plan reuse

Good plan reuse is one sign of a heathy system. Compiling a query plan can be a CPU-
intensive operation, especially with complex queries, so reuse is a very good thing. The
greater the value in the usecount column for each of your plans, the greater the number
of times query plans are reused, and the smaller the number of times a new query plan
has to be recreated. Conversely, a usecount of 1 for a large number of plans indicates
that your cache space is being taken up with plans that were compiled and used once to
execute an ad hoc query, then never used again. By querying sys.dm_exec_cached_
plans and aggregating on the usecount column we can, as we will show, get a good
overview of the extent to which plans are being reused in your system.

The more you can use stored procedures or, at the very least, prepared SQL, the more
likely you are to get plan reuse. The more reusable plans you have, the less work the
optimizer needs to do.

One of the most critical factors in determining reuse is the text of the query. If the text of
a query submitted for execution matches the text of a query in the cache, then the plan
for that cached query may be reused.

91

Chapter 3: Query Plan Metadata

Criteria in determing plan reuse

The text of the query is not the only criterion in determining plan reuse. The attributes of the plan are

also figured in, which we will cover in a later section, entitled Query Plan Attributes.

Of course, if you use stored procedures as the primary interface to your SQL Server data,
you have a much cleaner way of ensuring reuse.

A database setting that can be helpful to plan reuse is forced parameterization (set
using ALTER DATABASE <databaseName> SET PARAMETERIZATION FORCED).
Normally, the query optimizer is very conservative when deciding what queries can
be parameterized, but this setting makes the optimizer be more liberal in choosing
parameters. For more reading on this subject, look for Forced Parameterization
in Books Online.

Finally, bear in mind that you need to be careful when interpreting the results of data
based on plan reuse. After a restart, cache flush, procedure recreation, and so on, plan use
counts will be low without this being indicative of a problem. Alternatively, you may have
been doing some special processing that inflates the counts and makes things look bet-
ter than normal. As is true with most of the DMVs, the data you get from the cached_
plans DMV is not information until it has context. Context comes from tracking the
data over long periods of time and comparing like time periods of server activity.

As dicussed earlier, you might want, particularly for testing purposes, to consider clearing
the cache at a fixed time (e.g. 12 a.m.) each day, to give the results more context.

The plan reuse "distribution curve"

A simple query, such as that shown in Listing 3.7, will show you how many plans
are cached.

92

Chapter 3: Query Plan Metadata

SELECT COUNT(*)
FROM sys.dm_exec_cached_plans ;

Listing 3.7:	 Total number of cached plans.

More useful though, is to get a feel for the "distribution" of plan reuse on your system. To
do this, we can group on the usecounts column, and use the CASE expression to roll up
bands of usecounts as shown in Listing 3.8.

SELECT MAX(CASE WHEN usecounts BETWEEN 10 AND 100 THEN '10-100'
 WHEN usecounts BETWEEN 101 AND 1000 THEN '101-1000'
 WHEN usecounts BETWEEN 1001 AND 5000 THEN '1001-5000'
 WHEN usecounts BETWEEN 5001 AND 10000 THEN '5001-10000'
 ELSE CAST(usecounts AS VARCHAR(100))
 END) AS usecounts ,
 COUNT(*) AS countInstance
FROM sys.dm_exec_cached_plans
GROUP BY CASE WHEN usecounts BETWEEN 10 AND 100 THEN 50
 WHEN usecounts BETWEEN 101 AND 1000 THEN 500
 WHEN usecounts BETWEEN 1001 AND 5000 THEN 2500
 WHEN usecounts BETWEEN 5001 AND 10000 THEN 7500
 ELSE usecounts
 END
ORDER BY CASE WHEN usecounts BETWEEN 10 AND 100 THEN 50
 WHEN usecounts BETWEEN 101 AND 1000 THEN 500
 WHEN usecounts BETWEEN 1001 AND 5000 THEN 2500
 WHEN usecounts BETWEEN 5001 AND 10000 THEN 7500
 ELSE usecounts
 END DESC ;

Listing 3.8:	 An overview of plan reuse.

93

Chapter 3: Query Plan Metadata

For a server that had been up for two days, we got the following results:

usecounts countInstance

----------- -------------

169279 1

100911 1

18379 1

17817 1

16608 1

10004 1

5001-10000 19

1001-5000 87

101-1000 127

10-100 359

9 9

8 55

7 12

6 51

5 18

4 628

3 73

2 277

1 1988

So, for example, we have five plans that have been reused over 10,000 times, 359 plans
that have been reused between 10 and 100 times, 1,988 plans that have only been used
once, and so on. Clearly, this is only an overview, and just to give you an overall feel for
plan reuse. It's a query I like to run semi-regularly to see if there's any noticable change in
the "distribution" to more (or less) reuse.

While it is clear from the listing that we are probably getting decent reuse (particularly
on a few, often-executed queries), what we cannot tell at this point is how many queries
are being executed on the server (although we can find that out) or how many get flushed
from the cache. What you will be able to tell is the most important queries that get
reused, and a place to look for improvements.

94

Chapter 3: Query Plan Metadata

The next step is to examine those plans at the extreme ends of the spectrum. If we can
improve the efficiency of a plan that that is being reused many times, it could be highly
beneficial. Likewise, we need to find out more information about the plans that are never
reused, why this might be, and if there is anything we can do about it.

Examining frequently used plans

Using sys.dm_exec_cached_plans in conjunction with sys.dm_exec_query_
plan and sys.dm_exec_sql_text, we can construct a query to return the text of the
plan, plus the text of the query that is associated with the plan and has the highest use
counts. So if, using Profiler or one of the operating system DMOs discussed in Chapter 7,
we identify a query that is offensive for some performance reason (CPU pressure, dura-
tion, memory utilization, etc.), and then find that it is attached to a plan with a very high
usecount, then we know we've found a good place to start our tuning efforts for the day.

The script in Listing 3.9 returns, for the most reused plans, the query plan itself, the
type of object or query with which the plan is associated and the SQL text for that query
or object.

SELECT TOP 2 WITH TIES
 decp.usecounts ,
 decp.cacheobjtype ,
 decp.objtype ,
 deqp.query_plan ,
 dest.text
FROM sys.dm_exec_cached_plans decp
 CROSS APPLY sys.dm_exec_query_plan(decp.plan_handle) AS deqp
 CROSS APPLY sys.dm_exec_sql_text(decp.plan_handle) AS dest
ORDER BY usecounts DESC ;

95

Chapter 3: Query Plan Metadata

Listing 3.9:	 Investigating the most used plans.

The real beauty of being able to do this from SQL, rather than some prebuilt report, is
that you have the full power of the query engine in your hands. For example, if we want
to look only at plans for stored procedures, we can simply filter on objtype = 'proc'.

Of course, this is only one piece of the puzzle and, later in the chapter, when we start to
look at how we can see the individual queries from a batch or compiled object that make
up the entire plan, it will become more useful to the tuning efforts. We can examine our
frequently-reused plans for queries that contain certain text, as we did in Listing 3.3.
Alternatively, we can filter on the objectid, to examine plan reuse for a single proce-
dure, as shown in Listing 3.10.

SELECT usecounts ,
 cacheobjtype ,
 objtype ,
 OBJECT_NAME(dest.objectid)
FROM sys.dm_exec_cached_plans decp
 CROSS APPLY sys.dm_exec_sql_text(decp.plan_handle) AS dest
WHERE dest.objectid = OBJECT_ID('<procedureName>')
 AND dest.dbid = DB_ID()
ORDER BY usecounts DESC ;

Listing 3.10:	 Examining plan reuse for a single procedure.

96

Chapter 3: Query Plan Metadata

In SQL Server 2008, we can use the sys.dm_exec_procedure_stats DMV to look
exclusively at cached plans for stored procedures. We'll examine this DMV a little later.

Examining ad hoc single-use plans

The script in Listing 3.11 uses the sys.dm_exec_cached_plans DMV and sys.dm_
exec_sql_text DMF to retrieve the text for each single-use plan that is bloating the
plan cache.

-- Find single-use, ad hoc queries that are bloating the plan cache
SELECT TOP (100)
 [text] ,
 cp.size_in_bytes
FROM sys.dm_exec_cached_plans AS cp
 CROSS APPLY sys.dm_exec_sql_text(plan_handle)
WHERE cp.cacheobjtype = 'Compiled Plan'
 AND cp.objtype = 'Adhoc'
 AND cp.usecounts = 1
ORDER BY cp.size_in_bytes DESC ;

Listing 3.11:	 Examining single-use plans in the cache.

This query will identify ad hoc queries with a use count of 1, ordered by the size of the
plan. It provides the text and size of single-use ad hoc queries that waste space in the plan
cache. This usually happens when T-SQL commands are built by concatenating a variable
at the end of a "boilerplate" T-SQL statement. Listing 3.12 shows a simplified example.

-- Query 1
SELECT FirstName ,
 LastName
FROM dbo.Employee
WHERE EmpID = 5

-- Query 2

97

Chapter 3: Query Plan Metadata

SELECT FirstName ,
 LastName
FROM dbo.Employee
WHERE EmpID = 187

Listing 3.12:	 Non-parameterized ad hoc SQL.

Even though these two queries are essentially identical, they might each have a separate
plan in the cache, just because the literal value is different in each case. Actually these
two queries are so simple (with no joins) that SQL Server would probably parameterize
them, even using just the default simple parameterization (as opposed to forced
parameterization). However, in more complex cases, plan reuse would probably not be
possible. While we can do our best to make sure queries are written in a way that enables
plan reuse, users and utilities often execute batches that will simply have little reuse.

For SQL Server 2008, if you determine that you have a mostly ad hoc workload with
minimal reuse, check out the "optimize for ad hoc workloads" system option. This setting
changes SQL Server behavior and does not store a plan on first usage, only the query text.
If it matches a second time, the plan is stored. Note that "ad hoc," in this sense, does vary
from some people's understanding of the term. Here, it simply refers to the use of random
queries that don't promote reuse.

Query Plan Attributes

In the previous sections, we've covered how we get the text of a query plan and then
examine plan reuse on your system, using the cached_plans DMV. In addition, a DBA
will sometimes want to find out "state" information about a particular plan, along with
further details about how that plan is currently being used.

The database engine takes into account several factors when considering a plan for reuse.
One of these factors, as we discussed previously, is the text of the query.

98

Chapter 3: Query Plan Metadata

However, other attributes are important, too, the values for which are stored in the sys.
dm_exec_plan_attributes function, described by Books Online as follows:

Returns one row per plan attribute for the plan specified by the plan handle. You can use this table-valued

function to get details about a particular plan, such as the cache key values or the number of current

simultaneous executions of the plan.

Like sys.dm_exec_query_plan, sys.dm_exec_plan_attributes takes a
plan_handle as a parameter and returns the following columns:

•	 attribute – name of the attribute

•	 value – the current value assigned to the attribute

•	 is_cache_key – indicates if the attribute is part of how SQL Server resolves the plan;
A value of 1 indicates that it is, and 0 that it is not.

This DMV returns one row per plan attribute, and available attributes include:

•	 set_options – the options values (the ones that can be found using @@options,
such as SET NOCOUNT) that were in use when the plan was built

•	 date_format – the date format of the connection that created the plan

•	 inuse_exec_context – the number of currently executing batches that are
using the plan.

If the value of is_cache_key is 1 for a given attribute, that attribute forms part of the
"key" that is used when SQL Server searches the cache for a suitable plan. During the
process of checking the cache for a match, the text of a submitted query is compared to
the text of other queries that have been executed and for which a plan is stored. Even if
the text of the queries matches exactly, the submitted query's attributes would also need
to match exactly those for the cached plan, for every attribute with a value of 1 for the
is_cache_key column in sys.dm_exec_plan_attributes.

99

Chapter 3: Query Plan Metadata

Consider, for example, the code in Listing 3.13, which uses a plan_handle extracted
from sys.dm_exec_cached_plans, on my test server, and supplies it as a parameter to
sys.dm_exec_plan_attributes. Note the use of TOP 1 … ORDER BY usecounts
DESC in the derived table to get the largest reused plan.

SELECT CAST(depa.attribute AS VARCHAR(30)) AS attribute ,
 CAST(depa.value AS VARCHAR(30)) AS value ,
 depa.is_cache_key
FROM (SELECT TOP 1
 *
 FROM sys.dm_exec_cached_plans
 ORDER BY usecounts DESC
) decp
 OUTER APPLY sys.dm_exec_plan_attributes(decp.plan_handle) depa
WHERE is_cache_key = 1
ORDER BY usecounts DESC ;

Listing 3.13:	 Examining plan attributes.

This returns the following results:

attribute value is_cache_key

---------------------------- --------- ------------

set_options 187 1

objectid 733550834 1

dbid 4 1

dbid_execute 0 1

user_id -2 1

language_id 0 1

date_format 1 1

date_first 7 1

status 8 1

required_cursor_options 0 1

acceptable_cursor_options 0 1

100

Chapter 3: Query Plan Metadata

So, in order for a cached plan to be used to execute the query in Listing 3.13, all of
the returned attribute values would have to match. For example, both the submitted
query and the cached plan would need to have set_options = 187, objectid =
733550834, dbid = 4, and so on. If there was a mismatch of any kind, a new plan
would be generated. So, say you were testing the query in Management Studio in the
context of a database different from the one used when an application first issued the
query. The attributes of the existing plan for the application-issued query and those
for your SSMS-issued query might match in terms of the SQL text and maybe even the
objectid (somewhat less likely), but the dbid would be different, so the plan would not
get reused and a new one would be created. In such cases, the SQL text for the query, as
identified by the sql_handle, would now be associated with more than one plan, i.e.
there would be more than one plan_handle associated with a given sql_handle.

This sounds rather horrible, but it's important to realize that each of these attributes,
including security attributes, is important for determining how the query will be
executed. Furthermore, one shouldn't really expect the same plan to be used, even if the
SQL text and some of the attributes match. One database may have zero rows in table X,
whereas the other one may have 1.5 billion; same exact query text, vastly different plans.

Checking the attributes of a plan is not necessarily a very common thing to need to do
as, most of the time, your client will have a very standard set of settings. However, on
that rare occasion that you see no plan reuse, but you can clearly see multiple queries
with the same query text, the sys.dm_exec_plan_attributes DMV will help you
seek out the reasons.

Gathering Query Execution Statistics

Up to this point in the chapter, we've shown how to get the text of a cached plan, and
how to return detailed information about those plans. One plan is stored for a batch
or an object and we used sys.dm_exec_cached_plans to get plan information.

101

Chapter 3: Query Plan Metadata

Each plan has 1-to-N queries and in this section we're going to explore how to get
detailed information about the individual queries in the batch or object. To get these
query statistics, be it for a standalone query or a query within a larger stored procedure
or prepared statement, we use the sys.dm_exec_query_stats DMV.

The sys.dm_exec_query_stats DMV will return one row per query that is executed
within a batch or stored procedure, and provides columns such as total_worker_time
(CPU), total_physical_reads, total_logical_reads, which can give you a very
useful overview of the system resources that your queries are eating up.

Pre-SQL Server 2005, the only way to get this sort of information was through Profiler.
However, Profiler only lets you collect the information as the queries occur, not after the
event. Now, the next time you hear about a problem second-hand, while walking down
the hallway, which is too often how users report problems, you'll be able to interrogate
the sys.dm_exec_query_stats DMV and find out what happened. This is an
exciting step forward for most DBAs, especially given that resorting to Profiler after the
event often entailed capturing traces over long periods of time, in order to reobserve the
problem, and this could be really costly in terms of server resources and programmer
sanity, since doing the matching of query text after the fact is very difficult.

Overview of sys.dm_exec_query_stats

The sys.dm_exec_query_stats DMV contains quite a few columns that are
incremented counters, and provide information about how many times a query has been
executed and the resources that were used. It is described in Books Online as follows:

Returns aggregate performance statistics for cached query plans. The view contains one row per query

statement within the cached plan, and the lifetime of the rows is tied to the plan itself. When a plan is

removed from the cache, the corresponding rows are eliminated from this view.

102

Chapter 3: Query Plan Metadata

As a whole, it provides a wealth of information regarding resource-hungry queries on
your system for which a plan is cached. The columns that can be returned are as follows:

•	 sql_handle – identifies the batch or procedure to which a query belongs; it is used by
sys.dm_exec_sql_text to get the text of the batch

•	 statement_start_offset – the starting point of the query within the batch or
object to which the query belongs

•	 statement_end_offset – the end point of the query that is currently executing,
within the batch or object to which the query belongs

•	 plan_generation_num – indicates the version of the query plan that has been
created after a recompile; used for comparisons because the actual plan may change
(or even partially change for a statement-level recompile), even though the SQL stays
the same

•	 plan_handle – identifies the cached query plan for a batch or stored procedure that
has been executed; used by sys.dm_exec_query_plan or sys.dm_exec_text_
query_plan to get the plan of an executed query in XML format

•	 creation_time – time the plan was created

•	 last_execution_time – last time the execution plan was used to execute a query

•	 execution_count – number of times the plan has been used to execute a query

•	 total_worker_time, last_worker_time, min_worker_time, max_
worker_time – total, last, min and max amount of time spent in CPU utilization
to execute the query, based on this plan

•	 total_physical_reads, last_physical_reads, min_physical_reads,
max_physical_reads – total, last, min and max number of reads to the physical
hard disk system

•	 total_logical_writes, last_logical_writes, min_logical_writes,
max_logical_writes – total, last, min and max number of writes to the buffer
cache to be written by lazy writer

103

Chapter 3: Query Plan Metadata

•	 total_logical_reads, last_logical_reads, min_logical_reads, max_
logical_reads – total, last, min and max number of reads from the SQL Server
cache buffer that never had to go to the physical hard disk system to satisfy the current
request; this data was read in previously and was still in cache

•	 total_clr_time, last_clr_time, min_clr_time, max_clr_time – total,
last, min and max amount of time spent in the CLR processor for the query that uti-
lized this plan

•	 total_elapsed_time, last_elapsed_time, min_elapsed_time,
max_elapsed_time – in ms, the total, last, min and max amounts of time it
took to execute the entire query.

Note: Time columns are in microseconds.

Putting sys.dm_exec_query_stats to work

Once you are able to extract individual statements from a batch, as demonstrated in
the earlier section, Dissecting the SQL Text, you can use sys.dm_exec_query_stats
to access the query statistics for individual SQL statements that are executing on your
system. The sky is the limit with regard to how you might use this information to find
where you have performance issues.

Generally speaking, at the point where you would turn to sys.dm_exec_query_stats,
you would already have an idea of whether your system is IO bound, CPU bound, or
having CLR performance issues, and so on, likely from using other DMVs or a tool such as
the performance monitor (PerfMon). So, your goal at this stage would be to get a ranked
list of the queries that are having the biggest effect on the issue that you've identified.

104

Chapter 3: Query Plan Metadata

Before we look at the scripts, it is important to remember when using this DMV that
there is usually, but not necessarily, a one-to-one relationship between a sql_handle
and a plan_handle. One sql_handle can sometimes be associated with more than
one plan_handle. This can be caused by statement-level recompilation (see
http://technet.microsoft.com/en-us/library/ee343986(SQL.100).aspx for more
details), or by the exact same SQL text being executed with different attribute values,
as discussed earlier.

Let's say that you've identified that your sytem is CPU bound. Using the total_
worker_time column, you can find out which queries your server is spending the most
time executing. However, it isn't enough just to know that the server is spending a lot
of time executing a particular query. In fact, without context, this piece of information
is more or less meaningless. It might be that the query is run a million times, and no
other query is executed more than a thousand times. So, to add the required context, we
include the execution_count, along with a calculation of the average CPU time, as
shown in Listing 3.14.

SELECT TOP 3
 total_worker_time ,
 execution_count ,
 total_worker_time / execution_count AS [Avg CPU Time] ,
 CASE WHEN deqs.statement_start_offset = 0
 AND deqs.statement_end_offset = -1
 THEN '-- see objectText column--'
 ELSE '-- query --' + CHAR(13) + CHAR(10)
 + SUBSTRING(execText.text, deqs.statement_start_offset / 2,
 ((CASE WHEN deqs.statement_end_offset = -1
 THEN DATALENGTH(execText.text)
 ELSE deqs.statement_end_offset
 END) - deqs.statement_start_offset) / 2)
 END AS queryText
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS execText
ORDER BY deqs.total_worker_time DESC ;

105

Chapter 3: Query Plan Metadata

Listing 3.14:	 Finding the CPU-intensive queries.

The results, representing a set of queries from a busy server, were extensive, but we've
only shown the first three queries here (we don't get paid by the page, unfortunately).
From here, we can start to get a feeling for what queries are hurting the CPU the most
since the last system reboot. However, bear in mind the earlier discussion in the Flushing
the Cache? section, with regard to the different lengths of time plans will have been in the
cache, and how this can skew the results.

At this stage, it's somewhat difficult to gauge which of these queries is the most pertinent
to the performance issue, but these statistics make an excellent starting point for our
investigations. The first query executed 527 times and is taking the most time, while the
second one has been executed almost four times as frequently, but is taking one-third of
the CPU time. The third query only ran once, but took a huge amount of CPU time. This
is troublesome since it is impossible to know whether this was a one-off event, or if this
query just hasn't run that often since the server was restarted or DBCC FREEPROCCACHE
was executed to clear the query cache. An interesting column to check, especially with
regard to a plan with a single execution like this one, is last_execution_time, which
will tell you exactly when the plan was last used. Along with the query text, this can help
you to judge whether or not this execution was planned, and is part of your normal query
workload, or is just an unfortunate ad hoc query execution.

The next step would be to plug the plan_handle for each query (which I didn't include
in the results due to space constraints) into the sys.dm_exec_query_plan (see the
section entitled Viewing the Text of Cached Queries and Query Plans) and investigate how
each query is being executed, and whether the query can be optimized.

106

Chapter 3: Query Plan Metadata

There is a lot more useful data that can be extracted from the sys.dm_exec_query_
stats DMV using variations of the previously described techniques, based on "isolating"
individual queries through the _offset values, filtering on specific objects, and so on.
For example, you could write similar queries focusing on the following DMV columns:

•	 excessive logical writes – data written to cache (which gets written to the physical
hard disk via the lazy writer)
total_logical_writes, last_logical_writes, min_logical_writes,
max_logical_writes

•	 excessive logical reads – queries that required the most data to be read from cache
(possibly causing memory pressure)
total_logical_reads, last_logical_reads, min_logical_reads,
max_logical_reads

•	 excessive physical reads – queries that forced the most physical hard disk access (gen-
erally caused by the need for more cache memory than was available, equating to heavy
memory pressure since data could not be read from the cache)
total_physical_reads, last_physical_reads, min_physical_reads,
max_physical_reads

•	 long-running queries
total_elapsed_time, last_elapsed_time, min_elapsed_time,
max_elapsed_time

•	 expensive CLR code
total_clr_time, last_clr_time, min_clr_time, max_clr_time.

As discussed in the introduction to this chapter, it's true that you can get similar informa-
tion from the management reports in SSMS. The real win with the DMOs is the degree of
control and granularity you can achieve through the WHERE clause. For example, we could
easily modify the query in Listing 3.13 as follows, to return statistics only for batches that
reference the account table, simply by adding the appropriate WHERE clause.

107

Chapter 3: Query Plan Metadata

WHERE execText.text like '%account%'

Of course, we will probably have to be cleverer with the LIKE criteria if we have tables
(not to mention columns) named account and accountContact, but this is just a
SQL task. We could also use the entire definition of queryText and just look for the
individual queries. This technique will come in handy many times when optimizing data
access to a given object because, unlike most tools that come prebuilt, we can create
queries that only look at a very small subsection of queries, eliminating noise that is
perhaps not interesting to us during the current tuning process.

Finally, there are times when we want to see the results at a complete query/batch level,
rather than for the individual parts of the query, which may have their own plans. This is
complicated by the fact that, as discussed, one sql_handle may be associated with more
than one plan_handle. Therefore, in order to see the total stats for all queries in the
same batch, we need to group on the sql_handle and sum the values, as shown
in Listing 3.15.

SELECT TOP 100
 SUM(total_logical_reads) AS total_logical_reads ,
 COUNT(*) AS num_queries , --number of individual queries in batch
 --not all usages need be equivalent, in the case of looping
 --or branching code
 MAX(execution_count) AS execution_count ,
 MAX(execText.text) AS queryText
FROM sys.dm_exec_query_stats deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS execText
GROUP BY deqs.sql_handle
HAVING AVG(total_logical_reads / execution_count) <> SUM(total_logical_reads)
 / SUM(execution_count)
ORDER BY 1 DESC

Listing 3.15:	 Grouping by sql_handle to see query stats at the batch level.

108

Chapter 3: Query Plan Metadata

Investigating Expensive Cached
Stored Procedures

New to SQL Server 2008 is the sys.dm_exec_procedure_stats DMV that focuses
only on stored procedures and will not require you to aggregate on sql_handle to get
an overall view of your object's performance characteristics. Books Online describes it as:

Returns aggregate performance statistics for cached stored procedures. The view contains one row per stored

procedure, and the lifetime of the row is as long as the stored procedure remains cached. When a stored

procedure is removed from the cache, the corresponding row is eliminated from this view. At that time, a

Performance Statistics SQL trace event is raised similar to sys.dm_exec_query_stats.

It is similar in nature to sys.dm_exec_query_stats, but with a few differences in the
columns available. It only links to the plan of the procedure or object, not the individual
statements in the procedure. This DMV allows you to discover a lot of very interesting
and important performance information about your cached stored procedures.

-- Top Cached SPs By Total Logical Reads (SQL 2008 only).
-- Logical reads relate to memory pressure
SELECT TOP (25)
 p.name AS [SP Name] ,
 deps.total_logical_reads AS [TotalLogicalReads] ,
 deps.total_logical_reads / deps.execution_count AS [AvgLogicalReads] ,
 deps.execution_count ,
 ISNULL(deps.execution_count / DATEDIFF(Second, deps.cached_time,
 GETDATE()), 0) AS [Calls/Second] ,
 deps.total_elapsed_time ,
 deps.total_elapsed_time / deps.execution_count AS [avg_elapsed_time] ,
 deps.cached_time
FROM sys.procedures AS p
 INNER JOIN sys.dm_exec_procedure_stats
 AS deps ON p.[object_id] = deps.[object_id]
WHERE deps.database_id = DB_ID()
ORDER BY deps.total_logical_reads DESC ;

Listing 3.16:	 Investigating logical reads performed by cached stored procedures.

109

Chapter 3: Query Plan Metadata

Depending on what columns we include, and which column we order by, we can
discover which cached stored procedures are the most expensive from several different
perspectives. In this case, we are interested in finding out which stored procedures are
generating the most total logical reads (which relates to memory pressure). This query is
especially useful if there are signs of memory pressure, such as a persistently low page life
expectancy and/or persistent values above zero for memory grants pending. This query is
filtered by the current database, but we can change it to be instance-wide by removing the
WHERE clause.

Simply by selecting the total_physical_reads column, instead of total_logical_
reads in this query, we can perform the same analysis from the perspective of physical
reads, which relates to read, disk I/O pressure. Lots of stored procedures with high total
physical reads or high average physical reads, could indicate severe memory pressure,
causing SQL Server to go to the disk I/O subsystem for data. It could also indicate lots of
missing indexes or "bad" queries (with no WHERE clauses, for example) that are causing
lots of clustered index or table scans on large tables.

Be aware, though, that there are a couple of caveats with these queries. The big one is
that you need to pay close attention to the cached_time column as you compare rows
in the result set. If you have stored procedures that have been cached for different periods
of time, this will skew the results. One easy, but perhaps controversial, solution to this
problem is to periodically clear your procedure cache, by running DBCC FREEPROCCACHE
with a SQL Agent job, as previously discussed.

The second caveat is that only cached stored procedures will show up in these queries.
If you are using WITH RECOMPILE or OPTION(RECOMPILE), which is usually not a good
idea anyway, then those plans won't be cached.

110

Chapter 3: Query Plan Metadata

Getting Aggregate Query Optimization Statistics
for All Optimizations

In this section, we will look at how we can get statistics on all optimizations that have
been performed by the optimizer, regardless of whether or not a plan has been stored.
This data is available from the sys.dm_exec_query_optimizer_info DMV and it
will allow us to get a feel for how queries have been optimized, and how many of them
have been optimized, since the last time the server was restarted.

The data available from this DMV is often not obtainable by looking at actual plan usage,
and it can be very useful in gaining an overall understanding of the performance of a
server. For example, trivial plans are not stored in cache, so we can't get any information
on them from the cached plan views but _query_optimizer_info can tell us the
number of times a trivial plan was obtained.

This view also provides a lot of other information that can only be found here (or attained
in real time, using Profiler), such as the types of statements that are being optimized, the
number of hints used, and so on.

The sys.dm_exec_query_optimizer_info DMV provides information on optimizer
activity in the form of a set of counters. Every time a type of optimization occurs, the
counter will be incremented and, in some cases, a current value will be included in an
average. The counters are only incremented when a new query plan is created, so when
query plans are matched and reused, there is no need for a compilation, and there would
be no change to these counters. The three columns returned by this DMV are as follows:

•	 counter – the type of operation that the optimizer has done

•	 occurrence – number of times the operation the counter represents has occurred

•	 value – may or may not have some value, but is typically an average of the values that
were recorded when the counter was written to.

111

Chapter 3: Query Plan Metadata

The view will return one row for each of the possible counter types. The domain of
counter values includes optimizations, which is the total count of optimizations
since system start; elapsed time which is the average elapsed time to complete the
optimization of an individual statement, in seconds (averaged over total count of
optimizations) and a lot of other interesting values that can tell you the number of
insert, delete, or update statements that have been optimized, queries optimized with
subqueries, and many others.

For example, on a freshly restarted server, let's take a look at three of the counters, as
shown in Listing 3.17.

SELECT counter ,
 occurrence ,
 value
FROM sys.dm_exec_query_optimizer_info
WHERE counter IN ('optimizations', 'elapsed time', 'final cost') ;

Listing 3.17:	 Examine optimizer counters.

This returns something along the lines of:

counter occurrence value

------------------- -------------- ------------

optimizations 5 1

elapsed time 5 0.0074

final cost 5 0.0225006594

From this data we can see that:

•	 there have been a total of five statements optimized, and for which a plan has been
created (the value column for optimizations is documented as having no meaning in
Books Online)

112

Chapter 3: Query Plan Metadata

•	 the average average elapsed time spent optimizing each of the five statements was
0.0074 seconds

•	 the average cost of producing an optimized plan in each case was ~ 0.023.

Using these counters and some of the others, we can determine how often statements
are being compiled. Of course, the usual caveats apply in that, since the values start
accumulating as of the start of the server, there may be more or less information to be
gathered from the data. I certainly won't make the claim that you can necessarily discern
anything from these values without any other data. It can help to track the accumulating
counter type values over time.

Assuming there is only one user on the system, if we re-execute the query in
Listing 3.17 the values will probaly remain the same, as we just executed the same
exact statement and a plan already exists. However, try making the query upper case,
as shown in Listing 3.18.

SELECT COUNTER ,
 OCCURRENCE ,
 VALUE
FROM SYS.DM_EXEC_QUERY_OPTIMIZER_INFO
WHERE COUNTER IN ('optimizations', 'elapsed time', 'final cost') ;

Listing 3.18:	 Trivial changes to query text can affect plan reuse.

Now the query text does not match that of the previous query so, when we execute it,
a new plan will have to be created and we should see the occurrence column
incremented in value; there may also be some difference in the average times.

counter occurrence value

------------------- --------------- -------

optimizations 9 1

elapsed time 9 0.03867

final cost 9 0.10053

113

Chapter 3: Query Plan Metadata

Note that the number of optimizations didn't increment by just 1. When a server is
starting up there are many things going on. I also started up Agent when I restarted
the server and there were compilations for those queries as well.

Summary

With the information in this chapter, you can really start to get a picture of a
system's query health, even if you have not had long-term access to the server. The
scripts presented are especially useful when you need to start to drill down into a
performance bottleneck, having established a high-level idea of what is the biggest one.

One of the greatest advantages of examining cached queries and plans is that the DBA
can take a longer-term view of performance diagnosis, beyond simply responding to what
is happening right now on the server. By running these scripts regularly, the DBA can
proactively tune queries that may be hogging resources, but not yet to the extent that it is
being noticed by an end-user (thereby raising it to the level of national emergency).

We've seen how to extract the query plan and SQL text from sys.dm_exec_sql_text
and sys.dm_exec_query_plan functions, and how to investigate plan reuse, using
sys.dm_exec_cached_plans and sys.dm_exec_plan_attributes. However, the
centerpieces of our diagnostic efforts, in this chapter, were the sys.dm_exec_query_
stats and sys.dm_exec_procedure_stats views, from which we obtained
extremely valuable information regarding the time and resources used by our most
expensive queries and stored procedures. Bear in mind that the plans don't stay in the
cache forever, so it isn't a perfect science, but larger-cost plans do tend to stick around.

Lastly, we looked at the sys.dm_exec_query_optimizer_info DMV that lets you
get an understanding of the overall performance of the optimizer, which includes all
optimizations, including ones that create trivial plans that are never stored in the cache.

114

Chapter 4: Transactions

In Chapter 2, we used the Dynamic Management Objects to observe connectivity into
our SQL Server instances, and identify potentially troublesome user sessions currently
executing on these instances. We did this by examining the work being performed by SQL
Server as a result of the SQL being executed by the requests belonging to each session. In
Chapter 3, we extended our analysis of query execution to the execution plans that SQL
Server generates, stores and, hopefully, reuses during this process. This allowed a broader
analysis of our query workload, from the point of view of what was in the plan cache,
rather than just examining those requests being executed at a given time.

In this chapter, we step to the next level down in terms of granularity, with an
investigation of the transaction-related DMOs, all of which are prefixed sys.dm_tran_,
and the information they provide. Ultimately, every statement executed against SQL
Server is transactional, and SQL Server implements various transaction isolation levels,
to ensure the ACID (Atomicity, Consistency, Isolation, and Durability) properties of
these transactions. In practical terms, this means that it uses locks and latches to mediate
transactional access to shared database resources and prevent "interference" between the
transactions. When a transaction encounters a locked resource it must, of course, wait for
the resource to become free before proceeding. If such blocking occurs frequently or is
protracted, it greatly restricts the number of concurrent users that can access the system.

One of the major goals of this chapter is to describe the DMOs and scripts which will
allow a DBA to locate the transactions that are causing locking and blocking issues on
their SQL Server instances, and the sessions to which they belong. Having located the
offending transactions, the DBA can then take steps to alleviate the blocking, either by
tuning the SQL or, if this is not possible, by careful scheduling of the more resource-
hungry and/or longer-running business reports, so that they occur separately from the
main Online Transaction Processing (OLTP) load.

115

Chapter 4: Transactions

We'll also examine how to use the transaction-related DMOs, for example, to investigate
long-running transactions that may be preventing transaction log truncation, and
transactions that are causing large amounts of data to be written to the transaction log,
making it grow rapidly in size.

Finally, we'll examine the set of DMOs dedicated to investigating issues relating to use
of the snapshot isolation level, which aims to improve concurrency by using row
versioning rather than issuing locks inside a database. These row versions, which
maintain a transactional history for a particular database, are held in a version store
within the tempdb database, so snapshot isolation comes at a price in terms of
tempdb consumption.

What is a transaction, anyway?

Microsoft Books Online (http://msdn.microsoft.com/en-us/library/aa213068(SQL.80).
aspx) is as good a place as any to start for a definition of the term, transaction:

A transaction is a sequence of operations performed as a single logical unit of work. A logical unit of work

must exhibit four properties, called the ACID properties, to qualify as a transaction.

For a transaction to pass the ACID Test, all of its data modifications must complete or be
rolled back (Atomic); the end result must be that all data and supporting structures such
as indexes must be consistent with the rules that apply to them (Consistent).

A transaction cannot be impacted by any other transactions occurring concurrently
(Isolated); the results of the transaction being permanently recorded in the RDBMS
(Durability).

As noted in the introduction to this chapter, every statement executed against SQL Server
is transactional. If we issue a single SQL statement, an implicit transaction is run under

116

Chapter 4: Transactions

the covers, which auto-starts and auto-completes. If we use explicit BEGIN TRAN /
COMMIT TRAN commands, then we can group together, in an explicit transaction, a set of
statements that must fail or succeed together. This is easily demonstrated by the series of
queries shown in Listing 4.1 and the resulting output.

SELECT DTAT.transaction_id
FROM sys.dm_tran_active_transactions DTAT
WHERE DTAT.name <> 'worktable' ;

SELECT DTAT.transaction_id
FROM sys.dm_tran_active_transactions DTAT
WHERE DTAT.name <> 'worktable' ;

BEGIN TRAN
SELECT DTAT.transaction_id
FROM sys.dm_tran_active_transactions DTAT
WHERE DTAT.name <> 'worktable' ;

SELECT DTAT.transaction_id
FROM sys.dm_tran_active_transactions DTAT
WHERE DTAT.name <> 'worktable' ;
COMMIT TRAN

transaction_id

18949550

...

18949551

...

18949552

...

18949552

Listing 4.1:	 All statements within SQL Server are transactional.

According to the results of these queries, any statements executed outside of an explicit
transaction will execute as separate transactions, and each will result in a row with a

117

Chapter 4: Transactions

unique transaction_id in our result sets. All statements executed within an explicit
transaction will be reported with a single transaction_id.

SQL Server will attempt to ensure that each unit of work, be it a single-statement implicit
transaction, or any number of individual SQL statements within an explicit transaction,
conforms to the ACID test characteristics.

What we hope to demonstrate in this chapter is how to observe these units of work via
the DMOs. Since the lifespan of these transactions is measured in milliseconds, when
everything is going right the focus will be on those transactions that are having difficulty
completing in a timely fashion, whether due to contention for resources, poor tuning, or
other issues.

Investigating Locking and Blocking

Locking is an integral aspect of any RDBMS. Locks control how transactions are allowed
to interact, impact, and impede one another when running simultaneously against
common objects. Unless you restrict data access to one user at a time, clearly not a
viable option, locks are necessary to the smooth functioning of any RDBMS.

Locks are to be neither feared nor shunned but they can, nevertheless, cause problems
for the reckless or unwary. When using SQL Server's default isolation level, READ
COMMITTED, shared read locks are acquired during data reads. These locks prevent
another transaction from modifying that data while the query is in progress, but do not
block other readers. Furthermore, "dirty reads" are forbidden, so SQL Server acquires
exclusive locks during updates, to prevent a transaction from reading data that has been
modified by another transaction, but not committed. Of course, this means that if one
transaction (A) encounters data that is being modified by another transaction (B), then
transaction A is blocked; it needs access to a resource that is locked by B and cannot
proceed until B either commits or rolls back.

118

Chapter 4: Transactions

As noted, this is normal behavior but, in conditions of highly concurrent user access, the
potential for blocking will increase. The situation will be exacerbated, for example, by
transactions that are longer than they need to be or are poorly written, causing locks to
be held for longer than necessary. As locking and blocking increase, so does the overhead
on the RDBMS and the end result is a significant reduction in concurrency.

READ UNCOMMITTED – Don't do it

If you want concurrency at all costs, then READ UNCOMMITTED isolation level will shun locks as far as

possible. This mode allows dirty reads, so use it at the expense of your data consistency and integrity.

In READ COMMITTED mode, shared read locks are released as soon as a query completes,
so data modification transactions can proceed at that point, even if the transaction to
which the query belongs is still open. Therefore, non-repeatable reads are possible; if the
same data is read twice in the same transaction, the answer may be different. If this is not
acceptable, the isolation level can be made more restrictive. The REPEATABLE READ level
will ensure that all the rows that were read cannot be modified or deleted until the
transaction which reads them completes. However, even this level does not prevent new
rows (called phantom rows) being inserted that satisfy the query criteria, meaning that
reads are not, in the true sense, repeatable. To prevent this, you could switch to
SERIALIZABLE, the most restrictive isolation level of all, which basically ensures
that a transaction is completely isolated from the effects of any other transaction in
the database.

However, as the isolation level becomes more restrictive, so the use of locks becomes
more prevalent and the likelihood of blocking, and even deadlocking, where transaction
A is waiting for a resource that is held by B and vice versa, increases dramatically. Note
also, that it is not only competing modifications that can cause a deadlock. It is just as
possible for a modification to deadlock with a reporting query.

119

Chapter 4: Transactions

Snapshot isolation level

SQL Server 2005 introduced this new isolation level, with the goal of allowing consistent reads without

causing the blocking or deadlocking that is associated with REPEATABLE READ or SERIALIZ-

ABLE. We'll save discussion of this new level till later, in the section entitled "Snapshot Isolation and the

tempdb Version Store."

In short, DBAs need a way of investigating blocking on their SQL Server instances.

DMOs, Activity Monitor and sp_who2

Pre-SQL Server 2005, the only way a DBA could analyze blocking behavior in a SQL
Server instance was to query the sysprocesses system table or to use sp_who and
sp_who2. With SQL 2005, the situation has improved dramatically, and this information
is now available through several new routes:

•	 using the sys.dm_tran_locks DMV

•	 the "blocked process report" in SQL Server Profiler

•	 using Activity Monitor in SSMS.

Activity Monitor is basically a graphical representation of sysprocesses and it can
provide basic information regarding sessions that are blocked and blocking. For example,
if we establish some blocking on a table in AdventureWorks, then open Activity Monitor
(Ctrl+Alt+A), we can quickly establish that session 54 is blocked by session 52, as shown in
Figure 4.1.

120

Chapter 4: Transactions

Figure 4.1:	 Investigating blocking with Activity Monitor.

However, the information provided is pretty limited and, as we hope to demonstrate, the
sys.dm_tran_locks DMV provides a wealth of extra information regarding the lock
being held; you can query the available data in such a way that everything you need to
resolve the problem is presented in a single result set.

An overview of the sys.dm_tran_locks DMV

The sys.dm_tran_locks DMV provides insight into the current state of locking in
a SQL Server instance, across all databases. It returns a row for every currently active
request to the lock manager for a lock that has been granted or is waiting to be granted.
The columns provided offer information regarding both the resource on which the lock
is being held (or has been requested), and the owner of the request. Like the previously
discussed views, sys.dm_tran_locks provides only a snapshot of the state of the server
at the point in time the query is executed.

The resource-related columns identify the resource being locked, its type, and the
database on which the locking is occurring.

•	 resource_type – target resource object for the lock, such as Table (OBJECT locks),
Page (PAGE locks), Row (RID locks), or Key (KEY locks). Discussed in more detail
shortly.

121

Chapter 4: Transactions

•	 resource_database_id – ID of the database on which the locked resource resides.
This column can be used to join to the dbid column in sys.sysdatabases, as well
as to several other system views and DMVs.

•	 resource_associated_entity_id – depending upon the resource_type, this
value is either:

•	 the object_id of the target object, if resource_type = OBJECT

•	 the object_id of the parent object (courtesy of sys.partitions), if the
resource_type is a KEY, PAGE, or RID.

•	 Returning the name of the object is possible via the OBJECT_ID() system function,
by passing in both the object_id and the database_id (respectively).

The remaining columns offer a means to determine the nature, status, and owner of the
lock request, and to relate this locking information to that available from other DMVs,
regarding the sessions or transactions with which the locks are associated.

•	 request_mode – type of lock that is being held, or has been requested, such as Shared
(S), Update (U), Exclusive (X), Intent Exclusive (IX), and so on. Discussed in more detail
shortly.

•	 request_status – status of the lock:

•	 GRANT –indicates the lock has been taken

•	 CONVERT – the request is in the process of being fulfilled

•	 WAIT – the resource is not locked, but is trying to lock the resource.

•	 request_owner_type – type of owner of the transaction:

•	 TRANSACTION

•	 CURSOR

•	 SESSION

122

Chapter 4: Transactions

•	 SHARED_TRANSACTION_WORKSPACE

•	 EXCLUSIVE_TRANSACTION_WORKSPACE.

•	 request_session_id – the session_id of the requestor. Exposing this column
allows the DBA to join back to the information provided in any of the sys.dm_
exec_* DMVs as well as sys.sysprocesses (via a join to its spid column).

•	 request_owner_id – this column is only valid when the request_owner_type
is TRANSACTION. In that case, the value is the transaction_id for the
associated transaction.

One final column that is very useful is the lock_owner_address, which is a binary
address used internally to track the lock request. It is not interesting to the DBA in its
own right, but in the fact that it can be used to join to the resource_address column
in the sys.dm_os_waiting_tasks DMV, to relate locking information to tasks that
are waiting for a resource to become available before proceeding (i.e. which are blocked).
We'll discuss this in much more detail in the section entitled Investigating Blocking.

Other sys.dm_tran_locks columns

This DMV provides other columns that I don't often use as a DBA, and so have omitted. For a full column

listing, please refer to: http://technet.microsoft.com/en-us/library/ms190345.aspx.

In order to interpret properly the data exposed by this DMV, we'll need to review in
a little more detail some core locking concepts, namely lock types (exposed through
the resource_type column) and lock modes (exposed through the request_
mode column).

123

Chapter 4: Transactions

Lock types

SQL Server can lock a number of different types of resource, the most obvious being
tables (OBJECT locks), pages (PAGE locks), rows (RID locks), and keys (KEY locks), in order
of increasing granularity. Locks are granted and released on these objects as needed, in
order to satisfy the requirements of the isolation levels in use by the various sessions.
In the locking hierarchy, row and key locks are the lowest level, most granular forms of
lock. The more granular the lock, the higher the degree of concurrent access that can be
supported. However, with that comes a higher memory overhead, from having to manage
a large number of individual locks.

SQL Server automatically chooses locks of the highest possible granularity, suitable for
the given workload. However, if too many individual locks are being held on an index or
heap, or if forced to do so due to memory pressure, SQL Server may use lock escalation
to reduce the total number of locks being held. For example, a large number of individual
row locks may be escalated to a single table lock, or a number of page locks may be
escalated to a table lock (escalation is always to a table lock). While this will result in
lower overhead on SQL Server, the cost will be lower concurrency. If processes are
running on your servers that are causing lock escalation, it's worth investigating whether
the escalation is justified, or if SQL tuning can be performed to prevent it. The index_
lock_promotion_count column of the sys.dm_db_index_operational_stats
DMV, covered in Chapter 5, can let you know if lock escalation is occurring frequently on
a given index or heap.

Lock escalation

A full discussion of this topic is beyond the scope of this book, but good explanations are offered

on MSDN (http://technet.microsoft.com/en-us/magazine/2008.04.blocking.aspx) and

by Sunil Agarwal, Program Manager for the Storage Engine Group (http://blogs.msdn.com/b/

sqlserverstorageengine/archive/2006/05/17/lock-escalation.aspx).

124

Chapter 4: Transactions

In addition to tables, pages, rows and keys, the following listing provides information on
the other common types of resources that are targets for locks. These will crop up from
time to time in your queries against sys.dm_tran_locks.

•	 Key ranges – only occur under the SERIALIZABLE isolation level where protection
against phantom reads requires locking of a range of values to ensure that no one can
insert records into a range that is scanned.

•	 Extents – locked when tables and indexes grow, and extents are added as a result.

•	 Databases – processes will be issued a shared (S) lock against a database if it locks a
resource within a database. This occurs in any database on a SQL instance with the
exception of master and tempdb, which allows the SQL engine to perform a check
for locks prior to dropping a database or taking it offline, for instance. You will see a
DATABASE lock for each request. I filter out DATABASE locks in my locking / blocking
queries and consider them noise results.

•	 Allocation units – locked when they are in the process of being de-allocated.

•	 Metadata – occur when a transaction is attempting to change the definition for a
given object. For example, altering the recovery model on a database would register an
exclusive lock on the Metadata object type for the affected database.

The resource targeted by a given lock is exposed by the resource_type column in the
sys.dm_tran_locks DMV. A full listing of target resources for locks can be found on
Microsoft TechNet at http://technet.microsoft.com/en-us/library/ms189849.aspx.

Lock modes

SQL Server employs five different lock modes, in order to control how concurrent
transactions interact. These modes are exposed in the request_mode column of the
sys.dm_tran_locks DMV.

125

Chapter 4: Transactions

•	 Shared (S) – shared locks are issued for read-only operations, such as SELECT
statements. They prevent other transactions from updating the same data while the
query is processing. Multiple shared locks can be issued for the same resource, hence
the term "shared."

•	 Update (U) – update locks prevent data being modified by another transaction in the
time between finding the data that needs to be updated, and actually modifying it.
A U lock is obtained while the data is located, and then this is converted to an
exclusive lock to perform the update. Only a single update lock can be issued
for a given resource, and it must be converted to an exclusive lock before a data
modification can occur.

•	 Exclusive (X) – exclusive locks are used for data modification requests (INSERT,
UPDATE, and DELETE) to ensure that multiple updates do not occur against the
same resource. Only a single exclusive lock can be placed on a resource at any given
point in time. This prevents any other transaction from reading or modifying the
X-locked data.

•	 Intent (IX, IU, IS) – intent locks, as their name suggest, indicate an intention to lock
a resource lower in the locking hierarchy. So, for example, immediately before
obtaining an S lock on a row in a table, SQL Server will briefly obtain an Intent
Shared (IS) lock on the table (or page), which will prevent another transaction from
obtaining an exclusive lock on the table. Other types of intent lock are Intent Exclusive
(IX) and Intent Update (IU). All intent locks can be acquired only on pages and tables.
If an X lock is obtained on a key column, then both the page and the table associated
with that key would be assigned an IX lock.

•	 Conversion – these locks are the result of conversion from one locking mode to
another. There are three types of conversion lock:

•	 (SIX) – Shared with Intent Exclusive – a transaction currently holds a shared (S)
lock on a resource, then subsequently needs to obtain an exclusive (X) lock on a
component of the resource that is S locked

126

Chapter 4: Transactions

•	 (SIU) – Shared with Intent Update – similar to an SIX lock, an SIU lock occurs
when a transaction process is currently locking a resource with a shared (S) lock, but
requires a subsequent update (U) lock

•	 (UIX) – Update with Intent Exclusive – as you would expect from the name,
this occurs when a resource is currently locked with an update (U) lock, but a
subsequent exclusive (X) lock is required as a part of the same transaction.

•	 Schema – schema locks are issued when an operation affecting the schema of the
database is running:

•	 (Sch-S) Schema Stability locks are issued when compiling a query on a database

•	 (Sch-M) Schema Modification locks are granted when the underlying database
schema is being modified by Data Definition Language queries (DDL).

Investigating locking

A single request to query or modify some data may cause multiple locks to be granted
against several resources in the database. For example, consider the UPDATE statement
below against the Production.ProductCategory table in the AdventureWorks
database, shown in Listing 4.2.

BEGIN TRANSACTION
UPDATE [Production].[ProductCategory]
SET [Name] = 'Parts'
WHERE [Name] = 'Components';
--ROLLBACK TRANSACTION

Listing 4.2:	 An uncommitted update of the Production table in AdventureWorks.

A query against the sys.dm_tran_locks DMV, shown in Listing 4.3, will
reveal the locks acquired in the AdventureWorks database, as a result of our
uncommitted UPDATE.

127

Chapter 4: Transactions

SELECT [resource_type] ,
 DB_NAME([resource_database_id]) AS [Database Name] ,
 CASE WHEN DTL.resource_type IN ('DATABASE', 'FILE', 'METADATA')
 THEN DTL.resource_type
 WHEN DTL.resource_type = 'OBJECT'
 THEN OBJECT_NAME(DTL.resource_associated_entity_id,
 DTL.[resource_database_id])
 WHEN DTL.resource_type IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME([object_id])
 FROM sys.partitions
 WHERE sys.partitions.hobt_id =
 DTL.resource_associated_entity_id
)
 ELSE 'Unidentified'
 END AS requested_object_name ,
 [request_mode] ,
 [resource_description]
FROM sys.dm_tran_locks DTL
WHERE DTL.[resource_type] <> 'DATABASE' ;

Listing 4.3:	 Locking due to single UPDATE statement against a user table in SQL Server.

The query is actually very straightforward, but made to look a little more intimidating
by the CASE statement, where we return a value for the object name (or parent object
name, when dealing with PAGE and KEY locks, in this case) for the locked resource. The
way in which we need to do this depends on the type of lock being held. In the case of
DATABASE, FILE, or METADATA locks, the query simply returns the value for the lock
type. For OBJECT locks, the parent object is directly associated with the object_id.
For PAGE, RID, or KEY locks, we need to look up the object_id associated to the
object_id in the sys.partitions catalog view, by joining the hobt_id in that
view to the resource_associated_entity_id in sys.dm_tran_locks. Each
session on SQL Server also creates a DATABASE shared lock, which I've filtered out in the
WHERE clause.

The output of the query is shown in Figure 4.2.

128

Chapter 4: Transactions

Figure 4.2:	 Locking results for the AdventureWorks database.

You'll note that locks are issued against multiple objects and at different granularities to
allow for the update.

•	 An intent-exclusive lock is placed on the ProductCategory table denoting the intent
to take exclusive locks lower in the hierarchy.

•	 Two pages (one in each of two indexes) are also granted intent-exclusive locks. The
n:x notation in the resource_description column signifies the nth partition
and the xth page in that partition, for a given PAGE lock.

•	 Three exclusive KEY locks are granted against the individual index keys. The values
listed in resource_description are hashes of the key value.

When everyone plays by the rules this architecture works fairly well. However, situations
arise when transactions don't release locks in a timely manner, due to I/O bottlenecks on
the server, or when locks are held longer than they should be due to poorly coded T-SQL.

Reducing lock times

In this book, we must focus on the DMOs, so a full discussion of strategies for minimizing the length of

time that locks are held is out of scope. SQL Server MVP Brad McGehee offers his take on reducing lock

times in this post on SQLServerPerformance.com: http://www.sql-server-performance.com/tips/

reducing_locks_p1.aspx.

129

Chapter 4: Transactions

If, from a second tab in SSMS, we now run a second query, shown in Listing 4.4 (having
neither committed nor rolled back the query in Listing 4.2), we'll introduce some blocking
in the AdventureWorks database.

SELECT *
FROM [Production].[ProductCategory] ;

Listing 4.4:	 A simple query against the ProductCategory table, which will be blocked.

We'll present a more detailed script for detecting blocking in the next section, but the one
in Listing 4.5 demonstrates the basic pattern for joining to the execution-related DMOs
to find out which sessions are involved in blocking, which login "owns" these sessions,
and what SQL statements they are executing.

SELECT DTL.[request_session_id] AS [session_id] ,
 DB_NAME(DTL.[resource_database_id]) AS [Database] ,
 DTL.resource_type ,
 CASE WHEN DTL.resource_type IN ('DATABASE', 'FILE', 'METADATA')
 THEN DTL.resource_type
 WHEN DTL.resource_type = 'OBJECT'
 THEN OBJECT_NAME(DTL.resource_associated_entity_id,
 DTL.[resource_database_id])
 WHEN DTL.resource_type IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME([object_id])
 FROM sys.partitions
 WHERE sys.partitions.hobt_id =
 DTL.resource_associated_entity_id
)
 ELSE 'Unidentified'
 END AS [Parent Object] ,
 DTL.request_mode AS [Lock Type] ,
 DTL.request_status AS [Request Status] ,
 DER.[blocking_session_id] ,
 DES.[login_name] ,
 CASE DTL.request_lifetime
 WHEN 0 THEN DEST_R.TEXT
 ELSE DEST_C.TEXT

130

Chapter 4: Transactions

 END AS [Statement]
FROM sys.dm_tran_locks DTL
 LEFT JOIN sys.[dm_exec_requests] DER
 ON DTL.[request_session_id] = DER.[session_id]
 INNER JOIN sys.dm_exec_sessions DES
 ON DTL.request_session_id = DES.[session_id]
 INNER JOIN sys.dm_exec_connections DEC
 ON DTL.[request_session_id] = DEC.[most_recent_session_id]
 OUTER APPLY sys.dm_exec_sql_text(DEC.[most_recent_sql_handle])
 AS DEST_C
 OUTER APPLY sys.dm_exec_sql_text(DER.sql_handle) AS DEST_R
WHERE DTL.[resource_database_id] = DB_ID()
 AND DTL.[resource_type] NOT IN ('DATABASE', 'METADATA')
ORDER BY DTL.[request_session_id] ;

Listing 4.5:	 Which sessions are causing blocking and what statement are they running?

The result set returned is shown in Figure 4.3.

Figure 4.3:	 Locking and blocking results in AdventureWorks, based upon two sample transactions.

131

Chapter 4: Transactions

The LEFT JOIN in Listing 4.5 is necessary because the request no longer exists for the
initial (blocking) UPDATE statement; although it is neither committed nor rolled back,
execution is complete. Therefore, an INNER JOIN would omit those rows in the sys.
dm_tran_locks view that refer to the updating query. This is also part of the reason
why we need two OUTER APPLY joins to sys.dm_exec_sql_text: one using sql_
handle from sys.dm_exec_requests and one using sys.dm_exec_connections.
most_recent_sql_handle. Since the request no longer exists for the blocking update,
sys.dm_exec_connections needs to supply the sql_handle.

Conversely, sys.dm_exec_connections (and sys.dm_exec_sessions) is only
updated with cumulative values for such columns as cpu_time, memory_usage, and
sql_handle after associated requests complete execution. The blocked query is still
executing and so we can't rely on SDEC.most_recent_sql_handle for the command
text of the live request. The acid test for deciding how to call sys.dm_exec_sql_text
is the request_lifetime column in sys.dm_tran_locks. If request_lifetime
is zero, it signifies that the request is still active and sys.dm_exec_requests.sql_
handle should be used. Otherwise, the value needs to come from sys.dm_exec_con-
nections.most_recent_sql_handle.

Blocking analysis using sys.dm_tran_locks
and sys.dm_os_waiting_tasks

A certain amount of blocking activity is normal and to be expected in SQL Server.
In the course of daily operation, SQL Server will intentionally prevent one process
from accessing an object if another process has a lock on it, in order to preserve data
integrity and present a consistent view of the data. The DBA always hopes that the
lifespan of a request, i.e. the time between the first transaction starting to execute and
the final commit for the last transaction associated with the request, is fleeting; more
akin to the digital equivalent of the fruit fly than the tortoise. In such cases, blocking
will generally be of the order of milliseconds and users will be unaffected by it.

132

Chapter 4: Transactions

In systems with many concurrent transactions, some degree of blocking is probably
unavoidable, but the situation can be greatly exacerbated by transactions that are
longer or more complex than is strictly dictated by the business requirements, or
transactions that need to use more restrictive transaction isolation levels (such as
REPEATABLE READ or SERIALIZABLE). In my experience as a DBA, the most common
causes of these issues are listed below.

•	 Poorly written transactions – these include transactions that contain an unnecess-
arily high number of statements, and transactions that process an unnecessarily large
amount of data due to lack of a WHERE clause, or predicates that are not as restrictive
as they could be. The best query is one that makes as few passes through the data as
possible, returns as few rows as is necessary, and only returns the columns required to
satisfy the user's needs.

•	 Poorly designed databases – absent indexing, lack of foreign keys, incorrect or
inadequate clustering keys, and poorly chosen data types may all lead to decreased
concurrency and excessive blocking.

•	 Poorly maintained databases – fragmented indexes and outdated statistics can lead
to suboptimal query execution, which causes locks to be held longer than is necessary,
and results in table or index scans when a seek should, and could, be used.

•	 Poorly designed applications – in terms of crimes against databases committed by
application code, I've seen it all: applications that request a batch of records from the
database and iterate through the recordset row by row; applications that make almost
exclusive use of SELECT *… queries; applications that submit ad hoc SQL code and
make no use of stored procedures or other optimized processes. In many cases,
particularly when hosting the database for third-party applications, the DBA cannot
alter the code and has little influence over getting it fixed

All of this leads to transactions that take longer than necessary to complete, hold locks for
longer than necessary, and so cause significant blocking of other transactions.

133

Chapter 4: Transactions

When investigating blocking issues as a DBA, what we really need is a clear, single
page of data that shows the transactions involved in blocking, including the actual SQL
statements within those transactions, the sessions to which these transactions belong,
and the users who own these sessions.

In order to achieve this, we can start our investigation at the sys.dm_os_
waiting_tasks DMV. This DMV returns one row for each task that is waiting for a
resource to become available before proceeding (i.e. is blocked). Armed with a session_
id for any tasks that are currently waiting, we can use the resource_address column
in this DMV to join back to the lock_owner_address column in the sys.dm_tran_
locks DMV, and so relate the waiting tasks information to information on the locks
that are being held. Initially, it might seem more logical to join on session_id rather
than resource_address, but remember that the goal is to determine what resource
contention is occurring; what resource is locked and therefore causing waits for other
sessions that need to acquire locks on the object in contention.

From here, we can join to other session/transaction-related views in order to arrive,
ultimately, at a big picture overview of locks that may be causing blocking problems, the
sessions and statements that caused those locks to be acquired and those that are blocked
as a result. The resulting script, shown in Listing 4.6, will present both the blocking and
blocked requests on the same row, and so provide a very easy way to spot, analyze, and
diagnose blocking issues.

USE [AdventureWorks] ;
GO
SELECT DTL.[resource_type] AS [resource type] ,
 CASE WHEN DTL.[resource_type] IN ('DATABASE', 'FILE', 'METADATA')
 THEN DTL.[resource_type]
 WHEN DTL.[resource_type] = 'OBJECT'
 THEN OBJECT_NAME(DTL.resource_associated_entity_id)
 WHEN DTL.[resource_type] IN ('KEY', 'PAGE', 'RID')
 THEN (SELECT OBJECT_NAME([object_id])
 FROM sys.partitions
 WHERE sys.partitions.[hobt_id] =
 DTL.[resource_associated_entity_id]

134

Chapter 4: Transactions

)
 ELSE 'Unidentified'
 END AS [Parent Object] ,
 DTL.[request_mode] AS [Lock Type] ,
 DTL.[request_status] AS [Request Status] ,
 DOWT.[wait_duration_ms] AS [wait duration ms] ,
 DOWT.[wait_type] AS [wait type] ,
 DOWT.[session_id] AS [blocked session id] ,
 DES_blocked.[login_name] AS [blocked_user] ,
 SUBSTRING(dest_blocked.text, der.statement_start_offset / 2,
 (CASE WHEN der.statement_end_offset = -1
 THEN DATALENGTH(dest_blocked.text)
 ELSE der.statement_end_offset
 END - der.statement_start_offset) / 2
 AS [blocked_command] ,
 DOWT.[blocking_session_id] AS [blocking session id] ,
 DES_blocking.[login_name] AS [blocking user] ,
 DEST_blocking.[text] AS [blocking command] ,
 DOWT.resource_description AS [blocking resource detail]
FROM sys.dm_tran_locks DTL
 INNER JOIN sys.dm_os_waiting_tasks DOWT
 ON DTL.lock_owner_address = DOWT.resource_address
 INNER JOIN sys.[dm_exec_requests] DER
 ON DOWT.[session_id] = DER.[session_id]
 INNER JOIN sys.dm_exec_sessions DES_blocked
 ON DOWT.[session_id] = DES_Blocked.[session_id]
 INNER JOIN sys.dm_exec_sessions DES_blocking
 ON DOWT.[blocking_session_id] = DES_Blocking.[session_id]
 INNER JOIN sys.dm_exec_connections DEC
 ON DTL.[request_session_id] = DEC.[most_recent_session_id]
 CROSS APPLY sys.dm_exec_sql_text(DEC.[most_recent_sql_handle])
 AS DEST_Blocking
 CROSS APPLY sys.dm_exec_sql_text(DER.sql_handle) AS DEST_Blocked
WHERE DTL.[resource_database_id] = DB_ID()

Listing 4.6:	 Investigating locking and blocking based on waiting tasks.

To see it in action, we'll set up some activity on the Production.Culture table of the
AdventureWorks database. It's a narrow table with three columns and two indexes, one
clustered index on the primary key and one unique non-clustered index on the Name

135

Chapter 4: Transactions

column. Additionally, there is a DEFAULT constraint on the ModifiedDate column that
sets the value to the results of the getdate() function.

Open a tab in SSMS and execute the query shown in Listing 4.7. This is our
blocking session.

BEGIN TRANSACTION
UPDATE Production.Culture
SET Name = 'English-British'
WHERE Name = 'English' ;
--ROLLBACK TRANSACTION

Listing 4.7:	 An uncommitted UPDATE transaction on the Production.Culture table.

In a separate session, execute the code in Listing 4.8, to read data from the same table.

SELECT ModifiedDate
FROM Production.Culture
WHERE Name = 'English' ;

Listing 4.8:	 A blocked query against the Production.Culture table.

Finally, in a third session, INSERT a new value into the same table and then read
the table.

INSERT INTO Production.Culture
 (CultureID, Name)
VALUES ('jp', 'Japanese') ;

SELECT *
FROM Production.Culture ;

Listing 4.9:	 An INSERT against the Production.Culture table.

136

Chapter 4: Transactions

Having executed all three queries, run the DMO script in Listing 4.6. What we expect to
see is that the UPDATE query blocks both subsequent SELECT queries from the other
sessions, but not the INSERT, as confirmed by the results shown in Figure 4.4.

Figure 4.4:	 Blocking in AdventureWorks.

This script is one of my favorites; it provides exactly what I need to know. The first half
of the results displays information regarding who and what is being blocked, while the
second half of the results provides metrics regarding who and what is doing the blocking.

The final column, resource_description (aliased in the results as blocking resource
detail) provides a value that concatenates the lock type, object type and id, database id,
lock id, lock type, and parent/associated object id for the lock. Quite a bit of information
for a single column wouldn't you say? This is a result of the denormalized nature of the
information that this column stores. The problem is in parsing the values in it; any
universal process to do so is undocumented at this time, and we can only hope that at

137

Chapter 4: Transactions

some point (SQL 11 perhaps) Microsoft makes it easier to parse the information, or nor-
malizes the information by adding columns to sys.dm_os_waiting_tasks.

The value of the script really becomes evident when one encounters a multi-session
blocking situation. Figure 4.5 shows how it can reveal a real-life blocking chain (one I
encountered just today on one of my servers). I've omitted all security and identifier
columns for my environment, but the remaining data is real.

Figure 4.5:	 A real-life blocking chain.

Session 65 was blocking Session 63 which, in turn, blocked Session 78, which blocked
70, which blocked both 111 and 87. Session 87 blocked Session 89 which, in turn, blocked
about ten other sessions. My DMO script revealed that Session 65 was the root cause of
the blocking, and the command text returned for this session revealed that I could safely
kill that session. Having done so, and by the time I switched query windows in SSMS to
re-execute the DMO query, the results were clean. All blocking had been resolved.

138

Chapter 4: Transactions

Analyzing Transactional Activity

There are three DMVs that allow us to monitor active transactions on our SQL Server
instances and, in particular, long-running transactions, as well as those transaction that
are causing the transaction log to grow rapidly:

•	 sys.dm_tran_session_transactions – is primarily an intermediate view that
allows us to join the sys.dm_exec DMVs (identified primarily on the session_id
column) with the other sys.dm_tran_* DMVs

•	 sys.dm_tran_active_transactions – stores transactional information relating
to status, type, and state of each transaction currently initiated but not yet completed,
on the SQL instance; it also provides information on distributed transactions, though
some of the DTC-centric columns have been deprecated in SQL Server 2008

•	 sys.dm_tran_database_transactions – stores much of the same information
in regard to transaction state, status, and type; but also provides extremely granular
transaction log metrics and record count and size metadata.

Over the coming sections we'll very briefly review some of the more interesting columns
in these DMVs, and then provide some sample troubleshooting scripts. Please refer to the
relevant section of Books Online (http://msdn.microsoft.com/en-us/library/ms178621.
aspx) for a full column description of each DMV.

Transactional DMOs vs. DBCC OPENTRAN

Prior to SQL Server 2005, most DBAs used the DBCC OPENTRAN command to return
information regarding currently open transactions on their SQL Server instances. I
continue to use DBCC OPENTRAN for the purpose for which it was designed: to provide
information about the oldest transaction still active in a specific database. This tool is a
one-trick pony, however. The scripts we're going to use based upon the DMVs provide
a wealth of extra information. For more information on the syntax and use of DBCC

139

Chapter 4: Transactions

OPENTRAN please visit Microsoft Books Online: http://msdn.microsoft.com/en-us/
library/ms182792.aspx.

sys.dm_tran_session_transactions

As stated, this view is used primarily for joining the sys.dm_exec_* DMVs introduced
in Chapter 2 to the sys.dm_tran_* DMVs we're discussing here.

•	 session_id – identifies which session the transaction belongs to. The session_id
may be the most important column for this particular DMV as it allows us to join
transactional metadata with, for example, the execution-related DMOs covered in
Chapter 2, as well as the sys.sysprocesses system compatibility view (as spid).

•	 transaction_id – just as session_id allows us to join back to the various
sys.dm_exec_ DMVs, so transaction_id allows the join to the myriad of
sys.dm_tran_ DMVs we discuss in this chapter. This provides the link between
sessions and transactions, from a logical perspective, allowing the DBA to make
associations between user sessions and requests and the transactions they run, in
terms of their activity, characteristics, and locking behavior.

The only other column that we'll mention here is is_user_transaction, which
denotes whether the transaction is a user-initiated transaction (1) or a system transaction
(0). This is particularly valuable when we wish to isolate only user transactions. Other
columns allow us to exclude or isolate distributed, enlisted, or bound transactions, as
required by our circumstances.

Listing 4.10 illustrates a very simple query against this DMV, just to illustrate the sort of
result set returned for current transactions on the active session.

140

Chapter 4: Transactions

BEGIN TRANSACTION
SELECT DTST.[session_id] ,
 DTST.[transaction_id] ,
 DTST.[is_user_transaction]
FROM sys.[dm_tran_session_transactions] AS DTST
WHERE DTST.[session_id] = @@SPID
ORDER BY DTST.[transaction_id]
COMMIT

session_id transaction_id is_user_transaction

----------- -------------------- -------------------

56 1550381 1

(1 row(s) affected)

Listing 4.10:	 Basic query against sys.dm_tran_session_transactions for transactions

on the current session.

sys.dm_tran_active_transactions

The sys.dm_tran_active_transactions DMV returns a list of all transactions
that are active at the time the query is executed. This view operates at the scope of the
entire SQL instance, meaning that results are returned for all databases on the instance.
Since this view provides a point-in-time snapshot of currently active transactions, the
results will change each time the query is executed, depending upon the state of the
individual transactions.

Identification columns returned by this view are transaction_id, which uniquely
identifies a transaction across the entire SQL Server instance, and name, which is the
name of the transaction. I consider it a good habit, if not a best practice, to name
transactions, as the following code snippet demonstrates:

BEGIN TRANSACTION Trans_Name
--Some SQL Code goes here
COMMIT TRANSACTION Trans_Name

141

Chapter 4: Transactions

In this example, Trans_Name will be returned as the value for the name column for
this record in sys.dm_tran_active_transactions, assuming the transaction is still
active when you issue a query against this DMV. If the transaction is not explicitly named,
this column will be populated by values such as SELECT, INSERT, UPDATE, DELETE in the
case of those Data Modification Language (DML) transactions. You'll also see Worktable
as a value when returning results from tempdb for the hashing and temp/intermediate
transactional processing that occurs there. Finally, you will see the value of DTCXACT for
unnamed distributed transactions.

This DMV also returns the time that the transaction was started (transaction_
begin_time), as well as columns that identify the type (transaction_type) and state
(transaction_state, or dtc_state for distributed transactions). These type and state
columns return integer values, the meanings of which are deciphered in the sample query
shown in Listing 4.11.

SELECT DTAT.transaction_id ,
 DTAT.[name] ,
 DTAT.transaction_begin_time ,
 CASE DTAT.transaction_type
 WHEN 1 THEN 'Read/write'
 WHEN 2 THEN 'Read-only'
 WHEN 3 THEN 'System'
 WHEN 4 THEN 'Distributed'
 END AS transaction_type ,
 CASE DTAT.transaction_state
 WHEN 0 THEN 'Not fully initialized'
 WHEN 1 THEN 'Initialized, not started'
 WHEN 2 THEN 'Active'
 WHEN 3 THEN 'Ended' -- only applies to read-only transactions
 WHEN 4 THEN 'Commit initiated'-- distributed transactions only
 WHEN 5 THEN 'Prepared, awaiting resolution'
 WHEN 6 THEN 'Committed'
 WHEN 7 THEN 'Rolling back'
 WHEN 8 THEN 'Rolled back'
 END AS transaction_state ,
 CASE DTAT.dtc_state
 WHEN 1 THEN 'Active'
 WHEN 2 THEN 'Prepared'

142

Chapter 4: Transactions

 WHEN 3 THEN 'Committed'
 WHEN 4 THEN 'Aborted'
 WHEN 5 THEN 'Recovered'
 END AS dtc_state
FROM sys.dm_tran_active_transactions DTAT
 INNER JOIN sys.dm_tran_session_transactions DTST
 ON DTAT.transaction_id = DTST.transaction_id
WHERE [DTST].[is_user_transaction] = 1
ORDER BY DTAT.transaction_begin_time

Listing 4.11:	 Querying sys.dm_db_tran_active_transactions.

Notice that we are able to isolate user transactions via a join back to sys.dm_tran_
session_transactions, filtering on the is_user_transaction column. The results
of this query are shown in Figure 4.6.

Figure 4.6:	 Currently active user transactions.

Had we not filtered out transactions associated with system sessions, we'd also have
seen results for hash work being performed in tempdb, similar to the record shown in
Figure 4.7.

Figure 4.7:	 Worktable transaction records in sys.dm_db_tran_active_transactions.

Queries against sys.dm_tran_active_transactions will often return a great num-
ber of results that look like this, since these worktables are created and destroyed all the

143

Chapter 4: Transactions

time on our SQL instances as a result of sorting and hashing intermediate results sets
before returning them to an end-user.

An alternative way to eliminate the worktables would be to add a predicate to the name
column, as the code snippet in Listing 4.12 demonstrates.

…
FROM sys.dm_tran_active_transactions DTAT
WHERE DTAT.name <> 'worktable'
ORDER BY DTAT.transaction_begin_time

Listing 4.12:	 Eliminating worktables from the results returned by active_transactions.

While information regarding the transaction start time, type and the current state of the
transaction may be valuable, it is rare to query this DMV in isolation, as it provides an
incomplete picture of transactional activity. We cannot tell, for example, the databases on
which these transactions are running, the sessions or users that are running them, or the
statements that comprise each transaction. To retrieve this information, we'll need to join
DMVs via the transaction_id column, as will be demonstrated shortly.

sys.dm_tran_database_transactions

The sys.dm_tran_database_transactions DMV is server-scoped (the name is
deceptive) and provides detailed information about the transactions occurring on your
SQL Server instance. Like the sys.dm_db_tran_active_transactions view, it pro-
vides point-in-time snapshot data, so the results may vary each time the view is queried.
A cursory glance at the available columns may lead one to assume that the data returned
will be similar to that provided by the sys.dm_tran_active_transactions view.
In fact, however, sys.dm_tran_database_transactions provides a much
more granular level of detail about each transaction and gives "physical presence" to a
transaction, in that it returns information about how it is using the transaction log file.

144

Chapter 4: Transactions

Alongside a transaction_id column, the DMV exposes a database_id column,
which identifies the database to which the transaction is associated. Occasionally,
for example, when isolating issues associated with just those databases using a particular
isolation level or recovery model, it is useful to use this column to join to the sys.
database system catalog view in order to return such columns as the snapshot_
isolation_state, recovery_model, and so on. The database_id column can also
be used as the sole parameter of the DB_NAME() function, in order to return the name of
the database.

Like the active_transactions DMV, the database_transactions DMV also
exposes columns describing the type (database_transaction_type) and state
(database_transaction_state) of a transaction. The integer values returned must
be "decoded" in our queries, as demonstrated for the state column by the code snippet in
Listing 4.13.

 CASE SDTDT.database_transaction_state
 WHEN 1 THEN 'Not initialized'
 WHEN 3 THEN 'initialized, but not producing log records'
 WHEN 4 THEN 'Producing log records'
 WHEN 5 THEN 'Prepared'
 WHEN 10 THEN 'Committed'
 WHEN 11 THEN 'Rolled back'
 WHEN 12 THEN 'Commit in process'

Listing 4.13:	 Decoding the integer values returned by database_transaction_state.

Below is a list of some of the other important columns available through sys.dm_tran_
database_transactions that allow us to investigate long-running transactions, as
well as use and abuse of the transaction log.

database_transaction_begin_time – time at which the transaction began produc-
ing log records. Note that this may not be the same as the time when the transaction was
initiated, as there may be a delay between a transaction being initiated and it starting

145

Chapter 4: Transactions

processing, if required resources are locked or if there is a wait for server resources such
as CPU.

•	 database_transaction_log_record_count – number of log records for the
transaction at the time the query executed. Note that, if the value of database_
transaction_state is 5 or less, the transaction will still be producing log records, so
the value of database_transaction_log_record_count will not be equal to the
total number of records that will be generated by the transaction.

•	 database_transaction_log_bytes_used – amount of bytes this transaction
currently contributes to the total used in the transaction log for the database.

•	 database_transaction_log_bytes_reserved – bytes reserved in the log for
this transaction.

•	 database_transaction_begin_lsn, database_transaction_last_lsn – Log
Sequence Number (LSN) of the first and last records in the log for this transaction.

•	 database_transaction_most_recent_savepoint_lsn – if savepoints are used,
this is the most recent one that can be rolled back to. Savepoints are not discussed
further in this book, but see Microsoft Books Online: http://msdn.microsoft.com/
en-us/library/ms181299.aspx.

•	 database_transaction_commit_lsn – the LSN that recorded the commit for
the transaction.

•	 database_transaction_last_rollback_lsn – if a rollback has occurred, this is
the most recent LSN that the transaction was rolled back to. If there was no rollback,
the value will be the last LSN recorded in the log.

•	 database_transaction_next_undo_lsn – during the undo portion of a recovery,
this will be the LSN to be rolled back (undone).

146

Chapter 4: Transactions

Assessing transaction log impact

The sys.dm_tran_database_transactions DMV is the only one that provides
insight into the effects of user activity on the database transaction logs. Using this
DMV, and joining across to other transaction-related and execution-related DMVs, as
described previously, we can develop a query, shown in Listing 4.14, which will identify
all active transactions and their physical effect on the databases' transaction logs. This is
especially useful when seeking out transactions that may be causing explosive transaction
log growth.

SELECT DTST.[session_id],
 DES.[login_name] AS [Login Name],
 DB_NAME (DTDT.database_id) AS [Database],
 DTDT.[database_transaction_begin_time] AS [Begin Time],
 -- DATEDIFF(ms,DTDT.[database_transaction_begin_time], GETDATE()) AS [Duration
ms],
 CASE DTAT.transaction_type
 WHEN 1 THEN 'Read/write'
 WHEN 2 THEN 'Read-only'
 WHEN 3 THEN 'System'
 WHEN 4 THEN 'Distributed'
 END AS [Transaction Type],
 CASE DTAT.transaction_state
 WHEN 0 THEN 'Not fully initialized'
 WHEN 1 THEN 'Initialized, not started'
 WHEN 2 THEN 'Active'
 WHEN 3 THEN 'Ended'
 WHEN 4 THEN 'Commit initiated'
 WHEN 5 THEN 'Prepared, awaiting resolution'
 WHEN 6 THEN 'Committed'
 WHEN 7 THEN 'Rolling back'
 WHEN 8 THEN 'Rolled back'
 END AS [Transaction State],
 DTDT.[database_transaction_log_record_count] AS [Log Records],
 DTDT.[database_transaction_log_bytes_used] AS [Log Bytes Used],
 DTDT.[database_transaction_log_bytes_reserved] AS [Log Bytes RSVPd],
 DEST.[text] AS [Last Transaction Text],
 DEQP.[query_plan] AS [Last Query Plan]
FROM sys.dm_tran_database_transactions DTDT

147

Chapter 4: Transactions

 INNER JOIN sys.dm_tran_session_transactions DTST
 ON DTST.[transaction_id] = DTDT.[transaction_id]
 INNER JOIN sys.[dm_tran_active_transactions] DTAT
 ON DTST.[transaction_id] = DTAT.[transaction_id]
 INNER JOIN sys.[dm_exec_sessions] DES
 ON DES.[session_id] = DTST.[session_id]
 INNER JOIN sys.dm_exec_connections DEC
 ON DEC.[session_id] = DTST.[session_id]
 LEFT JOIN sys.dm_exec_requests DER
 ON DER.[session_id] = DTST.[session_id]
 CROSS APPLY sys.dm_exec_sql_text (DEC.[most_recent_sql_handle]) AS DEST
 OUTER APPLY sys.dm_exec_query_plan (DER.[plan_handle]) AS DEQP
ORDER BY DTDT.[database_transaction_log_bytes_used] DESC;
-- ORDER BY [Duration ms] DESC;

Listing 4.14:	 Transaction log impact of active transactions.

Note the use of OUTER APPLY to join to sys.dm_exec_query_plan. The OUTER
APPLY functions as a hybrid of OUTER JOIN and CROSS APPLY in that it will return NULL
if no value is returned by the function. This prevents the entire row from being excluded
from the result set in cases where a plan does not exist for the request (the request may
no longer exist in sys.dm_exec_requests by the time Listing 4.14 is run). Sample
output from this listing is shown in Figure 4.8.

Figure 4.8:	 Transactions writing heavily to the transaction log.

148

Chapter 4: Transactions

Simply by un-commenting the calculation of the transaction duration in Listing 4.14, and
swapping the ORDER BY clause, we can investigate the activity of long-running transac-
tions that may be bloating the transaction log file, or preventing it from being truncated.

Snapshot Isolation and the tempdb Version Store

The snapshot isolation level was introduced in SQL Server 2005 and eliminates
blocking and deadlocking by using row versioning in the tempdb database to maintain
concurrency, rather than establishing locks on database objects. As such, the goal of
snapshot isolation is increased performance through greater concurrency. Snapshot
isolation is a huge topic and we can do little more than provide a brief overview here.
Please see Microsoft Books Online or MSDN for further details on isolation levels,
concurrency, and locking models.

Each time a row is modified in a database running under snapshot isolation, a version
of the row from prior to the modification is stored within tempdb in a version store. In
other words, this version store is populated with versions of data rows as they existed
before the initialization of an explicit transaction. The version store is shared by all
databases that are running under snapshot isolation on the SQL Server instance.

Read transactions targeting the affected rows will use the row version(s) from the
tempdb, while the writing transaction will modify the actual table data. Update locks
are issued for writes, and when a read transaction encounters such a lock, it is diverted
to the version store.

This row-versioning mechanism ensures that write transactions do not block reads. It
is no longer necessary to take exclusive locks on data being modified, to prevent dirty
reads, because the reads are made against versions of the rows that were in a committed
state from prior to the transaction or statement initialization. It also means that
readers do not block writers, since read transactions will no longer take shared read locks.

149

Chapter 4: Transactions

Any DML queries will continue to block other DML queries as is necessary to maintain
data integrity.

SNAPSHOT and READ_COMMITTED_SNAPSHOT
modes

Snapshot isolation introduces two new modes of operation:

•	 SNAPSHOT mode isolates read transactions from modifications that committed after
the transaction began

•	 READ_COMMITTED_SNAPSHOT mode isolates read transactions from modifications
which committed after the current statement began.

SNAPSHOT mode is initiated at the database level using Listing 4.15.

ALTER DATABASE Test SET ALLOW_SNAPSHOT_ISOLATION ON;

Listing 4.15:	 Enabling snapshot isolation at the database level.

Note that this command only instructs the database to begin using a version store within
tempdb. It does not affect the behavior of any sessions running against the database.
Any session using the default READ COMMITTED level will continue to operate as normal,
unless to use the version store and take advantage of snapshot isolation, by issuing the
command in Listing 4.16, from within the session.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

Listing 4.16:	 Enabling SNAPSHOT isolation mode for a given session.

150

Chapter 4: Transactions

The requirement to set the SNAPSHOT isolation level on each session is unrealistic;
much of the code used to access a database is compiled and inaccessible to the Database
Administrator. If this was the only method for changing the default READ COMMITTED
isolation level behavior for SQL Server sessions, it would be nearly useless in a production
environment. Fortunately, we can alter the default READ COMMITTED behavior globally
for a given database, using the READ_COMMITTED_SNAPSHOT mode.

The READ_COMMITTED_SNAPSHOT mode is enabled at the database level using Listing
4.16. Be warned, though – you must have exclusive access to the database when setting
READ_COMMITTED_SNAPSHOT. Any active sessions against the database will block this
command from running.

ALTER DATABASE Test SET READ_COMMITTED_SNAPSHOT ON;

Listing 4.17:	 Enabling READ_COMMITTED_SNAPSHOT mode for a database.

Unlike SNAPSHOT mode, enabling READ_COMMITTED_SNAPSHOT affects the default
session behavior for all sessions against the database. At this point, any sessions that are
running under the default READ COMMITTED mode will actually be running under
READ_COMMITTED_SNAPSHOT. The transactions in these sessions will no longer take
shared read locks when reading data, and will instead use the version store to obtain a
consistent point-in-time view of that data at the time the current statement in the
transaction began.

Listing 4.18 will let you know which databases on your instance are running under
SNAPSHOT or READ_COMMITTED_SNAPSHOT isolation.

151

Chapter 4: Transactions

SELECT SD.[name] ,
 SD.snapshot_isolation_state_desc ,
 SD.is_read_committed_snapshot_on
FROM sys.databases SD
WHERE SD.snapshot_isolation_state_desc = 'ON'

Listing 4.18:	 Which databases are using snapshot isolation?

Sample output is shown in Figure 4.9.

Figure 4.9:	 Master and msdb databases always run under snapshot isolation.

Note that this query will return a minimum of two rows, since both master and msdb
run under SNAPSHOT isolation. Concurrency is extremely important in these two system
databases because so many crucial actions require rapid reads against them, in order
to keep SQL Server and SQL Server Agent running. For example, SQL Server accesses
the master database every time it needs to perform a restore, check rights and validate
a login's password, or maintain mirroring or log shipping. If it were forced to wait for
shared read locks to be released before proceeding, SQL Server would grind to a halt!

Investigating snapshot isolation

While the use of snapshot isolation can be beneficial in terms of improving the
concurrency, its use does, of course, lead to increased storage requirements, and higher
traffic in tempdb. It is important to be able to investigate the effects on tempdb and to

152

Chapter 4: Transactions

monitor the objects that are causing the most version-generating activity, and the impact
of snapshot isolation on the SQL instance as a whole.

The proactive DBA will wish to know which objects are producing the most records in the
version store within tempdb for databases running under snapshot isolation, as well as
version store space associated with online index rebuilds and possibly trigger usage.

SQL Server provides five DMVs for the investigation of snapshot activity on an instance,
three of which provide a point-in-time view of current snapshot activity, and two of
which provide cumulative data regarding use of the version store.

DMVs for current snapshot activity

The three DMVs that provide a snapshot of a specific point in time in the instance's
history are:

•	 sys.dm_tran_active_snapshot_database_transactions

•	 sys.dm_tran_currrent_snapshot

•	 sys.dm_tran_transactions_snapshot

In each case, in order to review the results of these DMVs, you must either be a member
of the sysadmins server role or have been granted VIEW SERVER STATE permission.

sys.dm_tran_active_snapshot_database_transactions

In Books Online this DMV is described as follows:

In a SQL Server instance, this dynamic management view returns a virtual table for all active transactions

that generate or potentially access row versions.

153

Chapter 4: Transactions

In other words, it returns records for all active transactions that either create or read row
versions from the version store in tempdb. It is an instance-level view, and so will return
rows for transactions using snapshot isolation for all databases on a given instance.

However, version store usage is not limited to just sessions running under snapshot
isolation, but also occurs as a result of triggers, online indexing, or the use of MARS
(Multiple Active Results Sets – see Books Online for details). Triggers were the first SQL
Server construct to make use of row versioning. DML triggers make use of temporary,
non-materialized tables that mimic the structure of the tables upon which they are based.
There is both an inserted and a deleted table. The inserted table stores versions of
the rows affected by an INSERT or UPDATE query; specifically, the new rows added to the
underlying (trigger) table. The deleted table stores a copy of the records deleted from
the underlying table via a DELETE statement. Both tables are hit in the case of an UPDATE
statement, as an UPDATE is nothing more than a DELETE followed by an INSERT. The
rows are first moved from the underlying table to the deleted "virtual table." Then the
new rows are added to the inserted "virtual table" after being added to the underlying
table. In the case of online indexing, available as a benefit of licensing Enterprise
Edition SQL Server 2005 and 2008, row versioning is used to maintain concurrency
during the online indexing process. All these transactions will be noted in a query
against sys.dm_tran_active_snapshot_database_transactions.

In terms of identifier columns, this DMV provides a transaction_id column,
which identifies the transaction at the instance level and can be used to join to other
transaction-related DMOs. It also provides a session_id column, which identifies the
session with which the transaction is associated and can be used to join to execution-
related DMOs, as well as to spid in sys.sysprocesses. Other relevant columns
include:

•	 transaction_sequence_num – for transactions that access or modify the version
store; this is a sequence number given to the transaction the first time it reads or
writes to the version store; Transaction Sequence Numbers (XSNs) increment serially
for each transaction

154

Chapter 4: Transactions

•	 commit_sequence_num – indicates the order that the transaction was committed;
will be NULL if the transaction is still active

•	 is_snapshot

•	 1 if this is a SNAPSHOT isolation level transaction

•	 0 if it is in here for a different reason, such as a READ_COMMITTED_SNAPSHOT
transaction.

•	 first_snapshot_sequence_num – the lowest active transaction_sequence_
num value of any of the transactions that were active when the current SNAPSHOT
transaction was started (any subsequent XSNs would need to be preserved for this
transaction's use; column displays 0 for non-SNAPSHOT transactions

•	 elapsed_time_seconds – elapsed time since this transaction acquired XSN.

sys.dm_tran_current_snapshot

This single-column DMV returns the transaction_sequence_num of all the
active transactions in the version store relevant to the current transaction at the time
the current SNAPSHOT transaction started. No results are returned if the current
transaction is not a SNAPSHOT transaction.

In and of itself, this DMV does not provide much information for the DBA. I find it per-
tinent only for running an IF EXISTS query to determine if there is valid row versioning
occurring when I am about to execute a query against a snapshot-enabled database.

sys.dm_tran_transactions_snapshot

The final non-aggregate DMV pertaining to snapshot isolation is sys.dm_tran_
transactions_snapshot. The results are a superset of those that are returned for
sys.dm_tran_current_snapshot. It returns the active snapshots for all sessions, not

155

Chapter 4: Transactions

just the current one. It returns the transaction_sequence_num, as described
previously, plus two others:

•	 snapshot_id – used for T-SQL transactions started in the READ COMMITTED
isolation level when the READ_COMMITTED_SNAPSHOT option is enabled for a
database; whereas SNAPSHOT isolation works at the transaction level, READ_
COMMITTED_SNAPSHOT works at the statement level, as will be demonstrated shortly

•	 snapshot_sequence_num – lists any transaction_sequence_num values
that were active when this transaction first started.

The results provide you with a chaining scheme within the version store and determine
what row versions (via transaction_sequence_num) are being used as the basis of
active transactions relying upon the version store.

So, for example, in Figure 4.10 we have two active snapshot transactions, 77 and 80. When
XSN 77 was started, there were two transactions active that were using the version store
and the results of which could affect what was returned by XSN 77; when XSN 80 started,
there were four.

Figure 4.10:	 Relating XSNs to the snapshot sequence numbers that were active

at the time the given XSN was created.

156

Chapter 4: Transactions

Current snapshot activity

To provide a quick demonstration of how snapshot isolation works, and how to track
current activity using the DMOs, let's create a small test database called DMV, containing
an inexact copy of the Production.Culture table from the AdventureWorks
database, with only three rows.

CREATE TABLE [dbo].[Culture]
 (
 [CultureID] [nchar](6) NOT NULL ,
 [Name] NVARCHAR(50) NOT NULL ,
 [ModifiedDate] [datetime] NOT NULL ,
 CONSTRAINT [PK_Culture_CultureID] PRIMARY KEY CLUSTERED
 ([CultureID] ASC)
 WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
)
ON [PRIMARY]
GO

Listing 4.19:	 Creating the sample table.

The first step is to enable snapshot isolation for the DMV database, as shown in
Listing 4.20.

-- Specify that snapshot isolation is enabled
-- does not affect the default behavior.
ALTER DATABASE DMV SET ALLOW_SNAPSHOT_ISOLATION ON ;
GO

-- READ_COMMITTED_SNAPSHOT becomes the default isolation level.
ALTER DATABASE DMV SET READ_COMMITTED_SNAPSHOT ON ;
GO

Listing 4.20:	Enabling snapshot isolation in the DMV database.

157

Chapter 4: Transactions

Open a tab in SSMS that queries the Culture table, starts a transaction that updates a
row in the table, and keeps the transaction open.

USE DMV ;
GO

SELECT CultureID ,
 Name
FROM dbo.Culture ;

BEGIN TRANSACTION
UPDATE dbo.[Culture]
SET [Name] = 'English-British'
WHERE [Name] = 'English' ;

-- COMMIT ;
-- ROLLBACK;

Listing 4.21:	 Tab 1, query then update the Culture table.

Open a second tab in SSMS and start a transaction that inserts one more row into the
table, and keep the transaction open.

USE DMV ;
GO

BEGIN TRANSACTION ;
INSERT INTO dbo.[Culture] ([CultureID], [Name], [ModifiedDate])
VALUES ('jp', 'Japanese', '2010-08-01') ;

-- COMMIT ;

Listing 4.22:	 Tab 2, an open transaction that inserts a row into the Culture table.

A transaction running with an isolation level such as REPEATABLE READ will be blocked
if some of the data it needs to read is locked. However, under SNAPSHOT isolation mode,

158

Chapter 4: Transactions

the transaction is not blocked; open a third tab and execute the query shown in
Listing 4.23. It will return from the version store the data as it existed at the time
the transaction began.

IF @@TRANCOUNT = 0
 BEGIN ;
 SET TRANSACTION ISOLATION LEVEL SNAPSHOT ;
 PRINT 'Beginning transaction' ;
 BEGIN TRANSACTION ;
 END ;
SELECT CultureID ,
 Name
FROM dbo.Culture ;

--commit;

Listing 4.23:	 Tab 3, a query using SNAPSHOT isolation.

The same query under READ_COMMITTED_SNAPSHOT also completes, and the output is
exactly the same. To see this, open a fourth tab and run the script shown in Listing 4.24.

IF @@TRANCOUNT = 0
 BEGIN ;
-- since we have already set READ_COMMITTED_SNAPSHOT to ON
-- this is READ_COMMITTED_SNAPSHOT
 SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
 PRINT 'Beginning transaction' ;
 BEGIN TRANSACTION ;
 END ;
SELECT CultureID ,
 Name

159

Chapter 4: Transactions

FROM dbo.Culture ;

-- COMMIT;

Listing 4.24:	 Tab 4, a query using READ_COMMITTED_SNAPSHOT isolation.

So far, the queries return exactly the same results under either SNAPSHOT or READ_
COMMITTED_SNAPSHOT mode. At this point, let's investigate current snapshot activity
using our DMOs. The first simple query we can run is simply to get a count of currently
active snapshots, from the sys.dm_tran_transactions_snapshot DMV, as shown
in Listing 4.25.

SELECT COUNT([transaction_sequence_num]) AS [snapshot transaction count]
FROM sys.dm_tran_transactions_snapshot ;

Listing 4.25:	 A count of currently active snapshot transactions.

This returns a snapshot transaction count of two, since our SNAPSHOT query in Listing
4.5 relies on the ultimate result of our two open transactions in Listings 4.21 (Tab 1) and
4.22 (Tab 2). Next, let's interrogate the active_snapshot_database_transactions
DMV, as shown in Listing 4.26.

SELECT DTASDT.transaction_id ,
 DTASDT.session_id ,
 DTASDT.transaction_sequence_num ,
 DTASDT.first_snapshot_sequence_num ,
 DTASDT.commit_sequence_num ,
 DTASDT.is_snapshot ,
 DTASDT.elapsed_time_seconds ,
 DEST.text AS [command text]
FROM sys.dm_tran_active_snapshot_database_transactions DTASDT
 INNER JOIN sys.dm_exec_connections DEC
 ON DTASDT.session_id = DEC.most_recent_session_id
 INNER JOIN sys.dm_tran_database_transactions DTDT
 ON DTASDT.transaction_id = DTDT.transaction_id

160

Chapter 4: Transactions

 CROSS APPLY sys.dm_exec_sql_text(DEC.most_recent_sql_handle) AS DEST
WHERE DTDT.database_id = DB_ID()

Listing 4.26:	 Interrogating the active_snapshot_database_transactions DMV.

Notice that we join on session_id to retrieve the text of the executing SQL for each
active transaction and that, in the WHERE clause, we limit the results to the current
database. The results should look as shown in Figure 4.11 (for space reasons I've omitted
the elapsed_time_seconds and the commit_sequence_number columns (the value
for the latter was NULL in each case).

Figure 4.11:	 Transactions that are using the version store.

We have four transactions assigned a transaction_sequence_number, since
we have four transactions using the version store. Only one of these, our query in Tab 3
(session_id = 55), is running in SNAPSHOT mode; the rest are using READ_
COMMITTED_SNAPSHOT. Notice that the SNAPSHOT session has a first_snapshot_
sequence_num of 183, referring to the first snapshot transaction (session_id = 52) on
which this session relies, the second one being session_id = 54.

We can complicate matters further by opening yet another new session and rerunning
our SNAPSHOT query from Listing 4.23. If we then get a new count of currently active
snapshots (rerun Listing 4.25) we'll see that the count has increased from 2 to 6.

161

Chapter 4: Transactions

In order to get a clearer picture of what's going on, we can run the query shown in Listing
4.27 to correlate the activity of the various transactions that are using the version store.

SELECT DTTS.[transaction_sequence_num] ,
 trx_current.[session_id] AS current_session_id ,
 DES_current.[login_name] AS [current session login] ,
 DEST_current.text AS [current session command] ,
 DTTS.[snapshot_sequence_num] ,
 trx_existing.[session_id] AS existing_session_id ,
 DES_existing.[login_name] AS [existing session login] ,
 DEST_existing.text AS [existing session command]
FROM sys.dm_tran_transactions_snapshot DTTS
 INNER JOIN sys.[dm_tran_active_snapshot_database_transactions]
 trx_current
 ON DTTS.[transaction_sequence_num] =
 trx_current.[transaction_sequence_num]
 INNER JOIN sys.[dm_exec_connections] DEC_current
 ON trx_current.[session_id] =
 DEC_current.[most_recent_session_id]
 INNER JOIN sys.[dm_exec_sessions] DES_current
 ON DEC_current.[most_recent_session_id] =
 DES_current.[session_id]
 INNER JOIN sys.[dm_tran_active_snapshot_database_transactions]
 trx_existing
 ON DTTS.[snapshot_sequence_num] =
 trx_existing.[transaction_sequence_num]
 INNER JOIN sys.[dm_exec_connections] DEC_existing
 ON trx_existing.[session_id] =
 DEC_existing.[most_recent_session_id]
 INNER JOIN sys.[dm_exec_sessions] DES_existing
 ON DEC_existing.[most_recent_session_id] =
 DES_existing.[session_id]
 CROSS APPLY sys.[dm_exec_sql_text]
 (DEC_current.[most_recent_sql_handle]) DEST_current
 CROSS APPLY sys.[dm_exec_sql_text]
 (DEC_existing.[most_recent_sql_handle]) DEST_existing
ORDER BY DTTS.[transaction_sequence_num] ,
 DTTS.[snapshot_sequence_num] ;

Listing 4.27:	 Correlating the activity of the various transactions that are using the version store.

162

Chapter 4: Transactions

By making parallel joins through the DMV stack to sys.dm_exec_connections, sys.
dm_exec_sessions, and sys.dm_exec_sql_text, for both the transaction_
sequence_number and snapshot_sequence_number obtained from the
sys.dm_tran_transactions_snapshot DMV, we're able to give some immediate
meaning to the sequence numbers provided. Six rows are returned in the results, as
shown in Figure 4.12. For space reasons I've omitted the two login columns from the
output, as well as the "current session command" which, in each case, returned the
text of our SNAPSHOT query from Listing 4.21.

Figure 4.12:	 Active transactions that may affect the results returned by a given XSN.

Notice that session 58 (our second SNAPSHOT query), assigned a XSN of 189, returns
4 rows, since the results that XSN 189 ultimately returns rely on the results of four
currently active transactions, with snapshot sequence numbers of 183, 184, 185, and 186.
If any of these transactions make modifications to the underlying data, transaction XSN
189 will rely upon the version store for its data, not the database directly. The other two
rows relate to the requirements of our original SNAPSHOT query.

163

Chapter 4: Transactions

In short, this script is very useful in allowing the DBA to identify transactions that will
rely upon the version store if other transactions, competing for the same resources/rows,
make modifications to those rows. High count of versions in the version store may point
to a row/resource that is in high demand, i.e. a lot of other transactions are also hitting
the same row/resource and the version store needs to spawn frequent versions of it to
maintain concurrency under snapshot isolation. You may find yourself needing to adjust
the size of your tempdb in order to accommodate this situation.

Finally, in order to observe the difference in behavior between the two SNAPSHOT
and READ_COMMITTED_SNAPSHOT queries, return to Tab 1 (Listing 4.19) and Tab 2
(Listing 4.20) and commit the modifications. Go to Tab 3 (Listing 4.21), which is running
in SNAPSHOT mode, highlight only the SELECT query and rerun it. Since the initial
transaction in this session started before the addition of the fourth row was committed,
only the three rows committed before the transaction began are returned.

Now go to Tab 4 (Listing 4.22), which is running in SNAPSHOT_READ_COMMITTED mode,
and rerun the query. Since the INSERT and UPDATE transactions were committed before
the statement was run, all four rows will be returned, as shown in Figure 4.13.

Figure 4.13:	 Demonstrating the difference in behavior between SNAPSHOT and

READ_COMMITTED_SNAPSHOT.

As a final clean up, commit or roll back all outstanding transactions.

164

Chapter 4: Transactions

Version store usage

SQL Server provides two DMVs that store data with regard to version store usage on a
given instance, as follows (definitions taken from Books Online).

•	 sys.dm_tran_version_store – returns a virtual table that displays all version
records in the version store. sys.dm_tran_version_store is inefficient to run
because it queries the entire version store, and the version store can be very large.
Each versioned record is stored as binary data together with some tracking or status
information. Similar to records in database tables, version store records are stored
in 8,192-byte pages. If a record exceeds 8,192 bytes, the record will be split across two
different records. Because the versioned record is stored as binary, there are
no problems with different collations from different databases. Use sys.dm_tran_
version_store to find the previous versions of the rows in binary representation as
they exist in the version store.

•	 sys.dm_tran_top_version_generators – returns a virtual table for the objects
that are producing the most versions in the version store. sys.dm_tran_top_
version_generators returns the top 256 aggregated record lengths that are
grouped by the database_id and rowset_id. sys.dm_tran_top_version_
generators retrieves data by querying the dm_tran_version_store virtual table.
sys.dm_tran_top_version_generators is an inefficient view to run because this
view queries the version store, and the version store can be very large. We recommend
that you use this function to find the largest consumers of the version store.

Both are aimed at allowing us to investigate the highest consumers of space within the
version store. Heed the warning in each case that, if the version store is large, queries
against these DMVs can be expensive, and may have performance implications (a classic
case of the "watcher" effect).

165

Chapter 4: Transactions

Using sys.dm_tran_version_store

The sys.dm_tran_version_store DMV provides details of the version records stored
in the version store in tempdb. This information is cumulative from the moment when
snapshot isolation was enabled, and remains until the last transaction relying upon the
row's versions is committed or rolled back.

The records returned indicate where queries that need the same data from the database
will go to fetch the previous version of the row, in cases where the row is being modified
under the snapshot isolation level. As is the case with the other DMVs we've reviewed,
the results of this DMV reflect the current point in time when the view was queried.
Books Online (http://msdn.microsoft.com/en-us/library/ms186328.aspx) has a
complete list of columns associated with this DMV. Only the columns used in this book
will be covered below.

•	 transaction_sequence_num – the sequence number for the transaction within the
version store.

•	 version_sequence_num – sequence of version records added to the version store
under the same transaction_sequence_num. The version_sequence_number
value will be unique for a given transaction_sequence_num value.

•	 database_id – the database that the version records come from. Surrogate key of the
database (relates to sys.databases).

•	 status – the versioned record inside the store may be stored across one or two pages.
The value of this column indicates whether the version spans more than one page.
0 indicates the version is stored on a single page; 1 signifies the version spans two
pages. I must say this is one of those unfortunate metrics that is misleading beyond
belief: 0 equals one page. 1 equals two pages.

•	 record_length_first_part_in_bytes – length of the first part of the
version record.

•	 record_image_first_part – first varbinary(8000) part of the versioned row.

166

Chapter 4: Transactions

•	 record_length_second_part_in_bytes – length of the second part of the
version record.

•	 record_image_second_part – second varbinary(8000) part of the
versioned row.

Listing 4.28 returns raw data from this view regarding the current state of our
version store.

SELECT DB_NAME(DTVS.database_id) AS [Database Name] ,
 DTVS.[transaction_sequence_num] ,
 DTVS.[version_sequence_num] ,
 CASE DTVS.[status]
 WHEN 0 THEN '1'
 WHEN 1 THEN '2'
 END AS [pages] ,
 DTVS.[record_length_first_part_in_bytes]
 + DTVS.[record_length_second_part_in_bytes] AS [record length (bytes)]
FROM sys.dm_tran_version_store DTVS
ORDER BY DB_NAME(DTVS.database_id) ,
 DTVS.transaction_sequence_num ,
 DTVS.version_sequence_num

Listing 4.28:	 Returning raw data from sys.dm_tran_version_store.

Sample results are shown in Figure 4.14.

Figure 4.14:	 Version store usage for the AdventureWorks database.

167

Chapter 4: Transactions

In Listing 4.29, we identify overall storage requirements inside the version store, by
database, by aggregating on the database_id.

SELECT DB_NAME(DTVS.[database_id]) ,
 SUM(DTVS.[record_length_first_part_in_bytes]
 + DTVS.[record_length_second_part_in_bytes]) AS [total store bytes
consumed]
FROM sys.dm_tran_version_store DTVS
GROUP BY DB_NAME(DTVS.[database_id]) ;

Listing 4.29:	 Storage requirements for the version store in the AdventureWorks database.

Sample results are shown in Figure 4.15.

Figure 4.15:	 Total storage space used in the version store, by AdventureWorks.

Currently, we're only using 228 bytes within tempdb for the version store, because this is
a test system with only a few sample transactions running. When I ran this query against
one of my production servers that is using snapshot isolation, I saw figures closer to 200
MB. This figure must be taken into consideration when you size tempdb for a given
instance. Obviously that figure is not too alarming in this day and age of cheap storage,
but when you start dealing with version stores in the 10s and 100s of GB it will at least
begin to register on the DBA's radar – or so I would hope!

However, a more informative breakdown of version store usage, in terms of the highest-
consuming version store record within tempdb, is given in Listing 4.28.

168

Chapter 4: Transactions

WITH version_store ([rowset_id], [bytes consumed])
 AS (SELECT TOP 1
 [rowset_id] ,
 SUM([record_length_first_part_in_bytes]
 + [record_length_second_part_in_bytes])
 AS [bytes consumed]
 FROM sys.dm_tran_version_store
 GROUP BY [rowset_id]
 ORDER BY SUM([record_length_first_part_in_bytes]
 + [record_length_second_part_in_bytes])
)
 SELECT VS.[rowset_id] ,
 VS.[bytes consumed] ,
 DB_NAME(DTVS.[database_id]) AS [database name] ,
 DTASDT.[session_id] AS session_id ,
 DES.[login_name] AS [session login] ,
 DEST.text AS [session command]
 FROM version_store VS
 INNER JOIN sys.[dm_tran_version_store] DTVS
 ON VS.rowset_id = DTVS.[rowset_id]
 INNER JOIN sys.[dm_tran_active_snapshot_database_transactions]
 DTASDT
 ON DTVS.[transaction_sequence_num] =
 DTASDT.[transaction_sequence_num]
 INNER JOIN sys.dm_exec_connections DEC
 ON DTASDT.[session_id] = DEC.[most_recent_session_id]
 INNER JOIN sys.[dm_exec_sessions] DES
 ON DEC.[most_recent_session_id] = DES.[session_id]
 CROSS APPLY sys.[dm_exec_sql_text](DEC.[most_recent_sql_handle])
 DEST ;

Listing 4.30:	 Finding the highest-consuming version store record within tempdb.

Sample results are shown in Figure 4.16.

Figure 4.16:	 The top generator of version store records.

169

Chapter 4: Transactions

sys.dm_tran_top_version_generators

The sys.dm_tran_top_version_generators DMV simply returns aggregated
records from the sys.dm_tran_version_store DMV. If you examine the graphical
execution plan, shown in Figure 4.17, for the call to sys.dm_tran_top_version_
generators, you can see that it is making a call to sys.dm_tran_version_store
and then performing the aggregation processes within the query engine.

Figure 4.17:	 Execution plan for a query against the sys.dm_tran_top_version_generators DMV.

This DMV groups results from sys.dm_tran_version_store on the database_id
and rowset_id columns. Notable columns for this view include:

•	 database_id – the database of the item in the version store

•	 rowset_id – the identifier of the rowset in the version store

•	 aggregated_record_length_in_bytes – total length of all rows for the rowset.

Listing 4.31 returns raw data from this DMV.

SELECT DB_NAME(DTTVG.[database_id]) ,
 DTTVG.[rowset_id] ,
 DTTVG.[aggregated_record_length_in_bytes]
FROM sys.[dm_tran_top_version_generators] DTTVG
ORDER BY DTTVG.[aggregated_record_length_in_bytes] DESC ;

Listing 4.31:	 Returning raw data from sys.dm_tran_top_version_generators.

170

Chapter 4: Transactions

Sample results are shown in Figure 4.18.

Figure 4.18:	 Results from sys.dm_tran_top_version_generators.

Whereas the raw query results against this DMV will provide you with the space
consumed within the version store, they do little else to flesh out the statement or object
that is associated with the value. Sure, they provide you with a rowset_id, the unique
identifier for the record in the version store. Unfortunately, the only other Dynamic
Management Object that provides that information is sys.dm_tran_version_store,
which is what is used "under the covers" to provide this information within this DMV.
In my not-so-humble opinion, this renders the entire DMV useless (in its current
instantiation). Perhaps in future revisions of SQL Server this DMV may be fleshed out
better by the development team to hold some practical value for the DBA. Until then, I
recommend aggregating sys.dm_tran_version_store directly and augmenting it
with the descriptive columns that fit your individual needs, as demonstrated previously
in Listing 4.30.

Summary

The sys.dm_tran-prefixed Dynamic Management Objects have a broad scope in
SQL Server. They not only span the range of DMOs associated with activity at the
transactional level of the query engine, but also expose locking and blocking between
user sessions, as well as exposing the effects and existence of snapshot isolation in
your SQL Server database and the instance in general.

171

Chapter 4: Transactions

Via queries against sys.dm_tran_locks, joining to various sys.dm_exec-prefixed
DMOs as well as sys.dm_os_waiting_tasks, we were able to diagnose locking and
blocking occurring within our SQL databases.

Using sys.dm_tran_session_transactions we were able to correlate session-
based results from sys.dm_exec_connections, sys.dm_exec_sessions, and sys.
dm_exec_requests with data from the sys.dm_tran-prefixed DMOs. Using sys.
dm_tran_active_transactions and sys.dm_tran_database_transactions,
we collected metrics on the duration and status of our users' transactions, and observed
the physical effects of those transactions on the database transaction log files on disk.

Finally, we covered the DMVs associated with the new snapshot isolation level, which
makes use of a version store in tempdb rather than obtaining locks. We examined scripts
that allowed us to monitor the overhead in tempdb associated with the implementation
of snapshot isolation on our SQL Server instances.

172

Chapter 5: Indexing Strategy and
Maintenance

Well-designed SQL code, as discussed in Chapter 3, will "touch" the data in the base tables
as few times as possible, will return only the set data that is strictly needed to satisfy
the request, and will then use efficient, set-based logic to manipulate this data into the
required result set. However, regardless of how intelligently you design your SQL, you
will still read more data than is necessary, and perform poorly, unless you also make
intelligent use of indexes. Even if you diligently return only the required 20 rows, from 3
columns, in a 100,000 row table, if there is no suitable non-clustered index from which
the query engine can retrieve all of the required data, then it may end up scanning most
of those 100,000 rows in the table (or clustered index) just to retrieve the 20 you need.

Defining an effective indexing strategy is the only way to ensure that the most significant
and frequent queries in your workload are able to read only the required data, and in a
logical, ordered fashion, thus returning that data quickly and efficiently, with minimal
I/O. Generally speaking, the ultimate goal of your indexing strategy is to "cover" as many
of your significant queries as possible, with as few narrow indexes as possible.

Finding the correct balance between too many and too few indexes, and having the
"proper" set of indexes in place, is extremely important for any DBA who wants to get
the best performance from SQL Server. However, it is a delicate art and one that requires
sound knowledge of your database design, how the data within the tables is distributed,
and how that data is typically queried.

It is for these reasons that the indexing-related set of DMOs is probably the most
widely used of any category. The indexing DMOs, all of which have names starting with
sys.dm_db_, can help the DBA answer such questions as the following (some of the
relevant DMOs are indicated in brackets).

173

Chapter 5: Indexing Strategy and Maintenance

•	 Are there any indexes that are no longer in use, or have never been used?
(index_usage_stats)

•	 For indexes that are in use, what is the usage pattern? (index_operational_stats)

•	 Which indexes are missing? (missing_index_details,
missing_index_group_stats)

In this chapter we'll describe, by example, how to answer these questions using the
DMOs. We'll also consider the burning question of index maintenance. As data is
added, removed and modified, so the ordering of data in the index is disturbed, gaps
appear, and so on. This process is known as fragmentation, and it greatly reduces the
efficiency with which the index can be read, thus negating its intended benefit. We'll
discuss how to use the sys.dm_db_index_physical_stats DMF to investigate the
degree of fragmentation in your indexes. Many SQL Server Professionals "roll their own"
dynamic index maintenance scripts, based on the DMOs covered in this chapter.

Before we get start on all this, though, we need to briefly review some of the indexing
system catalog views that we'll need alongside our DMOs, to pull together all of the
required diagnostic data.

The Indexing System Catalog Views

Occasionally, we will need to retrieve details of the indexes and objects that we are
investigating, such as an index name or the data type of a column in the index, which are
simply not available from the DMOs. On these occasions, we'll need to join to the system
catalog views to retrieve this data.

The main indexing catalog view that we'll use in this chapter is sys.indexes, which
provides metadata at the index level, such as index identifiers (e.g. index name) and
configuration settings (e.g. fill factor). Consider, for example, the query shown in Listing

174

Chapter 5: Indexing Strategy and Maintenance

5.1, which returns some statistics from the dm_db_index_usage_stats DMV, and
joins to sys.indexes to get the index names.

SELECT DB_NAME(ddius.[database_id]) AS database_name ,
 OBJECT_NAME(ddius.[object_id], DB_ID('AdventureWorks'))
 AS [object_name] ,
 asi.[name] AS index_name ,
 ddius.user_seeks + ddius.user_scans + ddius.user_lookups AS user_reads
FROM sys.dm_db_index_usage_stats ddius
 INNER JOIN AdventureWorks.sys.indexes asi
 ON ddius.[object_id] = asi.[object_id]
 AND ddius.index_id = asi.index_id ;

Listing 5.1:	 Querying index use in the AdventureWorks database.

The results are shown in Figure 5.1.

Figure 5.1:	 Results for indexes in the AdventureWorks database.

Firstly, you may notice the use of the OBJECT_NAME function to return the table/view
that owns the indexes retrieved from sys.dm_db_index_usage_stats. Note that
database_id is not an identified column in these system catalog views. This is because
these views reside in each database on the SQL Server instance, not within one of the
system databases (globally) across the instance. Therefore, we'll make use of a little-
known feature of the OBJECT_NAME function which, in SQL 2005 and later editions,
accepts the database_id in the second parameter slot. In Listing 5.1, we could have
simply used:

OBJECT_NAME(ddius.[object_id], ddius.[database_id]) AS [object_name]

175

Chapter 5: Indexing Strategy and Maintenance

However, I wanted to show that we can pass the value of database_id even if we do not
know it, by embedding the DB_ID function.

When we make joins from the DMOs at the instance level to the system catalog views
that reside in each database, in order to extract index details, we need to ensure that
we uniquely identify the index in question at the instance level. In fact, this isn't
possible directly. In Listing 5.1, we join on the combination of object_id and index_
id, which guarantees uniqueness at the database level (index_id alone is only unique
at the table level).

However, not even the combination of object_id and index_id can guarantee
uniqueness at the instance level, as Listing 5.2 demonstrates.

SELECT DB_NAME(ddius.[database_id]) AS [database_name] ,
 ddius.[database_id] ,
 ddius.[object_id] ,
 ddius.[index_id]
FROM sys.[dm_db_index_usage_stats] ddius
 INNER JOIN AdventureWorks.sys.[indexes] asi
 ON ddius.[object_id] = asi.[object_id]
 AND ddius.[index_id] = asi.[index_id]

Listing 5.2:	 The combination of object_id and index_id cannot guarantee uniqueness

at the instance level.

The first few rows of the resultset are shown in Figure 5.2, and it's clear that, for
example, the key of object_id = 4 and index_id = 1 exists in both the master
and the AdventureWorks databases.

176

Chapter 5: Indexing Strategy and Maintenance

Figure 5.2:	 Both the master and AdventureWorks databases have an object identified by

object_id = 4 and index_id = 1.

This is why we had to filter the results by database in the WHERE clause in Listing 5.1. That
allows us to run this query under the context of any database and still receive the same
results. Alternatively, we could have used WHERE ddius.[database_id] = DB_ID().
However, we would then have had to run the query under the context of the Northwind
database in order to return the same results.

Occasionally, we may need to join to other indexing catalog views, such as sys.columns,
to find out details about specific columns in the index, such as their length, data type, and
so on. When we do so, we need to join via the intermediate view, sys.index_columns,
as shown in Figure 5.3.

177

Chapter 5: Indexing Strategy and Maintenance

Figure 5.3:	 The sys.index_columns view resolves the many-to-many relationship between

sys.indexes and sys.columns.

The many available columns, shown in Figure 5.3, are well documented and won't be
covered further here. Other system views, not explicitly index related, which we'll need to
join to throughout this chapter are:

•	 sys.objects – system catalog view for all objects in a database; we will frequently
rely on joins to this view to pull in information associated with an object_id
obtained from the DMOs

•	 sys.partitions – system catalog view that provides information about the
partitions in tables and views (when partitioning is utilized in a database)

•	 sys.sysuser – system catalog view for information associated with users in a
database; we will rely on joins to this view to provide more descriptive information
regarding a user_id.

178

Chapter 5: Indexing Strategy and Maintenance

Using the Indexing DMOs

Amongst many other things, the query optimizer in Microsoft SQL Server caches
metadata pertaining to the use of existing indexes. This information is deleted when the
SQL Server service is restarted, so we recommend you store it in a persisted table in
order to maintain a rich, deep set of data for performance tuning. Otherwise, the queries
we are going to create in the remainder of the chapter will force you to make decisions
on the long-term structure of your instance using data that may be only days or hours
old; we would never advocate making such decisions with such weak data. We will
proceed on the basis that you have sufficient days of data available when running these
queries and making the decisions that you intend to, once these queries are returning
data for your attention.

Index Strategy

Indexes do indeed increase efficiency and performance in query resolution, but the
wrong index can be just as bad as the right index is good. If an index is not used, it still
incurs the overhead on any write operation: entries are written to it as necessary when
records are inserted into the underlying table or view; entries are modified or deleted
when the underlying, persisted records are altered or deleted. This activity results in
fragmentation that, over time, must be reactively corrected by index rebuilds or
reorganizations. All these actions consume vital system resources that detract from the
user transactions occurring simultaneously when these events are encountered. That's
why it is important to walk the thin line that lies between too few indexes and too many.
At the same time, you also need to factor into the mix that the indexes you do create are
the right ones for the encountered load.

179

Chapter 5: Indexing Strategy and Maintenance

Unfortunately, every DBA has been in many situations where indexing is either
entirely absent or entirely chaotic. Personally, I've come across the following on
many occasions:

•	 every column is indexed individually

•	 the same column participates in three or more composite keys, and is also
indexed individually

•	 no primary key is defined, but just about all columns have non-clustered indexes
defined on them.

In short, it's one heap of a mess. However, I have to confess that the manner in which
some DBAs have traditionally gone about sorting out such issues is often equally chaotic,
and ruled more by "gut feel" than science. For example, when discovering a situation as
just described, how many DBAs out there have proceeded as follows?

•	 Placed a clustered index on the primary key for the table and moved on without
much thought.

•	 Simply removed all the extra indexes your gut told you were unnecessary.

•	 Confronted the developer:
<DBA> "You placed indexes on every column in the table. Can you tell me why you
designed the table in this fashion?"
<Developer> "Indexes make the queries run faster. The more indexes, the better. I'm
thinking about placing two indexes on each column if that is OK with you!"

In SQL Server 2005, via the indexing DMOs covered in this section, we DBAs fortunately
now have proper insight into the indexes that are used and those that are being ignored.
This removes the "gut feel" factor from the process of cleaning up incorrect, unused, and
downright ignorant indexes.

However, before we start examining the scripts that we can use to uncover this
information, it's worth stating up front that blindly following the advice offered by

180

Chapter 5: Indexing Strategy and Maintenance

these DMOs is not the right way to go, either. As noted earlier, defining an effective
indexing strategy is a delicate art and one that requires sound knowledge of your
database design, how the data within the tables is distributed, and how that data is
typically queried. It is beyond the scope of this book to provide a full tutorial on how
to determine an effective set of indexes, but having covered some of the things we don't
like to see, it's worth taking just a brief look at some of the things we do like.

Clustered indexes and PKs

More or less every table in SQL Server should have a clustered index to allow efficient
searching of the data in that table. You can either cluster on a key that naturally reflects
the way the data will be queried, or you can cluster on a narrow, ever-increasing integer
key (to minimize subsequent fragmentation) and use non-clustered indexes for query
efficiency. Most of the advice out there points to the latter approach but, regardless, most
tables should have a clustered index and every table should have primary key (which may
or may not be the clustered index).

Covering indexes

A covering index is one that contains all of the columns and data required by a query.
This means that any columns used in join or search conditions are included in the
index, along with any columns that are simply selected. The latter should be included
as INCLUDE columns rather than as part of the actual index. If an index covers a query,
it means the data can be returned entirely from the index, without the need to perform
a dreaded table scan, or "key lookup," to get any non-covered data from the clustered
index. This results in fewer reads, and is usually the quickest, most efficient way to
return the data. The "usually" qualification is there because, even if an index exists
that you think a query should be using, there is no guarantee that the optimizer will
choose to use it.

181

Chapter 5: Indexing Strategy and Maintenance

High selectivity

If you've chosen a low selectivity column for the index key (i.e. where each key value
matches many rows), then the optimizer may decide to simply perform a table scan to
return a piece of data. Table scans have a bad reputation, but this is because they often
mean reading a huge number of rows; in small tables, scanning all the rows is sometimes
quicker than reading the data from the leaf levels of an index.

You're looking for selective columns to form your index key and, certainly, the leading
(first) column should be selective. However, this does not mean each index should
start with the PK column; it must be a column that is likely to get searched on.
A good discussion of index selectivity and column ordering can be found at http://
sqlserverpedia.com/wiki/Index_Selectivity_and_Column_Order.

Neither too many nor too few

The drive to cover queries does not mean you should simply create an index for
every query in your workload. If a table contains many rows and is subject to frequent
modifications, the presence of numerous indexes will significantly slow down these modi-
fications, as the data must be maintained in both the index and the underlying table.

Examine the workload characteristics for a given table as this will affect how many
indexes you might want to have per table. If a table is pretty static, you can manage with
more indexes, but on tables subject to frequent updates, you'll want as few as you can get
away with.

Narrow indexes (within reason)

Neither does the drive to cover queries mean that you should create huge, 16-column
indexes in an attempt to "cover everything at once;" if your index key values are wide,

182

Chapter 5: Indexing Strategy and Maintenance

you'll fit few on a page, your index will take up a lot of space, and scanning it will be
inefficient. Searching on narrow index keys is much quicker.

Again, though, it is a balancing act; having a huge number of single column indexes is a
bad idea, too. Your goal is to make your indexes as narrow as possible while being usable
by as many queries as possible. For example, if users search on employees' last names, an
index on the LastName column is probably a good idea. If users also sometimes qualify
the search with first names, then create a single index on (LastName, Firstname) as this
will satisfy both queries.

Investigating index usage (index_usage_stats)

In this section, we'll use the DMV sys.dm_db_index_usage_stats, along with
various system catalog views, as described earlier, to obtain statistics on how our
indexes have been used to resolve queries. This DMV provides, in particular, the
following columns for each index:

•	 database_id – ID of the database

•	 object_id – identifies the table or view to which the index belongs, unique only at
the database level

•	 index_id – index ID, unique only to the scope of the object_id; an index_id of
0 signifies a heap (no clustered index on the table); an index_id value of 1 is always
associated with the clustered index on the table, whereas index_id values greater
than 1 are reserved for non-clustered indexes

•	 user_seeks – the number of times the index has been used in a seek operation (to
find a specific row)

•	 user_scans – number of times the index has been used by scanning the leaf pages of
the index for data

183

Chapter 5: Indexing Strategy and Maintenance

•	 user_lookups – for clustered indexes only, this is the number of times the index has
been used in a "bookmark lookup" to fetch the full row; this is because non-clustered
indexes use the clustered indexes key as the pointer to the base row

•	 user_updates – number of times the index has been modified due to a change in the
table's data.

For each of the user actions (user_* columns), there is also a corresponding last_
user_* column (e.g. last_user_seek), which records the date and time the action last
occurred. Also, there is a system_* and last_system_* equivalent for each of these
columns, providing statistics regarding use of the index by a system operation.

Data in this DMV is cumulative, and is refreshed when the server is restarted or when the
index is dropped and recreated. Statistics live on when an index is rebuilt or reorganized,
and even when it is disabled and rebuilt. Queries against this DMV return all indexes
(including heaps and the clustered index) that have been read or written to at least once.
If an index exists but has never been used since creation, or since the statistics were
refreshed, then there will be no entry for this index row in sys.dm_db_index_usage_
stats. It's an instance-wide DMV and so will return indexes for every database on the
instance, but you will almost always want to limit it per database, using the database_
id to retrieve the index names for that database, via sys.indexes (as shown in Listing
5.1). Note also that the DMV does not distinguish between partitions, so if an index is
physically manifested in two or more partitions, the DMV only returns a single record.

Listing 5.3 provides a listing of indexes for the database that have been used at least once
during a query execution, with those indexes that have been scanned the most listed first.
A high number of scans may indicate a need to update your statistics for a given table or
index. Equally, however, a high number of scans will result if the query optimizer decides
that the table is small enough that it is quicker to scan the index rather than perform a
seek operation. Hence, the output of this query should not be considered in isolation, but
rather in conjunction with data regarding the selectivity and the size of the index (which
can be returned via a query against sys.dm_db_index_physical_stats, covered later
in the chapter).

184

Chapter 5: Indexing Strategy and Maintenance

SELECT OBJECT_NAME(ddius.[object_id], ddius.database_id) AS [object_name] ,
 ddius.index_id ,
 ddius.user_seeks ,
 ddius.user_scans ,
 ddius.user_lookups ,
 ddius.user_seeks + ddius.user_scans + ddius.user_lookups
 AS user_reads ,
 ddius.user_updates AS user_writes ,
 ddius.last_user_scan ,
 ddius.last_user_update
FROM sys.dm_db_index_usage_stats ddius
WHERE ddius.database_id > 4 -- filter out system tables
 AND OBJECTPROPERTY(ddius.object_id, 'IsUserTable') = 1
 AND ddius.index_id > 0 -- filter out heaps
ORDER BY ddius.user_scans DESC

Listing 5.3:	 Usage stats for indexes that have been used to resolve a query.

You will see that, in this query and all the ones that follow, we use the following formula
to calculate the total number of times that the index is used by the optimizer to resolve a
user query:

[user_seeks] + [user_scans] + [user_lookups] = [user reads]

The user_updates column on its own provides the total number of times the index has
been updated as a result of data modifications (writes). From a performance tuning
perspective, this DMV is invaluable as it shows exactly how the indexes are being used
and, critically, it tells us something that no previous version of SQL Server did: which
indexes are not being used or, more pertinently, not being used but being frequently

185

Chapter 5: Indexing Strategy and Maintenance

updated. A similar calculation can be used to get the total system reads of an index.
However, we'll ignore any system activity from this point forward as it is almost always
negligible in comparison to user-driven activity.

Over the coming sections, we'll present scripts to:

•	 find indexes on your system that have never been read or written

•	 find indexes that have never been read but are being maintained (i.e. updated in
response to modification of the underlying table data)

•	 get detailed read/write stats on all indexes, looking for those where the maintenance
burden may outweigh their usefulness in boosting query performance.

These indexes are candidates for removal, after thorough investigation. You should
never blindly drop indexes, and you must be certain that an index really isn't used (e.g. by
infrequent, yet critical, monthly or quarterly reporting queries) before dropping it.

Identify indexes that have never been accessed

Listing 5.4 uses sys.indexes and sys.objects to find tables and indexes in the current
database that do not show up in sys.dm_db_index_usage_stats. This means that
these indexes have had no reads or writes since SQL Server was last started, or since the
current database was closed or detached, whichever is shorter.

-- List unused indexes
SELECT OBJECT_NAME(i.[object_id]) AS [Table Name] ,
 i.name
FROM sys.indexes AS i
 INNER JOIN sys.objects AS o ON i.[object_id] = o.[object_id]
WHERE i.index_id NOT IN (SELECT ddius.index_id
 FROM sys.dm_db_index_usage_stats AS ddius
 WHERE ddius.[object_id] = i.[object_id]
 AND i.index_id = ddius.index_id

186

Chapter 5: Indexing Strategy and Maintenance

 AND database_id = DB_ID())
 AND o.[type] = 'U'
ORDER BY OBJECT_NAME(i.[object_id]) ASC ;

Listing 5.4:	 Finding unused indexes.

If SQL Server has been running long enough for you to have a complete, representative
workload, there is a good chance that those indexes (and perhaps tables) are "dead,"
meaning they are no longer used by your database and can potentially be dropped,
after some further investigation.

Identify indexes that are being maintained but not used

Listing 5.5 identifies clustered and non-clustered indexes that are consuming resources,
in terms of writes and maintenance, but are never being selected for use by the optimizer,
so have never been read, at least since the last time the cache was cleared of accumulated
usage data. It uses a fully-qualified naming convention and is identified as "statement,"
in order to conform to the output that you will see when querying the missing indexes
DMOs. We identify the name of the index via a join to the sys.indexes system catalog
view, on the object_id and index_id columns, and we join to the sys.partitions
system view on the same columns in order to return the total_rows metric (the total
number of rows in the index).

SELECT '[' + DB_NAME() + '].[' + su.[name] + '].[' + o.[name] + ']'
 AS [statement] ,
 i.[name] AS [index_name] ,
 ddius.[user_seeks] + ddius.[user_scans] + ddius.[user_lookups]
 AS [user_reads] ,
 ddius.[user_updates] AS [user_writes] ,
 SUM(SP.rows) AS [total_rows]
FROM sys.dm_db_index_usage_stats ddius
 INNER JOIN sys.indexes i ON ddius.[object_id] = i.[object_id]
 AND i.[index_id] = ddius.[index_id]
 INNER JOIN sys.partitions SP ON ddius.[object_id] = SP.[object_id]
 AND SP.[index_id] = ddius.[index_id]

187

Chapter 5: Indexing Strategy and Maintenance

 INNER JOIN sys.objects o ON ddius.[object_id] = o.[object_id]
 INNER JOIN sys.sysusers su ON o.[schema_id] = su.[UID]
WHERE ddius.[database_id] = DB_ID() -- current database only
 AND OBJECTPROPERTY(ddius.[object_id], 'IsUserTable') = 1
 AND ddius.[index_id] > 0
GROUP BY su.[name] ,
 o.[name] ,
 i.[name] ,
 ddius.[user_seeks] + ddius.[user_scans] + ddius.[user_lookups] ,
 ddius.[user_updates]
HAVING ddius.[user_seeks] + ddius.[user_scans] + ddius.[user_lookups] = 0
ORDER BY ddius.[user_updates] DESC ,
 su.[name] ,
 o.[name] ,
 i.[name]

Listing 5.5:	 Querying sys.dm_db_index_usage_stats for indexes that are being

maintained but not used.

188

Chapter 5: Indexing Strategy and Maintenance

I ran this query recently in my production environment against a database supplied and
administered by a third party; I knew I would see some scary things, but I was amazed
when it returned over 120 indexes that had not been read. It is possible, at the same time
as listing these high-write/zero-read indexes, to generate the commands to drop them,
simply by inserting the following at the end of the SELECT clause:

 'DROP INDEX [' + i.[name] + '] ON [' + su.[name] + '].[' + o.[name]
 + '] WITH (ONLINE = OFF)' AS [drop_command]

Having verified the need to drop an index from the database, simply copy the DROP
INDEX command text from the result set into a new query window and execute it. As
always, we advocate testing such processes in your development environment first, before
running against a production database. Furthermore, it is recommended you take a
backup of the database before running such a command.

As noted earlier, I would not like to encourage readers to go around wildly dropping
large numbers of indexes without proper investigation. For a start, it is always advisable
to check how recently the usage stats were cleared, by querying sys.sysdatabases, as
shown in Listing 5.6.

SELECT DATEDIFF(DAY, sd.crdate, GETDATE()) AS days_history
FROM sys.sysdatabases sd
WHERE sd.[name] = 'tempdb' ;

Listing 5.6:	 How old are the index usage stats?

Also, an index may not have been used recently simply because its functionality is cyclical
in nature (perhaps only used in a month-end process), or simply because it is a recently-
implemented index. Once again, it is important not to drop or create indexes, without
first performing adequate testing in a non-production environment.

189

Chapter 5: Indexing Strategy and Maintenance

Identify inefficient indexes

Our final sys.dm_db_index_usage_stats query filters by the current database,
and only includes non-clustered indexes. It can help you decide whether the cost of
maintaining a particular index outweighs the benefit you are receiving from having
it in place.

-- Potentially inefficient non-clustered indexes (writes > reads)
SELECT OBJECT_NAME(ddius.[object_id]) AS [Table Name] ,
 i.name AS [Index Name] ,
 i.index_id ,
 user_updates AS [Total Writes] ,
 user_seeks + user_scans + user_lookups AS [Total Reads] ,
 user_updates - (user_seeks + user_scans + user_lookups)
 AS [Difference]
FROM sys.dm_db_index_usage_stats AS ddius WITH (NOLOCK)
 INNER JOIN sys.indexes AS i WITH (NOLOCK)
 ON ddius.[object_id] = i.[object_id]
 AND i.index_id = ddius.index_id
WHERE OBJECTPROPERTY(ddius.[object_id], 'IsUserTable') = 1
 AND ddius.database_id = DB_ID()
 AND user_updates > (user_seeks + user_scans + user_lookups)
 AND i.index_id > 1
ORDER BY [Difference] DESC ,
 [Total Writes] DESC ,
 [Total Reads] ASC ;

Listing 5.7:	 Finding rarely-used indexes.

Make sure that the SQL Server instance has been running long enough to ensure that
the complete, typical workload will be represented in the reported statistics. Again, don't
forget about periodic, reporting workloads that might not show up in the day-to-day
workload. Even though the indexes that facilitate such workloads will be infrequently
used, their presence will be critical.

190

Chapter 5: Indexing Strategy and Maintenance

Determine usage patterns of current indexes
(index_operational_stats)

The sys.dm_db_index_operational_stats is a DMF; it accepts database_id,
object_id, index_id, and partition_number as parameters, in order to identify
the object (heap, clustered or non-clustered index) in question, and returns detailed
"operational stats" for each partition of that object. It provides index usage statistics
at a more detailed level than those provided by the sys.dm_db_index_usage_stats
DMV, as well as evidence of potential lock or latch contention on the objects, or of
excessive I/O being issued by the object. All the parameters can be NULL or DEFAULT
if you want to return all rows, in which case the DMF will return a row for every
partition in every database.

Data in this DMV is cumulative, and is refreshed when the server is restarted or when the
index is dropped and recreated. Statistics live on when an index is rebuilt or reorganized,
and even when it is disabled and rebuilt.

Whereas an index will always appear in the index_usage_stats DMV as long as it
has been used, the data returned by the index_operational_stats DMF is slightly
more "transient" in nature. As detailed in Books Online, at http://msdn.microsoft.com/
en-us/library/ms174281.aspx:

The data returned by sys.dm_db_index_operational_stats exists only as long as the metadata

cache object that represents the heap or index is available…an active heap or index will likely always have its

metadata in the cache, and the cumulative counts may reflect activity since the instance of SQL Server was

last started. The metadata for a less active heap or index will move in and out of the cache as it is used. As a

result, it may or may not have values available…

Since the "grain" of the function is the partition level, a table that is partitioned into five
parts will have five rows in this DMF, whereas sys.dm_db_index_usage_stats will
see the object as only a single row. Use usage stats if you want counts of each usage, as

191

Chapter 5: Indexing Strategy and Maintenance

each usage in counted once. The operational stats object may have multiple values set
for each type of activity recorded. Finally, note that we cannot use APPLY operators with
this DMF.

Whereas the usage stats give a feel for how an index is used by the optimizer to satisfy the
needs of certain queries, the operational stats offer more detailed information about how
the index is used at a physical level, via columns such as leaf_insert_count, leaf_
update_count and leaf_delete_count (the cumulative number of leaf-level inserts,
updates and deletes), as well as the nonleaf_* equivalents, for modifications above the
leaf level.

For diagnosis of resource contention on the object, the following columns are
particularly useful:

•	 row_lock_count – number of row locks that have been requested against this index

•	 row_lock_wait_count – number of times a session has waited on a row lock
against this index

•	 row_lock_wait_in_ms – amount of time a session had to wait on a row lock against
this index

•	 page_lock_count, page_lock_wait_count, page_lock_wait_in_ms – same
as row_lock values at the page grain

•	 index_lock_promotion_attempt_count, index_lock_promotion_count
– number of times the lock grain for an operation using this index was attempted or
granted to be escalated (like from row to page)

•	 page_latch_wait_count, page_latch_wait_in_ms – number of waits and time
waited on the physical page of the object to have the latch removed

•	 page_io_latch_wait_count, page_io_latch_wait_in_ms – number of waits
and time while SQL loads pages from disk into memory for an index operation.

192

Chapter 5: Indexing Strategy and Maintenance

This DMF offers many more columns; for example, to investigate use of row overflow
data, LOB data, and so on. For a full listing, see Books Online. Let's take a look at this
DMF in action.

Detailed activity information for indexes not used
for user reads

The script in Listing 5.8 isolates just those indexes that are not being used for user reads,
courtesy of sys.dm_db_index_usage_stats, and then provides detailed information
on the type of writes still being incurred, using the leaf_*_count and nonleaf_*_
count columns of sys.dm_db_index_operational_stats. In this way, you gain
a deep feel for how indexes are being used, and just exactly how much the index is
costing you.

SELECT '[' + DB_NAME() + '].[' + su.[name] + '].[' + o.[name] + ']'
 AS [statement] ,
 i.[name] AS [index_name] ,
 ddius.[user_seeks] + ddius.[user_scans] + ddius.[user_lookups]
 AS [user_reads] ,
 ddius.[user_updates] AS [user_writes] ,
 ddios.[leaf_insert_count] ,
 ddios.[leaf_delete_count] ,
 ddios.[leaf_update_count] ,
 ddios.[nonleaf_insert_count] ,
 ddios.[nonleaf_delete_count] ,
 ddios.[nonleaf_update_count]
FROM sys.dm_db_index_usage_stats ddius
 INNER JOIN sys.indexes i ON ddius.[object_id] = i.[object_id]
 AND i.[index_id] = ddius.[index_id]
 INNER JOIN sys.partitions SP ON ddius.[object_id] = SP.[object_id]
 AND SP.[index_id] = ddius.[index_id]
 INNER JOIN sys.objects o ON ddius.[object_id] = o.[object_id]
 INNER JOIN sys.sysusers su ON o.[schema_id] = su.[UID]
 INNER JOIN sys.[dm_db_index_operational_stats](DB_ID(), NULL, NULL,
 NULL)
 AS ddios
 ON ddius.[index_id] = ddios.[index_id]

193

Chapter 5: Indexing Strategy and Maintenance

 AND ddius.[object_id] = ddios.[object_id]
 AND SP.[partition_number] = ddios.[partition_number]
 AND ddius.[database_id] = ddios.[database_id]
WHERE OBJECTPROPERTY(ddius.[object_id], 'IsUserTable') = 1
 AND ddius.[index_id] > 0
 AND ddius.[user_seeks] + ddius.[user_scans] + ddius.[user_lookups] = 0
ORDER BY ddius.[user_updates] DESC ,
 su.[name] ,
 o.[name] ,
 i.[name]

Listing 5.8:	 Detailed write information for unused indexes.

Upon review of the output it's quite clear that some of these indexes are still being
hammered by inserts even though the users are not benefiting from their existence in
regard to reads. If I encountered metadata like this in the real world (wink, wink) you
could be sure that I would do something about it.

194

Chapter 5: Indexing Strategy and Maintenance

Identify locking and blocking at the row level

We can also return information about locking, latching, and blocking from sys.dm_
db_index_operational_stats. Listing 5.9 returns records that relate to locking and
blocking at the row level for the indexes of the active database.

SELECT '[' + DB_NAME(ddios.[database_id]) + '].[' + su.[name] + '].['
 + o.[name] + ']' AS [statement] ,
 i.[name] AS 'index_name' ,
 ddios.[partition_number] ,
 ddios.[row_lock_count] ,
 ddios.[row_lock_wait_count] ,
 CAST (100.0 * ddios.[row_lock_wait_count]
 / (ddios.[row_lock_count]) AS DECIMAL(5, 2)) AS [%_times_blocked] ,
 ddios.[row_lock_wait_in_ms] ,
 CAST (1.0 * ddios.[row_lock_wait_in_ms]
 / ddios.[row_lock_wait_count] AS DECIMAL(15, 2))
 AS [avg_row_lock_wait_in_ms]
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) ddios
 INNER JOIN sys.indexes i ON ddios.[object_id] = i.[object_id]
 AND i.[index_id] = ddios.[index_id]
 INNER JOIN sys.objects o ON ddios.[object_id] = o.[object_id]
 INNER JOIN sys.sysusers su ON o.[schema_id] = su.[UID]
WHERE ddios.row_lock_wait_count > 0
 AND OBJECTPROPERTY(ddios.[object_id], 'IsUserTable') = 1
 AND i.[index_id] > 0
ORDER BY ddios.[row_lock_wait_count] DESC ,
 su.[name] ,
 o.[name] ,
 i.[name]

195

Chapter 5: Indexing Strategy and Maintenance

Listing 5.9:	 Retrieving locking and blocking details for each index.

Notice that in the calculations of both the [%_times_blocked] and avg_row_lock_
wait_in_ms columns, we've had to use a decimal multiplication factor:

CAST (100.0 * ddios.[row_lock_wait_count] / (ddios.[row_lock_count])
 AS decimal(5,2))

CAST (1.0 * ddios.[row_lock_wait_in_ms] / ddios.[row_lock_wait_count]
 AS decimal(15,2)).

This is due to an unfortunate glitch in the data type conversion process within T-SQL
that you are never aware of until it sneaks up on you, and you spend hours trying to
figure out why your results don't follow basic mathematical rules. Unless a mathematical
formula includes a decimal, float, or other non-integer numeric data type, the results will
only produce an integer result, even when the math warrants a non-integer result. You
can try this for yourself. What do you get when you execute the code "SELECT 3/2" in a
query window?

I bet you the answer is not 1.5. The way to fix this is to force a conversion to decimal
form by including a constant that best fits your formula, in the form of a decimal, as
demonstrated in the previous calculations.

196

Chapter 5: Indexing Strategy and Maintenance

Identify latch waits

Listing 5.10 highlights which of our indexes are encountering latch contention using the
page_io_latch_wait_count and page_io_wait_in_ms columns.

SELECT '[' + DB_NAME() + '].[' + OBJECT_SCHEMA_NAME(ddios.[object_id])
 + '].[' + OBJECT_NAME(ddios.[object_id]) + ']' AS [object_name] ,
 i.[name] AS index_name ,
 ddios.page_io_latch_wait_count ,
 ddios.page_io_latch_wait_in_ms ,
 (ddios.page_io_latch_wait_in_ms / ddios.page_io_latch_wait_count)
 AS avg_page_io_latch_wait_in_ms
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) ddios
 INNER JOIN sys.indexes i ON ddios.[object_id] = i.[object_id]
 AND i.index_id = ddios.index_id
WHERE ddios.page_io_latch_wait_count > 0
 AND OBJECTPROPERTY(i.object_id, 'IsUserTable') = 1
ORDER BY ddios.page_io_latch_wait_count DESC ,
 avg_page_io_latch_wait_in_ms DESC

Listing 5.10:	 Investigating latch waits.

Latching occurs when the engine reads a physical page. Upon doing so, it issues a latch,
scans the page, reads the row, and then releases the latch when, and this is important,
the page is needed for another process. This process is called lazy latching. Though
latching is quite a benign process, it is of interest to have handy such information as this
query provides. It allows us to identify which of our indexes are encountering significant
waits when trying to issue a latch, because another latch has already been issued. I/O
latching occurs on disk-to-memory transfers, and high I/O latch counts could be a

197

Chapter 5: Indexing Strategy and Maintenance

reflection of a disk subsystem issue, particularly when you see average latch wait times of
over 15 milliseconds.

Identify lock escalations

As discussed in Chapter 4, SQL Server may attempt to escalate locks in response to a need
to reduce the total number of locks being held and the memory therefore required to
hold and manage them. For example, individual row locks may be escalated to a single
table lock, or page locks may be escalated to a table lock. While this will result in lower
overhead on SQL Server, the downside is lower concurrency. If processes are running
on your servers that are causing lock escalation, it's worth investigating whether the
escalation is justified, or if SQL tuning can be performed to prevent it.

The sys.dm_db_index_operational_stats DMV can be queried to return
information on the count of attempts made by SQL Server to escalate row and page
locks to table locks for a specific object. The query in Listing 5.11 provides information
regarding how frequently these escalation attempts were made, and the percentage
success in performing the escalation.

SELECT OBJECT_NAME(ddios.[object_id], ddios.database_id) AS [object_name] ,
 i.name AS index_name ,
 ddios.index_id ,
 ddios.partition_number ,
 ddios.index_lock_promotion_attempt_count ,
 ddios.index_lock_promotion_count ,
 (ddios.index_lock_promotion_attempt_count
 / ddios.index_lock_promotion_count) AS percent_success
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) ddios
 INNER JOIN sys.indexes i ON ddios.object_id = i.object_id
 AND ddios.index_id = i.index_id
WHERE ddios.index_lock_promotion_count > 0
ORDER BY index_lock_promotion_count DESC ;

198

Chapter 5: Indexing Strategy and Maintenance

Listing 5.11:	 Investigating lock escalation.

Identify indexes associated with lock contention

The sys.dm_os_wait_stats DMV, discussed in detail in Chapter 7, is a great "first hit"
resource for drilling into issues that may instigate those "Hey, the database is slow" phone
calls that we all know and love at 3 a.m. If the outcome of your queries into sys.dm_os_
wait_stats points to locking problems, the query in Listing 5.12 makes a good next step
in the investigation. This original idea comes from the Microsoft "SQL Server Premier
Field Engineer" blog, at http://blogs.msdn.com/b/sql_pfe_blog/archive/2009/06/11/
three-usage-scenarios-for-sys-dm-db-index-operational-stats.aspx with a few
enhancements to identify the indexes by name in the results.

SELECT OBJECT_NAME(ddios.object_id, ddios.database_id) AS object_name ,
 i.name AS index_name ,
 ddios.index_id ,
 ddios.partition_number ,
 ddios.page_lock_wait_count ,
 ddios.page_lock_wait_in_ms ,
 CASE WHEN DDMID.database_id IS NULL THEN 'N'
 ELSE 'Y'
 END AS missing_index_identified
FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) ddios
 INNER JOIN sys.indexes i ON ddios.object_id = i.object_id
 AND ddios.index_id = i.index_id
 LEFT OUTER JOIN (SELECT DISTINCT
 database_id ,
 object_id
 FROM sys.dm_db_missing_index_details
) AS DDMID ON DDMID.database_id = ddios.database_id

199

Chapter 5: Indexing Strategy and Maintenance

 AND DDMID.object_id = ddios.object_id
WHERE ddios.page_lock_wait_in_ms > 0
ORDER BY ddios.page_lock_wait_count DESC ;

Listing 5.12:	 Indexes associated with lock contention.

Notice the very useful outer join to sys.dm_db_missing_index_details to identify
if there was a potential suggestion for a missing index that might resolve the locking. Of
course, before implementing any new index, you should first test it thoroughly in your
test environment, which we discuss in depth as we move on to look at the missing
index DMOs.

Find missing indexes

When the query optimizer generates an execution plan for a query, it determines the
optimal data access path that will satisfy the search criteria, and then checks to see if any
existing indexes offer this path (or something close). If the ideal index does not exist, the
optimizer chooses the best one available, or simply does a table scan, but it stores the
details of the "missing index." This information is exposed via four sys.dm_db_
missing_index_* DMOs, which are rarely used individually, but as a group.
They are:

•	 sys.dm_db_missing_index_details – a DMV that provides detailed information
regarding indexes the optimizer would have chosen to use, had they been available

•	 sys.dm_db_missing_index_columns – a DMF that accepts an index_handle
parameter and returns a table providing details of columns that would comprise the
suggested missing index

•	 sys.dm_db_missing_index_group_stats – a DMV that returns detailed
information pertaining to metrics on groups of missing indexes

200

Chapter 5: Indexing Strategy and Maintenance

•	 sys.dm_db_missing_index_groups – a DMV that provides details of missing
indexes in a specific group; this is the intermediate join table between sys.dm_db_
missing_index_details and sys.dm_db_missing_index_group_stats.

Napoleon Bonaparte stated that a good sketch is better than a long speech. I promise
that this is my one and only quote from a 19th century French dictator in this book,
but the adage is quite appropriate in this case. Figure 5.4 shows the many-to-many
relationship between missing_index_details and index_group_stats, via
missing_index_groups.

The first thing to note is that there is no index_id in any of the missing index DMOs.
This is because the returned results are recommendations for indexes which have yet
to be created, and are therefore non-materialized. The unique identifier for the records
in these DMVs is the index_handle column, which is unique across the entire SQL
Server instance.

The data stored by each of these DMOs is reset on a server restart. This is why it is so
important to preserve this cumulative data and keep your instances in a constantly
running state; you need to make sure, when you use this data, that the stored statistics
are fully representative of your normal query workload. One service restart, and your
accrued history (and the ability to generate meaningful results for this and other
DMV-based queries) is, pardon the pun, history.

Furthermore, the data stored in these DMOs is also volatile and based on active queries.
By implementing a single new index on a given table or view, the results of the DMO
query for that object may no longer be valid.

201

Chapter 5: Indexing Strategy and Maintenance

Figure 5.4:	 The many-to-many relationship: missing_index_details and index_group_stats,

via missing_index_groups.

The columns returned by each one are well covered on MSDN (http://msdn.microsoft.
com/en-us/library/ms187974.aspx) so we'll only review the most significant columns
here, for each DMO.

202

Chapter 5: Indexing Strategy and Maintenance

Missing index details

The sys.dm_db_missing_index_details DMV, which identifies our missing
indexes, returns the identifier columns index_handle, object_id and database_id,
along with the following:

•	 equality_columns – the columns that would have been useful, based on an
equality predicate

•	 inequality_columns – the columns that would have been useful, based on an
inequality predicate (i.e. any comparison other than "column = value")

•	 included_columns – columns that, if included, would have been useful to
cover the query

•	 statement – database and schema qualified object name of the object identified by
database_id and object_id.

Missing index columns

The sys.dm_db_missing_index_columns DMF accepts the index_handle as a
parameter (retrieved from sys.dm_db_missing_index_details or sys.dm_db_
missing_index_group) and returns a table containing a record for each of the
individual columns that would make up the identified index. This makes it easier for
tools to use the columns to build a CREATE INDEX statement. It returns only three
columns, column_id, column_name and column_usage, the latter taking the self-
explanatory values of either EQUALITY, INEQUALITY or INCLUDE. There may be
duplicate column_name values for the case where a column would be useful for both
an equality and an inequality predicate.

It's important to note that the columns in this list are not ordered in a way that reflects
the optimal column ordering for the index key, so you may have to do some additional
tweaking to get the best result.

203

Chapter 5: Indexing Strategy and Maintenance

Missing index groups

The sys.dm_db_missing_index_groups DMV simply resolves the many-to-many
relationship between sys.dm_db_missing_index_details and sys.dm_db_
missing_index_group_stats. It identifies a missing index to its missing index
group via the following columns:

•	 index_group_handle – the id of the index group, which is used to relate the row to
the sys.dm_db_missing_index_group_stats view

•	 index_handle – the handle of the index, used to relate the row to sys.dm_db_
missing_index_details and sys.dm_db_missing_index_columns.

Currently, there is only one index to a group but, for future compatibility, you should
consider the key of this object to be comprised of both columns.

Missing index group statistics

The sys.dm_db_missing_index_group_stats DMV provides all the detail statistics
regarding the size of the benefit that SQL Server would expect from the missing index,
including how often it would have been used in scans and seeks, and how many compiled
plans could use it.

Its identifier column is group_handle, which joins to index_group_handle in sys.
dm_db_missing_index_groups. As noted, for the time being there is only one index
per group. It also returns the following statistical columns:

•	 unique_compiles – the number of plans that have been compiled that might have
used the index

•	 user_seeks – the number of seek operations in user queries that might have
used the index

204

Chapter 5: Indexing Strategy and Maintenance

•	 user_scans – the number of scan operations in user queries that might
have used the index

•	 last_user_seek – the last time that a seek operation might have used the index

•	 last_user_scan – the last time that a scan operation might have used the index

•	 avg_total_user_cost – average cost saving for the queries that could have been
helped by the index in the group

•	 avg_user_impact – the estimated percentage by which the average query cost
would drop, for the queries that could use this index.

For each of the user statistics columns there are equivalent system columns, which record
when the index is used for a system operation, such as automatic statistics operations.

The last_user_* columns are vital in helping you assess whether you really do need
to add the suggested missing index. If this time isn't fairly recent, then it's likely that the
query it would have helped was ad hoc, and not part of your normal workload, and so the
benefit of creating the index is likely to be marginal, or even detrimental, if the table in
question is updated frequently.

Limitations of the missing index DMOs

While these DMOs are potentially very useful in optimizing your index strategy and
query execution times, the information they provide should be used with caution. Just
as we advised against wildly dropping indexes without thorough investigation, so you
should never just blindly add every index that these DMOs suggest. This is especially true
if you have an OLTP workload, where too many indexes can be just as damaging as too
few. Every time data is updated in a table, the data in the indexes must be maintained as
well. This can dramatically reduce the performance of these data modifications.

Instead, you need to examine the results of the query carefully and manually filter out
results that are not part of your regular workload.

205

Chapter 5: Indexing Strategy and Maintenance

Also, be warned that the order in which these DMOs list missing columns does not accu-
rately suggest the correct column order for an index key. Furthermore, in our experience,
these DMOs are often over-enthusiastic in suggesting INCLUDE columns. They are best
used to find the biggest "holes" in an indexing strategy, not as a fine-tuning tool.

In addition, Microsoft Books Online lists the following specific limitations:

•	 cannot gather statistics for more than 500 missing index groups

•	 return less accurate cost information for queries involving only inequality predicates

•	 reports only include columns for some queries, so index key columns must be
manually selected

•	 return only raw information about columns on which indexes might be missing

•	 can return different costs for the same missing index group that appears multiple times
in XML Showplans.

Finding the most beneficial missing indexes

So how do you go about putting these DMOs to good use? Our goal is clearly to obtain
a list of missing indexes, with the most useful ones listed at the top. The SQL Server
Query Optimization Team at Microsoft proposed the following formula for calculating
the overall benefit of a suggested index, based on the columns in the _group_stats
DMV, and it has been widely adopted:

(user_seeks + user_scans) * avg_total_user_cost * (avg_user_impact * 0.01)

206

Chapter 5: Indexing Strategy and Maintenance

Listing 5.13 provides a quick and useful query, based on this formula, that DBAs can run
to identify potentially useful indexes. The results of this query are instance-wide, so be
sure to limit your results to just the database in question, in the WHERE clause, as
demonstrated here. This query provides the DBA with information directly from the
query optimizer history, accrued since the last restart of the SQL Server service. It
provides information on columns the optimizer would have preferred to have indexed,
based upon the original parse of the query upon execution. Equality columns,
inequality columns, and included columns are each identified. Also presented are the
accrued counts of compiles and seeks, as well as calculated figures that denote the
amount of improvement to be gained if the indexes were created.

SELECT user_seeks * avg_total_user_cost * (avg_user_impact * 0.01)
 AS [index_advantage] ,
 dbmigs.last_user_seek ,
 dbmid.[statement] AS [Database.Schema.Table] ,
 dbmid.equality_columns ,
 dbmid.inequality_columns ,
 dbmid.included_columns ,
 dbmigs.unique_compiles ,
 dbmigs.user_seeks ,
 dbmigs.avg_total_user_cost ,
 dbmigs.avg_user_impact
FROM sys.dm_db_missing_index_group_stats AS dbmigs WITH (NOLOCK)
 INNER JOIN sys.dm_db_missing_index_groups AS dbmig WITH (NOLOCK)
 ON dbmigs.group_handle = dbmig.index_group_handle
 INNER JOIN sys.dm_db_missing_index_details AS dbmid WITH (NOLOCK)
 ON dbmig.index_handle = dbmid.index_handle
WHERE dbmid.[database_id] = DB_ID()
ORDER BY index_advantage DESC ;

207

Chapter 5: Indexing Strategy and Maintenance

Listing 5.13:	 Finding beneficial missing indexes.

This query represents a powerful tool in helping DBAs to identify pathways for perform-
ance improvement. However, the SQL Server Query Optimization Team have taken this a
step or two further, and offer a "missing index" tool, available at http://blogs.msdn.com/
queryoptteam/archive/2006/06/01/613516.aspx, which generates a lot of details about
indexes that might be useful.

In either case, however, we should never simply create each and every index suggested by
the results. As discussed at the start of the "Index Strategy" section earlier in this chapter,
creating too many indexes on a table can be just as damaging to performance as not
creating enough (or creating the wrong) indexes. We recommend that you create a
duplicate environment for your test and development work that represents the hardware
and SQL Server configurations of your production environment. You should then go
through the process of creating indexes recommended through these results, and testing
performance in a simulated production load.

Index Maintenance (index_physical_stats)

The sys.dm_db_index_physical_stats DMF is, in this author's opinion, the most
important of all the index-related DMOs. I use the scripts that will be provided in this
section on a daily basis, on every SQL Server 2005 and 2008 instance I administer, to seek
out and fix index fragmentation issues. It can be used to identify fragmentation in non-
clustered indexes, clustered tables (a table with a clustered index) and heaps (a table with
no clustered index). The latter two will be covered in further detail in Chapter 6.

208

Chapter 5: Indexing Strategy and Maintenance

I think most of us had our start as DBAs using the SQL Server Maintenance Plans
Wizard built into Enterprise Manager or SQL Server Management Studio. This is how
we cut our teeth when backing up data and log files, checking our databases for errors,
and rebuilding our indexes. The issue with using maintenance plans, particularly for
index maintenance, is that it is an all-or-nothing process: you either rebuild all the
indexes in your database (and all the databases in the maintenance plan) or you rebuild
none of them. There is no middle ground.

Even now, many years and editions later, this rather large hammer is the only built-in tool
at our disposal for performing index maintenance. However, with the help of this DMF,
at least we can find out which indexes really are suffering from fragmentation and then,
based on this, build our own index maintenance plans, which limit rebuilds to just those
indexes that need them, or just clustered or non-clustered indexes, indexes of a certain
size, or of a specific table, and so on. In short, this DMF gives the DBA an element of
control over the index maintenance process that is sadly lacking in the current
Maintenance Plans tool.

A brief overview of index fragmentation

The leaf level of a clustered index is implemented as a doubly-linked list. This means that
every leaf level of the index includes a pointer to both the previous and the next page in
the index. The data will be stored in the logical order dictated by the clustering key and
new data will be added in its correct place on the relevant page. So, assuming there is
room on that page, the logical order will match the physical order.

The pointers in the doubly-linked list make it easy to scan ranges of data and, when the
data is ordered as described above, this becomes a very efficient operation. In turn, non-
clustered indexes on a table with a clustered index, are implemented as a doubly-linked
list, and have the same benefits (by contrast, indexes on heaps are not implemented this
way, and have no knowledge of which page to scan next).

209

Chapter 5: Indexing Strategy and Maintenance

This idyllic picture begins to break down, unfortunately, as a natural by-product of data
modifications. As data is inserted, deleted, and updated, index fragmentation can occur.
When data is deleted, gaps appear in data pages that create wasted empty space. When
data is updated or added on a page that has become full, a page split will occur and one
of the split pages will be stored "at the end," and so out of logical sequence. Now we have
a logical ordering of the data that no longer matches the physical ordering of the data
(referred to as logical fragmentation).

As a result, disk I/O is affected because the disk head must now jump all over the disk
following a fragmented chain of records and pointers as opposed to a sequential listing.
Wasted space reduces the number of rows that can be stored in SQL Server's data cache,
which can also lead to increased disk I/O. Do keep in mind that, as a result, this only
pertains to data/index pages that are not residing within memory, in the cache.

SQL Server doesn't automatically correct index fragmentation problems. The only
way to remove wasted space and restore the correct page ordering is to rebuild or
reorganize the indexes on a regular basis. Rebuilding an index is the process by which
the existing index is dropped and recreated. The process can occur either offline or
online (if hosting on Enterprise Edition SQL Server). Since the index is recreated, all
fragmentation is removed. The indexes are recreated under the mandate of the
existing fill factor percentage and the index is rebuilt in continuous pages. Meanwhile,
reorganizing only defragments the leaf level of an index by physically reordering them to
match the logical order of the leaf nodes.

The first step is to identify the indexes that are fragmented beyond an acceptable
percentage, and this is where our _index_physical_stats DMF comes in very useful.

210

Chapter 5: Indexing Strategy and Maintenance

Fragmentation statistics (index_physical_stats)

The sys.dm_db_index_physical_stats DMF provides invaluable information
regarding the state of your index partitions, including type of index, index depth, and
degree of fragmentation. An index in this context can mean several things: a clustered
index, heap, index, or a partition of either of these. These physical stats all serve to tell
you of the condition of an index. Even the most potentially beneficial index in terms of
optimizing query execution can become useless if it is not maintained properly.

Data stored in this DMF is cumulative but refreshed when the server is restarted or
when the index is dropped and recreated. Statistics live on when the index is rebuilt or
reorganized, and even when it is disabled and rebuilt.

Like the operational_stats DMF, the physical_stats DMF accepts the
database_id, object_id, index_id, and partition_number as parameters, in
order to identify the object (heap, index or partition) in question, and returns detailed
"physical stats" for each partition. All the parameters can be NULL or DEFAULT if you
want to return all rows, in which case the DMF will return a row for every partition in
every database. It also accepts a mode parameter, which determines the thoroughness
with which the statistics are collected. Possible values are:

•	 LIMITED is the default and the least costly, but it also will leave a lot of the columns as
NULL; LIMITED will not scan the leaf level of the indexes and the data pages of heaps
are not scanned

•	 SAMPLED mode returns statistics based only upon a 1% sample of all pages of the
indexes and heaps in the scope of the function call; if any page or heap within
the scope of the function call has less than 10,000 pages, then DETAILED is
automatically used

•	 DETAILED provides the most complete result set from this function of the three, but
can require ample resources; it scans all pages; it returns all statistics.

211

Chapter 5: Indexing Strategy and Maintenance

The DMF returns a large number of columns and we'll only review a subset of them
here. It returns a number of columns that describe the physical structure of the
index, including:

•	 index_type_desc – describes the physical type of the index (clustered index,
non-clustered index, heap, primary xml index, xml index)

•	 alloc_unit_type_desc – describes the type of pages in the index object (IN_ROW_
DATA, LOB_DATA, ROW_OVERFLOW_DATA)

•	 index_depth – the number of levels in the b-tree of the index

•	 index_level – 0 for the leaf level of the index, counting up the levels of the leaf
levels; for example, if index depth is 3, then you will have 0 = leaf level, 2 for the middle
page, and 1 for the top level page in the index; note that leaf/heap pages are processed
when the mode parameter = 'DETAILED'; leaf pages are ignored in 'LIMITED' mode

•	 page_count – the number of pages in the index or data pages level; for heaps, LOB_
DATA and ROW_OVERFLOW_DATA allocation unit types, it is the count of all pages

•	 avg_page_space_used_in_percent – the average percentage of space used in the
index or data pages level; for heaps, LOB_DATA and ROW_OVERFLOW_DATA allocation
unit types, it is the average space used on all pages

•	 record_count – the number of records that are represented in the current object.

Most significantly, the DMF returns much valuable information regarding the degree of
fragmentation of the index, including:

•	 avg_fragmentation_in_percent – the percentage of logical fragmentation for
indexes, and of extent fragmentation for heaps

•	 fragment_count – the number of fragments in the leaf level of IN_ROW_DATA
allocation units

•	 avg_fragment_size_in_pages – the average number of pages in a fragment for
IN_ROW_DATA allocation unity types

212

Chapter 5: Indexing Strategy and Maintenance

•	 forwarded_record_count – for heaps, the number of forwarding pointers;
forwarding pointers are very bad for performance when using heaps, because they
are always resolved immediately as they are encountered.

Detecting and fixing fragmentation

Every index encounters some level of fragmentation, and its resolution is a two-part
process. Part 1 is detecting unacceptable fragmentation levels. The query in Listing 5.14
will return fragmentation information for each index in the current database, where the
average_fragmentation_in_percent column is greater than 15% and where the
page count is greater than 500. On a busy system, this can be a resource-intensive query
so please keep that in mind when setting the scope of your query (via the parameters for
the DMF) and the time of day when you are going to execute the query.

SELECT '[' + DB_NAME() + '].[' + OBJECT_SCHEMA_NAME(ddips.[object_id],
 DB_ID()) + '].['
 + OBJECT_NAME(ddips.[object_id], DB_ID()) + ']' AS [statement] ,
 i.[name] AS [index_name] ,
 ddips.[index_type_desc] ,
 ddips.[partition_number] ,
 ddips.[alloc_unit_type_desc] ,
 ddips.[index_depth] ,
 ddips.[index_level] ,
 CAST(ddips.[avg_fragmentation_in_percent] AS SMALLINT)
 AS [avg_frag_%] ,
 CAST(ddips.[avg_fragment_size_in_pages] AS SMALLINT)
 AS [avg_frag_size_in_pages] ,
 ddips.[fragment_count] ,
 ddips.[page_count]
FROM sys.dm_db_index_physical_stats(DB_ID(), NULL,
 NULL, NULL, 'limited') ddips
 INNER JOIN sys.[indexes] i ON ddips.[object_id] = i.[object_id]
 AND ddips.[index_id] = i.[index_id]
WHERE ddips.[avg_fragmentation_in_percent] > 15
 AND ddips.[page_count] > 500

213

Chapter 5: Indexing Strategy and Maintenance

ORDER BY ddips.[avg_fragmentation_in_percent] ,
 OBJECT_NAME(ddips.[object_id], DB_ID()) ,
 i.[name]

Listing 5.14:	 Investigating fragmented indexes.

Note that this query does not ignore heaps. Fragmentation occurs in heaps just as in
indexes; but fixing this fragmentation in heaps is a little different than in clustered and
non-clustered indexes (as will be explained shortly).

The rule of thumb for index reorganization is 15–30% fragmentation. The often-
recommended process for indexes with fragmentation greater than 30% is a rebuild of

214

Chapter 5: Indexing Strategy and Maintenance

the index. These standards should be taken lightly, as a more heavily trafficked index may
need to be rebuilt at a lower fragmentation level, and a less active index could conceivably
wait until its fragmentation reaches the rebuild range, and so is never reorganized.

I tend to stick with these standards, except in extreme cases. If we go by those standards,
it is a decent assessment to state that our demo database is in decent shape from an index
fragmentation angle. I would recommend running reorganization commands against the
clustered and non-clustered indexes with less than 30% fragmentation, and rebuilding the
two clustered indexes with fragmentation in excess of 30%.

For the fragmented heap (demo.sch1.DB340534), I would identify a clustering key and
create the clustered index. If, for some reason, a heap is warranted, then I'd still identify a
clustering key, create the clustered index, and then drop the index. The data will remain
ordered based upon the clustering key identified, but will revert back to a heap object
once you drop the clustered index. Alternatively, if I'm lucky enough to be using a SQL
Server 2008 instance, I can issue ALTER TABLE…REBUILD.

Now that we've shown you how to identify fragmentation in your indexes and heaps,
how do you go about resolving it, without manually crafting a reorganization or rebuild
command for each index identified as being fragmented beyond acceptable levels? I've
created many iterations of such a script over the years, but I've scrapped it in favor of one
created by Andrew Kelly, published in the July 2008 issue of SQL Server Magazine
(www.sqlmag.com/Article/ArticleID/99019/Rebuild_Only_the_Indexes_that_
Need_Help.html). Based on his code, I generated a SQL Agent job that I schedule and
run against selected databases, and rebuild/reorganize indexes accordingly.

215

Chapter 5: Indexing Strategy and Maintenance

Summary

This chapter has covered the DMOs that can help the DBA to define an effective
SQL Server indexing strategy, since this is one of the best ways to ensure that the most
significant and frequent queries are able to read the required data in a logical, ordered
fashion, and so avoid unnecessary I/O. Finding the correct balance between too many and
too few indexes, and having in place the appropriate set of "useful" indexes is extremely
important for a DBA who wants to get the best performance from SQL Server.

This chapter showed how to:

•	 use the sys.dm_db_index_usage_stats DMV to uncover those indexes
that exist but have never been used, or where the maintenance cost of the index,
(perhaps because the table data is regularly updated), is high but the index is rarely
used as a data access path, and so is offering relatively little in terms of query
performance benefit

•	 use the sys.dm_db_index_operational_stats DMF to obtain "physical" usage
statistics for a clustered index, heap or index, so that we can investigate potential lock
or latch contention on the object, or excessive I/O being issued by the object, all of
which may cause users to wait a significant amount of time in order to read data from
the object

•	 use the sys.dm_db_missing_ group of DMOs to identify indexes that the optimizer
would have liked to have had available when seeking out the optimal data access path
for a given query

•	 use the sys.dm_db_index_physical_stats DMV to investigate fragmentation in
indexes and heaps, and to determine a rebuild/reorganize strategy based on real need,
rather than just the "better safe than sorry" approach of defragmenting as often as
available maintenance windows allow.

Throughout the chapter, we've stressed the need for the DBA to apply judgment, and
their knowledge of their database, its data, and the normal query workload, before

216

Chapter 5: Indexing Strategy and Maintenance

creating or removing any of the indexes identified by the DMO queries presented in this
chapter. In particular, make sure that the SQL Server instance has been running long
enough for the complete, typical workload to be represented in the reported statistics,
and don't forget to account for the indexes required by periodic reporting jobs that might
not show up in the day-to-day workload.

217

Chapter 6: Physical Disk Statistics
and Utilization

A critical aspect of SQL Server performance is how the engine uses the disk I/O
subsystem, and the ability of that subsystem to cope with the I/O throughput (I/Os per
second) demanded by the system workload. Physical I/O, in other words writing to disk
or reading from disk, when the required data page does not reside in cache memory, is
an expensive operation. The DBA must work to minimize the occurrence of physical
reads from disk, for example, by ensuring that there is adequate RAM for cache data, and
configuring the disk subsystem to cope smoothly with the total I/O load.

During busy periods, or when performing I/O-intensive maintenance operations (such
as backup/restore or index rebuild), physical reads can be very high, and if the speed or
configuration of the disk subsystem is inadequate for the generated I/O throughput, the
DBA will to notice an immediate and often dramatic impact on performance. It is vital
that the DBA has a means to identify this I/O pressure and its root cause, and respond
appropriately, by tuning queries, adding indexes, defragmenting indexes, better
distributing the I/O workload across the file system, or by adding more RAM, or more
and faster disks.

In order to diagnose various I/O-related issues relating directly to the performance and
condition of the files and disks in your databases, we'll be putting into action views and
functions from several of the 17 categories of dynamic management objects listed on
MSDN (http://msdn.microsoft.com/en-us/library/ms188754.aspx). Following is a list
and brief description of each view or function that we'll use, with the category to which it
belongs indicated in brackets:

•	 sys.dm_db_partition_stats (database related) – returns disk space oriented
statistics (row count, page counts, and so on) for each object in a partition

218

Chapter 6: Physical Disk Statistics and Utilization

•	 sys.dm_db_index_physical_stats (index related) – provides health information
(size and fragmentation stats) regarding your clustered tables, non-clustered indexes
(covered in more detail in Chapter 5) and heaps, which directly relates to how reads will
affect I/O

•	 sys.dm_io_virtual_file_stats (I/O related) – provides statistics on how all
database files have been utilized; both data and log files are represented; excellent
resource for discovering hotspots, and identifying opportunities to spread I/O over
different channels

•	 sys.dm_io_pending_io_requests (I/O related) – provides a list of all I/O
operations that SQL Server is currently waiting to complete

•	 sys.dm_db_file_space_usage (database related) – gives information on how
tempdb is being used.

Keep in mind that interpretation of the statistics you obtain from these DMVs must be
done with care. They will give you a deeper understanding of the characteristics and
usage of your data structures, and of how the disk I/O subsystem is being used or
abused by your programming (or by other processes that share use of the disk subsystem
with SLQ Server). However, this data must not be taken in isolation when making
decisions about the necessary remedial action. An overtaxed CPU can make I/O take
longer, just as readily as slow disks, or a malfunctioning controller.

Minimizing I/O

Physical I/O is simply a request to read data from, or write data to, physical disk. It is
an expensive operation. SQL Server does not directly manage reading and writing data
to disk; whenever it needs to read or write to an MDF or LDF file, it passes off the I/O
request to the Windows I/O Manager (part of the OS kernel) which, in turn, passes it to a
device driver to perform the actual reads from, and writes to, disk.

219

Chapter 6: Physical Disk Statistics and Utilization

A certain amount of physical I/O is inevitable. It will occur when data modifications,
written to the data cache in memory, need to be "hardened" to disk. The write-ahead
logging mechanism used by SQL Server means that the details of INSERT, UPDATE and
DELETE transactions are always first written to the transaction log (LDF) file on disk.
A data page that contains data that has been committed to the transaction log file but
not to the data (MDF) file is referred to as a "dirty page." A process called the "lazy writer"
manages the writing of dirty pages to physical disk when there is time, or when no more
data can be placed into the cache, while another process, called the "checkpoint" process,
makes sure the number of dirty pages is kept to a level such that, if you needed to recover
the database, a relatively small number of pages would need to be read from the log.

In addition, physical I/O will occur each time a requested data page is not found in the
data cache, and so needs to be first read into memory from the underlying disks. Logical
I/O is a less expensive operation than physical I/O, so the DBA will want as many queries
as possible to be served from the cache. This often means having as much RAM as can
be afforded, up to and perhaps slightly over the amount of data on the server. However,
this is frequently an unrealistic proposition. Even medium-sized organizations can store
hundreds of gigabytes of data, and their appetite for data is growing rapidly. While RAM
costs start out cheap, we aren't likely to have terabytes of cheap RAM any time soon.

While the focus of this chapter is disk (i.e. physical) I/O, it's worth remembering that
logical I/O, while cheaper, is far from free. Logical I/O occurs when a data request (read)
can be satisfied by serving up a page residing in memory, in the data cache. Writes are also
first written to the data cache, before later being written to disk. If your query workload
results in unnecessarily high logical I/O, then your performance will suffer. The best way
to ensure that as many data requests as possible are served from memory is to avoid all
unnecessary I/O. This means tuning the query workload so that each query returns the
minimum necessary data, reads the data as few times as possible, and uses solid, set-based
logic to manipulate the data set.

One of the most effective ways to minimize both logical and physical I/O is to create an
appropriate set of indexes, as discussed in Chapter 5. A scan of even a moderately-sized
table could easily result in reading 100,000 pages, even if you only need to return a small

220

Chapter 6: Physical Disk Statistics and Utilization

fraction of that data. The appropriate index, allowing data to be returned by an
index seek operation, can reduce the I/O load by many orders of magnitude. Queries
that are returning large amounts of data, or are returning only moderate amounts, but
without use of an index, are likely to be the ones that are causing the heaviest I/O load
on SQL Server. As described in Chapters 2 and 3, you can isolate the most I/O-intensive
queries (or connections or sessions) using the execution-related DMOs, notably
sys.dm_exec_query_stats.

Indexes reduce physical as well as logical I/O. A scan of a large table will result in a large
volume of data being read into the cache. This may well result in other data being
flushed from the cache to make room, causing increased physical I/O for queries that
need that data.

Another critical aspect of minimizing I/O overhead is ensuring that your data structures,
heaps, and indexes, are properly maintained, i.e. not fragmented. When gaps appear in
data pages, or they become logically fragmented, so that the physical ordering of the data
does not match the logical order, the engine has to perform a lot more I/O to retrieve the
disordered data pages, especially when performing scans.

Ultimately, however, on busy OLTP systems subject to a high volume of data
modifications, there may be a high level of unavoidable physical I/O. Aside from query
tuning, indexing and so on, the DBA must ensure that the I/O subsystem is correctly
configured to handle the required I/O throughput. If I/O bottlenecks are observed, the
DBA can use the DMOs described in this chapter to find out where the hotspots are on
the file system, and look for ways to distribute the workload more evenly, perhaps by
using table and index partitioning, and spreading the partitions across multiples files, for
better I/O balancing.

221

Chapter 6: Physical Disk Statistics and Utilization

Tuning the Disk I/O Subsystem

In keeping with the other chapters in this book, our focus is on how to retrieve the
information that will indicate how the disk I/O subsystem is being used from SQL
Server's perspective. We do not, and cannot, spend time suggesting how the disk I/O
subsystem might be tuned as a result. Certain advice, pertaining, for example, to the use
of separate drives for random I/O (data files) and sequential I/O (log files), separate drives
for tempdb, optimal RAID configurations for various data access patterns, and so on, is
well documented. However, in general, it is a vast topic with many variables.

The disk I/O subsystem may range from straightforward direct attached storage to highly
elaborate architectures involving the use of SANs, RAID, and so on. In either case, SQL
Server treats the disk I/O subsystem as a black box. It creates a file, and asks to write and
read from that file. If SQL Server's I/O throughput requirements are not being adequately
catered for, this will be reflected in the statistics returned by the DMOs covered in this
chapter, in the form, for example, of high I/O stalls (covered in the section, Diagnosing
I/O Bottlenecks).

If you are lucky enough to have a simple disk subsystem dedicated solely to SQL
Server, then such problems indicate a need to find ways to minimize the amount of
I/O SQL Server performs, and/or increase disk speed, and so on, as described in the
previous section.

If your disk I/O subsystem is complex and/or shared by other applications, as is common
when using SANs, the situation is less straightforward. You need to consider the possibil-
ity that other, non-SQL Server processes are causing the problem, along with the fact that
the problem may be anywhere along the path from the cache manager to the physical
disks on the SAN, and caused by incorrect array configuration, insufficient cache on the
controller, problems with drive controllers, and network or interface cards, and so on.

In any event, it is vital that, before even installing SLQ Server, you gain a good
understanding of the I/O capacity of your disk subsystem, using tools such as SQLIO

222

Chapter 6: Physical Disk Statistics and Utilization

(see, for example, http://technet.microsoft.com/en-us/library/cc966412.aspx), and
then, once SQL Server is up and running, closely monitor its disk I/O usage via tools
such as the PerfMon counters, Profiler, and the DMOs covered in this chapter.

Getting Physical Statistics on your Tables
and Indexes

In the fight to minimize I/O overhead, DBAs need detailed knowledge of the size and
structure of the objects in their databases, and their state of physical health – in other
words, the degree to which their data structures are fragmented. In this section, we
are going to take a look at the tools that will provide us with statistics on the physical
structures of the tables and indexes, focusing mainly on clustered tables and heaps (since
indexes were covered in detail in Chapter 5).

•	 A clustered table is simply a table with a clustered index. The leaf pages of the
clustered index, which are the actual data pages of the table, are implemented as a
doubly-linked list, ordered by the clustered index key, referred to as the clustering
key. Any non-clustered index defined on this table will hold this clustering key value,
in addition to any other columns defined in the index. If a non-clustered index does
not hold all the columns required for a query, a bookmark lookup is performed on the
clustered index, using the clustering key.

•	 A heap structure has no clustered index. The storage engine inserts all rows at the
end of the table, in order of arrival. Any non-clustered index defined on a heap uses
a pointer to the physical location of the row in the heap, if data is required but not
stored in the index itself.

We'll start by investigating the size and structure of partitioned and non-partitioned
objects, using the sys.dm_db_partition_stats DMV, then we'll deal with fragmen-
tation separately, using the sys.dm_db_index_physical_stats DMF. The latter
is mainly used for obtaining index fragmentation information, but is also useful for

223

Chapter 6: Physical Disk Statistics and Utilization

investigating tables; it can provide valuable information on the degree of fragmentation
of the extents that comprise your tables, the number of forward pointers, and so on.

Note that, structurally, a table resembles an index, since the data pages of any tables are,
in essence, index leaf pages. Even a heap can be thought of as a "brute force," scan-only
index. This is why the same tools can be used to manage indexes and tables.

Size and structure

It is critical that DBAs have a simple means to monitor the size of the tables and indexes
in their databases and the number of rows stored for each object, for each partition. With
this information, they can find the largest objects and partitions, especially those that
are subject to heavy updates, monitor the effectiveness of their partitioning scheme, or
investigate the need to upgrade/configure the disk I/O subsystem appropriately.

In the text, we have referred to a "table," but in the engine of SQL Server, the unit of
measure for dealing with objects physically is a partition. Conceptually, it helps to think
of every table as being partitioned, even if you have only a single partition. sys.dm_db_
partition_stats provides statistics regarding the pages that store your tables and
indexes, in a given partition. It shows the number of pages used by that object for in-row,
Large Object (LOB) and row overflow data, along with the total number of rows stored
for that object.

It returns one row per partition; if no tables or indexes are partitioned, you'll simply see
one row per object, with a partition number of 1. Note that, even in a newly created data-
base, you will start out with nearly 100 partitions for the system objects. In many of our
queries we will filter out system objects using the objectproperty function like this:
objectproperty(ddps.object_id,'IsMSShipped').

224

Chapter 6: Physical Disk Statistics and Utilization

sys.dm_db_partition_stats, sysindexes and sp_spaceused

The sys.dm_db_partition_stats DMV resembles sysindexes in versions of SQL Server

before 2005, but provides a lot more information. It also contains a lot of the raw information that is

aggregated for you in the sp_spaceused system stored procedure.

The view supplies the following "identifier" columns:

•	 partition_id – numeric identifier of the partition (relates to sys.partitions)

•	 object_id – numeric identifier of the object, associated with the partition
identified above

•	 index_id – identifies the index on the table; 0 = heap, 1 = clustered, other values
are indexes

•	 partition_number – will have a value of 1 for non-partitioned objects; for
partitioned tables it will be the number of the partition starting with 1.

Note that, as of now, only SQL Server Enterprise Edition supports partitioning, so the
partition_number will always have a value of 1 in editions other than Enterprise.
For those people who normally use Standard Edition or lower, the need to deal with
partitions in all management code can seem a bit tedious, since it feels like an extra,
unnecessary layer of complexity. However, the problem with omitting partition_id
from queries when using a Standard Edition server, is that if you execute the same script
against another, Enterprise Edition server, then the table and index names will be
duplicated. In the example code here, we always include the partition information, or
group by and sum the rows if we want to know the total number of items (row count
for a table, perhaps), regardless of whether or not partitioning is being used.

225

Chapter 6: Physical Disk Statistics and Utilization

The view returns the statistical columns below.

•	 in_row_data_page_count – number of pages being used for in-row object data
in the partition. For an index, this is the number of leaf pages; for a clustered table or
heap, it is the number of data pages.

•	 in_row_used_page_count – all pages in use for the object, including non-leaf
index and index allocation map pages.

•	 in_row_reserved_page_count – all pages in use plus any pages reserved for the
object, even if the pages are not currently in use. For example, when a table grows, it
grows in 8 x 8 K page extents, so all these pages could be allocated to the table, even
though only a single page is used.

•	 lob_used_page_count – count of pages in use for the object to store out-of-row
values such as varchar(max), varbinary(max), and so on.

•	 lob_reserved_page_count – count of out-of-row pages including any that are
reserved but not in use.

•	 row_overflow_used_page_count – count of pages that are in use for storing over-
flow data, for rows that are larger than will fit on a single ~8 K page.

•	 row_overflow_reserved_page_count – count of overflow pages that includes
any pages that are reserved but not in use.

•	 used_page_count – total number of pages in use in the partition for any reason.

•	 reserved_page_count – total number of pages in use or reserved in the partition
for any reason.

•	 row_count – number of rows in the object (or partition of an object).

226

Chapter 6: Physical Disk Statistics and Utilization

Total number of rows in a table

The query in Listing 6.1 will provide the total number of rows in all clustered indexes and
heaps on a given SQL Server instance. System objects such as sys.dm_db_partition_
stats are updated asynchronously, for performance reasons, so the counts may not be
completely up to date. The values are far more reliable than those obtained from the old
system tables in SQL Server 2000 and earlier, but just bear in mind that the only way to
get a perfectly accurate count is to use SELECT count(*) FROM tablename.

SELECT object_schema_name(ddps.object_id) +
 '.' + OBJECT_NAME(ddps.object_id) AS name ,
 SUM(ddps.row_count) AS row_count
FROM sys.dm_db_partition_stats AS ddps
 JOIN sys.indexes ON indexes.object_id = ddps.object_id
 AND indexes.index_id = ddps.index_id
WHERE indexes.type_desc IN ('CLUSTERED', 'HEAP')
 and objectproperty(ddps.object_id,'IsMSShipped') = 0
GROUP BY ddps.object_id

Listing 6.1:	 Number of rows in clustered tables and heaps.

Note that we group on the object_id because, for a partitioned table, we'd need to
include all the rows in all partitions. Even if none of your objects are partitioned, I would
suggest you always build your queries the "right" way, just in case you do ever need to
partition a table.

Number of rows per partition

Let's now take a look at an example where we have some partitioning. The script in
Listing 6.2 creates a sample partitioned table. The partition function, PFdateRange,
uses RANGE LEFT to create three partitions: one for all date values less than, or equal to,
20020101; one for all dates greater than 20020101 but less than, or equal to, 20030101;

227

Chapter 6: Physical Disk Statistics and Utilization

and one for all values greater than 20030101. We then assign rows to each partition
according to the value in the orderDate column.

CREATE PARTITION FUNCTION PFdateRange (SMALLDATETIME)
AS RANGE LEFT FOR VALUES ('20020101','20030101') ;
GO
CREATE PARTITION SCHEME PSdateRange
AS PARTITION PFdateRange ALL TO ([PRIMARY])
GO

CREATE TABLE salesOrder
 (
 salesOrderId INT ,
 customerId INT ,
 orderAmount DECIMAL(10, 2) ,
 orderDate SMALLDATETIME ,
 CONSTRAINT PKsalesOrder PRIMARY KEY NONCLUSTERED (salesOrderId)
 ON [Primary] ,
 CONSTRAINT AKsalesOrder UNIQUE CLUSTERED (salesOrderId, orderDate)
)
--the ON clause causes this clustered table to be partitioned by orderDate
--using the partition function/scheme
ON PSdateRange(orderDate)
GO
--Generate some random data
INSERT INTO salesOrder
 SELECT SalesOrderId ,
 CustomerId ,
 TotalDue ,
 OrderDate
 FROM AdventureWorks.Sales.SalesOrderHeader

Listing 6.2:	 Creating a three-partition salesOrder table.

To find out how many rows are in each partition, we can use the query shown in
Listing 6.3.

228

Chapter 6: Physical Disk Statistics and Utilization

SELECT indexes.name ,
 indexes.type_desc ,
 dps.row_count AS row_count ,
 partition_id
FROM sys.dm_db_partition_stats AS dps
 JOIN sys.indexes ON indexes.object_id = dps.object_id
 AND indexes.index_id = dps.index_id
WHERE OBJECT_ID('salesOrder') = dps.object_id

Listing 6.3:	 Number of rows in each object, per partition.

The results reveal a clustered index named AKsalesOrder, broken into three partitions,
and a PKsalesOrder PRIMARY KEY constraint that is not partitioned, and shows the
total number of rows in the three partitions.

name type_desc row_count partition_id

-------------- ------------- --------------- -----------------

AKsalesOrder CLUSTERED 1424 72057594038714368

AksalesOrder CLUSTERED 3720 72057594038779904

AksalesOrder CLUSTERED 26321 72057594038845440

PksalesOrder NONCLUSTERED 31465 72057594038910976

Finally, we can expand this query, as shown in Listing 6.4, to get the information
about some of the physical characteristics of the partition, as well as the definition
of the structure.

SELECT OBJECT_NAME(indexes.object_id) AS Object_Name ,
 ddps.index_id AS Index_ID ,
 ddps.partition_number ,
 ddps.row_count ,
 ddps.used_page_count ,
 ddps.in_row_reserved_page_count ,
 ddps.lob_reserved_page_count ,
 CASE pf.boundary_value_on_right
 WHEN 1 THEN 'less than'
 ELSE 'less than or equal to'
 END AS comparison ,

229

Chapter 6: Physical Disk Statistics and Utilization

 value
FROM sys.dm_db_partition_stats ddps
 JOIN sys.indexes ON ddps.object_id = indexes.object_id
 AND ddps.index_id = indexes.index_id
 JOIN sys.partition_schemes ps
 ON ps.data_space_id = indexes.data_space_id
 JOIN sys.partition_functions pf ON pf.function_id = ps.function_id
 LEFT OUTER JOIN sys.partition_range_values prv
 ON pf.function_id = prv.function_id
 AND ddps.partition_number = prv.boundary_id
WHERE OBJECT_NAME(ddps.object_id) = 'salesOrder '
 AND ddps.index_id IN (0, 1) --CLUSTERED table or HEAP

Listing 6.4:	 Physical characteristics of each partition.

This returns the following results, broken up into three sets for ease of viewing:

Object_Name Index_ID partition_number row_count

--------------- ----------- ---------------- -----------------

salesOrder 1 1 1424

salesOrder 1 2 3720

salesOrder 1 3 26321

used_page_count in_row_reserved_page_count lob_reserved_page_count

-------------------- -------------------------------- -----------------------

1928 25 1905

5024 57 4969

35494 393 35113

comparison value

------------------------ ------------------------

less than or equal to 2002-01-01 00:00:00.000

less than or equal to 2003-01-01 00:00:00.000

less than or equal to NULL

This query provides a lot of useful information on the structure of a partitioned table,
including the relative sizes of the partitions (are there too many rows in the third parti-
tion?) and the inclusion of the ranges makes it clear how the partitions are structured.

230

Chapter 6: Physical Disk Statistics and Utilization

Investigating fragmentation

Arguably the most important aspect of managing the health of your tables and indexes,
partitioned or otherwise, is minimizing and, if necessary, rectifying fragmentation. The
coming sections will explain how fragmentation can occur in both clustered tables and
heaps. In either case, when the rows that constitute the pages of an object become
disordered and non-contiguous, the disk heads have to skip around performing short,
random reads rather than long, contiguous reads, which causes significantly increased
disk I/O. Disk head latency is a costly operation that most of us will have to live with
until solid state disks become cost effective and we can replace all the mechanical disks
that are currently in use. Don't underestimate the impact of fragmentation; it can be
terrible for performance, especially when doing table scans which, bad as they sound, are
really done quite often. Also, don't underestimate how quickly fragmentation can occur.
If your tables are subject to frequent modifications, you can very quickly end up with a
table with 10,000 pages and 10,000 fragments, meaning that SQL Server can never
perform a sequential read on the pages of the table, and any scans on the object will be
very inefficient.

We'll show how to investigate and hopefully rectify each problem, using the sys.dm_db_
index_physical_stats DMF. As noted in the previous chapter, where this DMF was
first introduced, many DBAs rebuild indexes as often as they can get away with it, but
this tends to be an all-or-nothing operation, with indexes being rebuilt even if they are
suffering no fragmentation. Such operations can bloat transaction logs and, when using
differential backups, it means that all the pages in the index/tables will have changed
since the last full backup. Chapter 5 described how to set up an index maintenance
scheme based on need rather than expediency, and the same criteria should be considered
for the base table rows, i.e. the data pages for a clustered index or the rows in the heap,
which are the focus of the discussion here.

231

Chapter 6: Physical Disk Statistics and Utilization

The sys.dm_db_index_physical_stats DMF

In order to investigate table fragmentation, we will use the sys.dm_db_index_
physical_stats DMF. It belongs to the index-related category of DMOs, but since
every table is considered either a clustered or heap "index," there is a good amount
of overlap. When dealing with a heap, we'll get valuable information regarding the
fragmentation of the extents (an extent is a group of eight contiguous 8K data pages,
and is the basic allocation unit for pages), and the number of forwarding pointers
(discussed in detail shortly) in use due to this fragmentation. Since the columns
provided by the sys.dm_db_index_physical_stats DMF were covered in detail
in Chapter 5, we'll only provide a very brief recap here.

The DMF has several parameters:

•	 database_id, object_id, index_id, partition_number – each parameter
can be NULL or DEFAULT if we want to return all rows; if database_id is NULL or
DEFAULT, we get stats for all tables in all databases, without having to loop through
each one

•	 mode – determines how rigorous is the scan performed on the object(s) to return the
fragmentation statistics; aside from NULL or DEFAULT, valid values are:

•	 LIMITED – the default and the least costly, but will return NULL for many of
the columns

•	 SAMPLED – will not do as thorough a job of checking all of the pages as LIMITED,
but will give you an idea of the situation by sampling some of the table

•	 DETAILED – the most thorough and most costly of the choices.

The level chosen will depend on the size of your tables, the amount of time you
have in your maintenance window and, simply, on whether you need the values that
LIMITED won't provide. In this chapter, we will be concerned with only four of the
columns returned by this function:

232

Chapter 6: Physical Disk Statistics and Utilization

•	 avg_fragmentation_in_percent – for indexes, the percentage of logical
fragmentation; for heaps, the percentage of extent fragmentation

•	 fragment_count – the number of fragments in the leaf level of the index, of
IN_ROW_DATA allocation units; this includes the leaf pages of all types of indexes,
including clustered, non-clustered, and even heaps

•	 avg_fragment_size_in_pages – the average number of pages in a fragment for
IN_ROW_DATA allocation unity types

•	 forwarded_record_count – for heaps, the number of forwarding pointers;
forwarding pointers are very bad for performance because they are always resolved
immediately, as they are encountered.

The first three give you a feel for the degree of fragmentation in your indexes, clustered
tables, and heaps, whereas the final one pertains only to heaps.

Fragmentation in clustered tables

As discussed earlier, the leaf pages of the clustered table (a table with a clustered index),
which are the actual data pages of the table, are implemented as a doubly-linked list,
ordered by the clustering key. Range scans using this linked list structure are highly
efficient, but become less so as the index becomes fragmented as a result of data inserts,
deletes, and updates. When data is deleted, gaps appear in the pages; when data is
inserted, or an updated row increases in size, and there is no space on the appropriate
page to accommodate it, then a page split occurs, with 50% of the data staying on the
page, and 50% moving to a new page. These two pages will still be linked together in the
linked list, but the new page is unlikely to be contiguous with the existing page, and may
be placed in a different extent.

These types of fragmentation, especially page splits, can drastically increase the amount
of physical I/O required to retrieve the data since, rather than perform long, sequential
reads the disk heads will need to perform shorter, more random reads. If the data on the

233

Chapter 6: Physical Disk Statistics and Utilization

split page is placed in a different extent, fetching the data will require a completely
separate physical I/O operation. The occurrence of page splits can be minimized to
some degree, though not avoided altogether, by setting the appropriate fill factor for the
clustered table (e.g. 90%) thus allowing space for new data on each page. In fact, a
common cause of fragmentation is rebuilding clustered tables and indexes and
forgetting to set the fill factor appropriately. By default, the fill factor will be 0 (meaning
zero spare space). This can end up causing a lot more subsequent fragmentation than was
resolved by rebuilding!

Let's start with a simple example, a small table where we cluster on an IDENTITY column,
the value of which will increase monotonically. It is generally considered good practice to
use narrow, integer, ever-increasing columns, such as afforded by an IDENTITY column
for the clustering key. Note, though, that this IDENTITY column should not be the only
primary key on the table, as the value has no relationship to the data in the table. Some
form of natural key should also be enforced.

Clustering on an IDENTITY (or similar) column means that each row will be inserted in
the logical order dictated by the clustering key, i.e. at the end of the table (that is, in order
of arrival). This avoids the need to insert new rows into the middle of a page, which can
dramatically increase page splits and fragmentation. Bear in mind, though, that clustering
by time of arrival is not necessarily commensurate with the needs of your critical queries
where, ideally, the goal would be to cluster on the key(s) that will gather together data
that is most likely to be queried together.

We insert 100 rows into the table, using a clever trick with GO, in SSMS, which allows us
to execute a batch multiple times, in a loop. Each row is 1 KB in size, so we're limited to
about 8 rows per page (and 64 rows per extent).

CREATE TABLE testClusteredIdentity
 (
 testClusteredId INT
 IDENTITY
 CONSTRAINT PKtestClusteredIdentity PRIMARY KEY CLUSTERED ,

234

Chapter 6: Physical Disk Statistics and Utilization

 value VARCHAR(1000)
)
GO

INSERT INTO testClusteredIdentity(value)
SELECT replicate('a',1000) --only allows 8 rows per page.
GO 100

Listing 6.5:	 The testClusteredIdentity clustered table, with an IDENTITY clustering key.

Next, we check the fragmentation using the sys.dm_db_index_physical_stats
DMV, as shown in Listing 6.6.

SELECT avg_fragmentation_in_percent AS avgFragPct ,
 fragment_count AS fragCount ,
 avg_fragment_size_in_pages AS avgFragSize
FROM sys.dm_db_index_physical_stats(DB_ID(), NULL, NULL, NULL, 'DETAILED')
WHERE index_type_desc = 'CLUSTERED INDEX'
 AND index_level = 0 -- the other levels are the index pages
 AND OBJECT_NAME(object_id) = 'testClusteredIdentity'

Listing 6.6:	 Fragmentation statistics for the testClusteredIdentity clustered table.

The results show that there is little fragmentation, though not zero. While the data is
always placed into the clustered index in order, this concentrates all inserts on the one
page. When this page fills up, it splits, leaving a fragment.

avgFragPct fragCount avgFragSize

----------------- ------------- -----------

13.3333333333333 3 5

Unfortunately, however, many designers persist in the habit of using GUIDs for surrogate
keys, and clustering on them. GUIDs are random in nature, and tend not to be created
sequentially and, as a result, insertions of data into the middle of the table are common.

235

Chapter 6: Physical Disk Statistics and Utilization

The NEWSEQUENTIALID() function

This function will ensure that GUID values are ever increasing. However, it can only be used

in a DEFAULT constraint, and one of the main reasons people like GUIDs is that they can be

created anywhere.

To see the dramatic effect this has on fragmentation, consider the small table in
Listing 6.7 where, this time, we cluster on a GUID, then insert 100 rows, using the same
GO <number> technique.

CREATE TABLE testClustered
 (
 testClusteredId UNIQUEIDENTIFIER
 CONSTRAINT PKtestClustered PRIMARY KEY CLUSTERED ,
 value VARCHAR(1000)
)

INSERT INTO testClustered
SELECT NEWID(), replicate('a',1000)
GO 100

Listing 6.7:	 The testClustered clustered table, with a GUID clustering key.

Check the fragmentation using the sys.dm_db_index_physical_stats DMV, as
shown in Listing 6.6 (changing the target object to testClustered), and you'll see that
just by adding 100 rows, our small table is already heavily fragmented with 21 fragments,
and an average of only one page per fragment.

avgFragPct fragCount avgFragSize

----------------- ------------- -----------

95.2380952380952 21 1

236

Chapter 6: Physical Disk Statistics and Utilization

Fragmentation in heaps

With heaps, the storage engine inserts all rows at the end of the table, in order of arrival.
This is the same behavior as we'll see when clustering on an IDENTITY key, as described
previously, and if the heap is not subject to modifications, fragmentation will not be
a problem.

However, if the heap data is subsequently modified, fragmentation can become a very
big problem indeed. With clustered tables, we discussed fragmentation in the form
of the non-contiguous pages that arise as a result of page splits. This occurs on all
types of data pages other than heap data pages, which are managed differently. On
heap data pages, when a row increases in size and can no longer fit on the current page,
a forwarding pointer is used. Instead of splitting the row, the row that pushes the byte
count above the 8060 byte limit is moved to a new location, and a pointer to where the
row has been moved is placed in the original location.

This makes inserting into a heap super-fast, as all external references to that data can
remain the same. As such, many people use heaps as a place to drop rows (for instance,
when logging operations, and even when loading data using bulk copy), while avoiding
the performance impact of index maintenance.

Reading from a fragmented heap, however, is a performance nightmare. SQL Server has
to follow the pointer to get the row, then back to the page that contained the pointer,
often immensely increasing I/O. The situation is exacerbated by the fact that, unlike on
an index, we cannot specify a fill factor for a heap, meaning that zero free space will be
left on each page, so any inserts (or updates that increase row size) on already filled pages
will inevitably result in fragmentation.

To demonstrate the problem, consider the testHeap table shown in Listing 6.8, with 100
rows containing a single character value.

237

Chapter 6: Physical Disk Statistics and Utilization

CREATE TABLE testHeap
 (
 testHeapId UNIQUEIDENTIFIER
 CONSTRAINT PKtestHeap PRIMARY KEY NONCLUSTERED ,
 value VARCHAR(100)
)

INSERT INTO testHeap
SELECT NEWID(),'a'
GO 100

Listing 6.8:	 The testHeap heap structure.

If we take a look at the fragmentation stats, we will see that the table is almost perfect.

SELECT avg_fragmentation_in_percent AS avgFragPct ,
 fragment_count AS fragCount ,
 avg_fragment_size_in_pages AS avgFragSize ,
 forwarded_record_count AS forwardPointers
FROM sys.dm_db_index_physical_stats(DB_ID(), NULL, NULL, NULL, 'DETAILED')
WHERE index_type_desc = 'HEAP'
 AND index_level = 0 -- the other levels are the index pages
 AND OBJECT_NAME(object_id) = 'testHeap'

Listing 6.9:	 Fragmentation statistics for testHeap.

This reports one page, with no fragmentation, and no forwarding pointers.

avgFragPct fragCount avgFragSize forwardPointers

----------------- ------------- --------------- ---------------

0 1 1 0

The problem with heaps only starts when we modify the data. Let's make the value in our
value column 100 times bigger.

238

Chapter 6: Physical Disk Statistics and Utilization

UPDATE testHeap
SET value = REPLICATE('a',100)

Listing 6.10:	 Updating the value column in testHeap with bigger values.

Now, let's check the stats again.

avgFragPct fragCount avgFragSize forwardPointers

----------------- --------- --------------- ---------------

50 2 1 41

Not horribly fragmented, and only one new page was added to the structure, but 41 of
the 100 rows had to be moved to this new page. Now, to really see the damage that these
forwarding pointers can cause, consider this: there are two pages in this table (two
fragments, of average size one page, means there are two pages; or you can check the
page_count column of sys.dm_db_index_physical_stats).

If this table is scanned, how many logical reads would you expect? No more than two,
right? While it's true that we only have to read two pages, and the entire table will be in
cache if you don't clear it, there are, unfortunately, many more logical reads performed.

SET STATISTICS I/O ON
SELECT *
FROM testHeap
SET STATISTICS I/O OFF

Listing 6.11:	 Capturing I/O statistics when reading the testheap table.

This returns 100 rows and the following:

Table 'testHeap'. Scan count 1, logical reads 43, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical

reads 0, lob read-ahead reads 0.

239

Chapter 6: Physical Disk Statistics and Utilization

So, 43 logical reads? For a table with 2 pages?! Unfortunately, yes, one read for each page
and one read for each of the 41 forwarding pointers. In an actual usage scenario this can
really be a very costly activity, even if all of the data being read was in RAM. This is one of
the major reasons that heaps are generally avoided by most architects of OLTP systems.

The only way to correct forwarding pointers is to rebuild the table. Unfortunately for SQL
Server 2005 users, there is no "simple" way to correct this. You have to either move all the
data into a new table, or add a clustered index and drop it (which seems like a really silly
set of operations). Fortunately, SQL Server 2008 added syntax to let you rebuild the heap
and eliminate the forwarding pointers, as shown in Listing 6.12. Of course, this does not
indicate that heaps are now the way to go, but it is better than adding the type of index
you have specifically (and wisely) avoided.

ALTER TABLE testHeap REBUILD

Listing 6.12:	 Rebuilding a heap to remove fragmentation (SQL 2008 only).

Diagnosing I/O Bottlenecks

There are many tools available for diagnosing I/O bottlenecks on a system. A good place
to start is the OS PerfMon counters, such as PhysicalDisk Object: Avg. Disk Queue
Length and Avg. Disk Reads/Sec, which can help you work out the number of I/Os
per disk, per second, and how many physical I/O requests are being queued, on a
given disk.

In addition, the OS-related DMV, sys.dm_os_wait_stats, covered in Chapter 7,
can provide strong corroborating evidence of a disk I/O bottleneck. For example, if
the top cumulative wait types are disk I/O related, such as PAGEIOLATCH_EX or
PAGEIOLATCH_SH, this indicates that many sessions are experiencing delays in
obtaining a latch for a buffer, since the buffer is involved in physical I/O requests.

240

Chapter 6: Physical Disk Statistics and Utilization

Having diagnosed possible I/O pressure, the next step for the DBA is to find out
where (i.e. to which files on a given disk) the pressure is being applied. This is the extra
granularity provided by the disk I/O-related DMOs discussed in this section, namely
sys.dm_io_virtual_file_stats and sys.dm_io_pending_io_requests.

An overview of sys.dm_io_virtual_file_stats

For each database file that SQL Server uses, including not only the data files but also the
log and full text files, the sys.dm_io_virtual_file_stats DMF gives cumulative
physical I/O statistics, indicating how frequently the file has been used by the database for
reads and writes since the server was last rebooted. It also provides a very useful metric
in the form of the "I/O stall" time, which indicates the total amount of time that user
processes have waited for I/O to be completed on the file in question. Note that this DMF
measures physical I/O only. Logical I/O operations that read from cached data will not
show up here.

The sys.dm_io_virtual_file_stats DMO is a function, and has the following
parameters. Each is used to filter the set of data being returned, and you can use NULL or
DEFAULT to retrieve all:

•	 database_id – surrogate key of the database, retrieved from sys.databases

•	 file_id – surrogate key of a file in a database; can be retrieved from sys.database_
files if you are working in the context of a database, or sys.master_files will give
you all files in all databases.

The columns returned are all pretty interesting and useful for getting a handle on your
SQL I/O, in terms of how the actual files in your databases are being used:

•	 database_id, file_id – same as the parameter descriptions

241

Chapter 6: Physical Disk Statistics and Utilization

•	 sample_ms – the number of milliseconds that have passed since the values for
sys.dm_io_virtual_file_stats were reset (the only way to reset the values is to
restart the server)

•	 num_of_reads – number of individual read operations that were issued to the file;
note that this is physical reads, not logical reads; logical reads would not be registered

•	 num_of_bytes_read – the number of bytes that were read, as opposed to the
number of reads; the size of a read is not a constant value that can be calculated by
the number of reads

•	 io_stall_read_ms – total time user processes waited for I/O; note that this number
can be much greater than the sample_ms; if ten processes are trying to use the file
simultaneously, but the disk is only able to serve one of them, then you might get nine
seconds waiting over a ten-second time period

•	 num_of_writes, num_of_bytes_written, io_stall_write_ms – the same as
the read values, but for writes

•	 io_stall – sum of io_stall_write_ms and io_stall_read_ms

•	 size_on_disk_bytes – the size of the file in bytes

•	 file_handle – the Windows file handle of the file.

Using sys.dm_io_virtual_file_stats

Generally speaking, multiple concurrent users will need to access SQL Server, and with
those users trying to access data in the same physical files, there will likely be some
contention. Therefore, the I/O stalls value, showing the amount of time that processes
are waiting on the file system because of excessive physical I/O, is probably the most
interesting piece of information provided by this DMF. This is one of the primary DMFs
that I use often when a new system is being started up as, despite all efforts to predict the
required I/O throughput, and to spec configure the disk subsystem appropriately, it seems
that disk setup is one of the most difficult things to get right first time (unless you have

242

Chapter 6: Physical Disk Statistics and Utilization

the luxury of taking the easy route, and over-specifying the disk subsystem from
the start).

Pinpointing the cause of high I/O stalls and resolving the problem is sometimes a
complex process. As noted earlier, you can use data from the execution- and index-
related DMOs to attempt to reduce the overall I/O load on the server through tuning
and indexing. You could also increase the amount of RAM, so that more data can be held
in the data cache, so reducing the occurrence of physical file reads. Armed with stall
rate, and the amount of data read and written, you can also identify opportunities to
implement partitioning, or to at least separate tables onto different file groups.

Of course, ultimately, high stall rates could simply indicate that the disk I/O subsystem is
inadequate to handle the required I/O throughput. Hard disk drives generally have only
a single head per platter, and if you have five platters, with four heads, that means that,
physically, only 20 pages of data can be read simultaneously (and the four heads are not
usually independent of one another, either). If you have more than 20 users executing
queries simultaneously (plus processes other than SQL Server that may be accessing the
data), then some of those users will definitely have to wait to retrieve their required data.
While those DBAs with enterprise architecture will be scoffing at such small amounts of
disk hardware, many smaller organizations would love to have five hard drives on their
main business server.

However, if stall rates are causing severe issues, and all attempts to reduce the overall
I/O load fail to bring them down to acceptable levels, there is little choice but to consider
adding more or faster disks, or to investigate potential problems with the configuration of
the I/O subsystem, as discussed earlier.

Finally, remember that the data in this DMO reflects SQL Server's perspective of disk I/O.
If the disk subsystem is shared at a server level with other applications, the actual cause
of poor disk performance may be another application, not SQL Server. Also, as discussed
earlier, with the increasing use of SANs, virtualization software, and so on, there are often
several "intermediary" layers between SQL Server and the actual disk storage. An issue
with disk I/O could, in fact, be caused by one of these intermediary layers rather than

243

Chapter 6: Physical Disk Statistics and Utilization

the disk drives. In short, give careful consideration to data obtained from this DMO, and
consider it in conjunction with data obtained from Windows OS counters, Profiler, and
other DMOs, before deciding on a course of action.

Investigating physical I/O and I/O stalls

As noted previously, the data provided by this DMO is cumulative from when the server
is restarted; in other words, the values in the data columns increment continuously from
the point when the server was last restarted. To get a really accurate view of the data,
you'd need to reboot the server at same time every day, and take a snapshot at the same
time so you could compare day-to-day activity and trends. Since this isn't really practical,
we can, instead, take a baseline measurement followed by the actual measurement, then
subtract the two, to see where I/O is accumulating.

Let's take a look at an example. To see any interesting data, you'll need an active
test system, or a handy, overtaxed server to try it out on. Happily, thanks to previous
remedial action, based on results collected from this DMO, such servers seem to be fewer
and farther between, in my case. First, I put the initial baseline into a temp table (or you
could use a permanent table, if desired), as shown in Listing 6.13.

SELECT DB_NAME(mf.database_id) AS databaseName ,
 mf.physical_name ,
 divfs.num_of_reads ,
 divfs.num_of_bytes_read ,
 divfs.io_stall_read_ms ,
 divfs.num_of_writes ,
 divfs.num_of_bytes_written ,
 divfs.io_stall_write_ms ,
 divfs.io_stall ,
 size_on_disk_bytes ,
 GETDATE() AS baselineDate
INTO #baseline

244

Chapter 6: Physical Disk Statistics and Utilization

FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 JOIN sys.master_files AS mf ON mf.database_id = divfs.database_id
 AND mf.file_id = divfs.file_id

Listing 6.13:	 Capturing baseline disk I/O statistics from sys.dm_io_virtual_file_stats

in a temporary table.

Listing 6.14 shows a query against the #baseline table, returning read statistics for a
particular database.

SELECT physical_name ,
 num_of_reads ,
 num_of_bytes_read ,
 io_stall_read_ms
FROM #baseline
WHERE databaseName = 'DatabaseName'

Listing 6.14:	 Querying the #baseline temporary table.

This returns the following data:

physical_name num_of_reads num_of_bytes_read io_stall_read_ms

------------------------ ---------------- -------------------- ----------------

F:\MSSQ...DATABASE.mdf 1560418 381784449024 176090340

E:\MSSQ...BASE_log.LDF 925 592683008 7000

I:\MSSQ...SE_index.ndf 398504 310491209728 39664904

k:\mssq...TABASE2A.mdf 540176 155267350528 319640508

This data, taken on a server that was restarted about 12 hours previously, is not especially
interesting or meaningful in its own right. However, the next step is where we turn this
data into information.

Having captured the baseline, wait a set amount of time, or for some process to complete,
and then take a second measurement, from which the baseline values are subtracted, as

245

Chapter 6: Physical Disk Statistics and Utilization

shown in Listing 6.15. On a busy server, you may wait as little as 10 seconds before taking
the second measurement, as is the case in this example.

WITH currentLine
 AS (SELECT DB_NAME(mf.database_id) AS databaseName ,
 mf.physical_name ,
 num_of_reads ,
 num_of_bytes_read ,
 io_stall_read_ms ,
 num_of_writes ,
 num_of_bytes_written ,
 io_stall_write_ms ,
 io_stall ,
 size_on_disk_bytes ,
 GETDATE() AS currentlineDate
 FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 JOIN sys.master_files AS mf
 ON mf.database_id = divfs.database_id
 AND mf.file_id = divfs.file_id
)
 SELECT currentLine.databaseName ,
 LEFT(currentLine.physical_name, 1) AS drive ,
 currentLine.physical_name ,
 DATEDIFF(millisecond,baseLineDate,currentLineDate) AS elapsed_ms,
 currentLine.io_stall - #baseline.io_stall AS io_stall_ms ,
 currentLine.io_stall_read_ms - #baseline.io_stall_read_ms
 AS io_stall_read_ms ,
 currentLine.io_stall_write_ms - #baseline.io_stall_write_ms
 AS io_stall_write_ms ,
 currentLine.num_of_reads - #baseline.num_of_reads AS num_of_reads ,
 currentLine.num_of_bytes_read - #baseline.num_of_bytes_read
 AS num_of_bytes_read ,
 currentLine.num_of_writes - #baseline.num_of_writes AS num_of_writes ,
 currentLine.num_of_bytes_written - #baseline.num_of_bytes_written
 AS num_of_bytes_written
 FROM currentLine
 INNER JOIN #baseline ON #baseLine.databaseName = currentLine.databaseName
 AND #baseLine.physical_name = currentLine.physical_name
 WHERE #baseline.databaseName = 'DatabaseName'

Listing 6.15:	 Capturing 10 seconds of disk I/O statistics, since the baseline measurement.

246

Chapter 6: Physical Disk Statistics and Utilization

Following is a sampling of the result, again focusing only on the read statistics:

physical_name elapsed_ms num_of_reads num_of_bytes_read io_stall_read_ms

-------------- ---------- ------------ ------------------ ------------------

F:\MSSQ.SE.mdf 10016 915 128311296 34612

E:\MSSQ.og.LDF 10016 0 0 0

I:\MSSQ.ex.ndf 10016 344 172933120 8000

k:\mssq.2A.mdf 10016 0 0 0

These results show that, over the 10-second sampling period, read operations against
the data file on the F: drive had to wait a combined total of 34 seconds. Of course, this
data would have to be assessed in the light of how many processes ran during the
sampling period; if it was 4, the result would be very worrying; if it was 100,
then perhaps less so.

It is interesting that more data was read from the I: drive, with fewer I/O stalls, which
is most likely explained by different usage patterns. The I: drive is subject to a smaller
number of, mostly sequential, reads, whereas the F: drive is subject to many more reads
that are mainly random in nature. Obviously, one can only know for sure given some
knowledge of the activity that was occurring during the sampling. In any event, it is
certainly worrying to see that the stall times on the F: drive are substantially greater
than the elapsed time, and I'd want to investigate further, to find out why.

This was just a simple example of how performance bottlenecks might be identified using
this data. By comparing this data to that obtained routinely from performance counters,
Profiler traces, and other DMV snapshots, we can really start to get an idea of how our
disks are being utilized for a given server workload.

247

Chapter 6: Physical Disk Statistics and Utilization

Viewing pending I/O requests

Whereas the data in the the sys.dm_io_virtual_file_stats DMF is cumulative, the
sys.dm_io_pending_io_requests DMV returns a row for each currently pending I/O
request, so it is interesting from the standpoint of seeing what is happening right now,
at the file level. This is a useful tool for analyzing disk I/O at a more granular level than is
allowed by tools such as Profiler, which will summarize I/O activity at the drive level.

Each time you query this DMV, it's likely that a different set of processes will be pending,
so the returned data will vary each time. However, if you frequently see what seems like a
high number of pending I/Os, this is evidence of some level of I/O bottleneck. Obviously,
"high" is a matter of interpretation, but more than two or three could indicate an issue.

This DMV returns several columns that are occasionally useful, including:

•	 io_completion_request_address – address of the I/O request

•	 io_type – type of I/O, for example 'disk'

•	 scheduler_address – relates to sys.dm_os_schedulers to get information
about the scheduler coordinating this I/O request

•	 io_handle – handle for the file that is the target of the I/O request; relates to
sys.dm_id_virtual_file_stats.file_handle to get the file information.

However, the most interesting columns returned by this view, and the ones we'll use in
our script, are:

•	 io_pending – an integer value that indicates whether an I/O request is pending
(returns 1) or has been completed by Windows but not yet processed by SQL Server,
since it has not yet performed the context switch (returns 0); we know that the item is
pending for the SQL Server storage engine, as this is the purpose of the DMV

248

Chapter 6: Physical Disk Statistics and Utilization

•	 io_pending_ms_ticks – represents the total time individual I/Os are waiting in
the pending queue; Books Online lists this as internal use only, but it is useful for
comparing the magnitude of the waits on each file.

Using the query in Listing 6.16, we can view the file name, the status, and how long the
operation has been waiting.

SELECT mf.physical_name ,
 dipir.io_pending ,
 dipir.io_pending_ms_ticks
FROM sys.dm_io_pending_io_requests AS dipir
 JOIN sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 ON dipir.io_handle = divfs.file_handle
 JOIN sys.master_files AS mf ON divfs.database_id = mf.database_id
 AND divfs.file_id = mf.file_id
ORDER BY dipir.io_pending , --Show I/O completed by the OS first
 dipir.io_pending_ms_ticks DESC

Listing 6.16:	 Returning pending I/O requests.

This will return results such as the following:

physical_name io_pending io_pending_ms_ticks

------------------------------------- ----------- --------------------

h:\sqlfiles\data\dbname_index.ndf 0 15

h:\sqlfiles\data\dbname_data.mdf 1 15

h:\sqlfiles\data\dbname_log.ldf 1 0

In this case, there are pending I/O operations on the log and data files stored on the
H: drive. On the secondary data file (judging by the name, one that contains most of the
indexes), there is an I/O request that has been completed by Windows but not yet fetched
by SQL Server.

249

Chapter 6: Physical Disk Statistics and Utilization

If you regularly observe a high number of pending I/O requests on a single drive,
you should consider moving some of the files onto a separate drive, on a different
access channel.

Finding the Read:Write Ratio

In an OLTP database, the goal of every read is to touch as few data pages as possible in
order to return the required data, and the goal of every write is to modify only one page
of data, though this number will be higher if the page is in an index, since the index will
need to be updated as well as the underlying table.

An interesting metric for the DBA is the read ratio compared to the write ratio at the
file, database, or even table level. In other words, we calculate physical reads as a
proportion of total physical reads and writes, and compare it to physical writes, again
as a proportion of total physical reads and writes. We can use the sys.dm_io_virtual_
file_stats DMF to calculate two different forms of this ratio:

•	 amount of data read versus written – in other words, the number of bytes read in
from disk, compared to the number of bytes of data written out to the file system

•	 number of read versus write operations – in this view of the ratio, reading 1 GB of
data is indistinguishable from reading 10 KB; as long as each occurs in a single read,
each will register as a single operation.

For example, consider a full table scan of a single table that contains a gigabyte of data. In
the first method, the scan will register as a gigabyte of data, and in the second method it
will register as a single operation. Bear in mind that these ratios refer purely to physical
I/O. If a column value is updated ten times, by ten separate transactions, in memory it
will record as ten operations in the log file, but only one operation in the data file.

250

Chapter 6: Physical Disk Statistics and Utilization

In an optimized OLTP system, user requests should read as little data as possible to
perform any required update and so the read:write ratio, in either form, would ideally
be close to 50:50. In reality, however, there are almost always more reads than writes;
even an update that fetches data with the clustered primary key may read a few pages of
index and the data page in order to find the single page to modify. Nevertheless, you'd
still like to see reads minimized to only four or five reads per one or two writes. A higher
ratio than around 80:20, and most DBAs will start to suspect non-optimal queries, or
insufficient cache memory to avoid physical disk access.

Let's say you find a heavily used table, where you expect the ratio to be close to 50:50,
but, instead, find that it is heavily weighted towards reads (perhaps 99:1). This could
indicate a problem such as an application looping a row at a time instead of doing
relational operations. It is also very interesting to look out for cases where the two ratios
return very different results. For example, and clearly this is an oversimplification, but if
you find that the read:write ratio is 50:50 based on counts, and 99:1 based on data, this
indicates that you are reading a lot of data to write a little data, which could be caused by
inefficient database code, perhaps allowing users to search in a very inefficient manner,
resulting in table scans.

In general, these ratios are a useful tool in helping you to find opportunities to optimize
the I/O via tuning, and to help you make decisions about how to optimize your disk sub-
system. By finding which files, database, and tables are subject to the most read and write
activity, and in what ratio, you can make better decisions regarding the need, for example,
to move objects to different disks (e.g. making sure write-intensive objects are situated
on hardware specially configured for this purpose), add spindles, use a SAN versus direct
attached storage, and so on. It is also very useful to determine the read:write ratio for a
given batch of operations.

251

Chapter 6: Physical Disk Statistics and Utilization

Amount of data read versus written

The script in Listing 6.17 simply calculates the number of bytes read as a proportion of
the total number of bytes read or written (RatioOfReads), and then the number of bytes
written as a proportion of the total bytes read or written (RatioOfWrites), and presents
them alongside the total number of bytes read and written, for the files associated with
the selected database(s). Bear in mind that this includes only actual writes to the files, or
reads from the file, and will not reflect data read from the cache, or written to the cache
and not yet flushed to the disk.

--uses a LIKE comparison to only include desired databases, rather than
--using the database_id parameter of sys.dm_io_virtual_file_stats
--if you have a rather large number of databases, this may not be the
--optimal way to execute the query, but this gives you flexibility
--to look at multiple databases simultaneously.
DECLARE @databaseName SYSNAME
SET @databaseName = '%'
 --'%' gives all databases

SELECT CAST(SUM(num_of_bytes_read) AS DECIMAL)
 / (CAST(SUM(num_of_bytes_written) AS DECIMAL)
 + CAST(SUM(num_of_bytes_read) AS DECIMAL)) AS RatioOfReads ,
 CAST(SUM(num_of_bytes_written) AS DECIMAL)
 / (CAST(SUM(num_of_bytes_written) AS DECIMAL)
 + CAST(SUM(num_of_bytes_read) AS DECIMAL)) AS RatioOfWrites ,
 SUM(num_of_bytes_read) AS TotalBytesRead ,
 SUM(num_of_bytes_written) AS TotalBytesWritten
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
WHERE DB_NAME(database_id) LIKE @databaseName

Listing 6.17:	 The read:write ratio, by database, for amount of data transferred.

252

Chapter 6: Physical Disk Statistics and Utilization

The results of this query will give you an idea of how much data has been read from and
written to all of the files in the system or database. The following is a set of results from
an OLTP system that had been up and running for four days. In total, it is about 81:19,
which is a fairly good ratio, considering it is for all databases on your server:

RatioOfReads RatioOfWrites TotalBytesRead TotalBytesWritten

----------------------- ----------------------- ----------------- -----------------

0.81449639341533276910 0.18550360658466723089 5612056879616 1278160099840

Capturing these ratios for all files, or even at the database level, is not necessarily very
useful, but we can easily add in a reference to the sys.master_files catalog view and
start to slice the data in various interesting ways. As an example, consider the slicing
shown in Listing 6.18, grouping on the drive letter to give the ratios for each drive on the
server that is used by the selected databases.

DECLARE @databaseName SYSNAME
SET @databaseName = '%'
 --'%' gives all databases

SELECT LEFT(physical_name, 1) AS drive ,
 CAST(SUM(num_of_bytes_read) AS DECIMAL)
 / (CAST(SUM(num_of_bytes_written) AS DECIMAL)
 + CAST(SUM(num_of_bytes_read) AS DECIMAL)) AS RatioOfReads ,
 CAST(SUM(num_of_bytes_written) AS DECIMAL)
 / (CAST(SUM(num_of_bytes_written) AS DECIMAL)
 + CAST(SUM(num_of_bytes_read) AS DECIMAL)) AS RatioOfWrites ,
 SUM(num_of_bytes_read) AS TotalBytesRead ,
 SUM(num_of_bytes_written) AS TotalBytesWritten
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
 JOIN sys.master_files AS mf ON mf.database_id = divfs.database_id
 AND mf.file_id = divfs.file_id
WHERE DB_NAME(divfs.database_id) LIKE @databaseName
GROUP BY LEFT(mf.physical_name, 1)

Listing 6.18:	 The read:write ratio, by drive, for amount of data transferred.

253

Chapter 6: Physical Disk Statistics and Utilization

The results are as follows:

drive RatioOfReads RatioOfWrites TotalBytesRead TotalBytesWritten

----- ----------------- --------------- -------------------- --------------------

E 0.509947179620… 0.49005282037… 324253917696 311603933184

F 0.953302196684… 0.04669780331… 2213262221312 108417335296

H 0.376100820227… 0.62389917977… 344707538944 571822073344

I 0.922886044827… 0.07711395517… 1316300808192 109986668544

J 0.708701451352… 0.29129854864… 381697171456 156889522176

K 0.974068440224… 0.02593155977… 1040343924736 27695939584

As you can see, some of the drives are heavily skewed towards reads (92:8 for the I: drive),
whereas H: is skewed towards writes. Do any of these values indicate a potential problem?
As the old DBA saying goes: "It depends." In this case, the H: drive contains tempdb,
so heavy writes are to be expected. The E: drive, with a ratio of 51:49, is where all the
tempdb logs reside.

Of considerable concern are the I:, F:, and K: drives, where we have a tremendous amount
of reading taking place in each case. These drives house the data for one of our heavy
use databases and I would certainly like to investigate further to see if the amount of
data being read could be reduced. The next step is to obtain the read:write ratios for this
database in terms of the number of read and write operations. If this method reveals a
ratio much closer to 50:50 then we know that reads are reading a disproportionately high
amount of data.

Number of read and write operations

Listing 6.19 takes exactly the same form as Listing 6.17, except that it returns the number
of reads and writes as a proportion of the total number of reads and writes.

254

Chapter 6: Physical Disk Statistics and Utilization

DECLARE @databaseName SYSNAME
SET @databaseName = 'BusyDatabase'
 --obviously not the real name
 --'%' gives all databases

SELECT CAST(SUM(num_of_reads) AS DECIMAL)
 / (CAST(SUM(num_of_writes) AS DECIMAL)
 + CAST(SUM(num_of_reads) AS DECIMAL)) AS RatioOfReads ,
 CAST(SUM(num_of_writes) AS DECIMAL)
 / (CAST(SUM(num_of_reads) AS DECIMAL)
 + CAST(SUM(num_of_writes) AS DECIMAL)) AS RatioOfWrites ,
 SUM(num_of_reads) AS TotalReadOperations ,
 SUM(num_of_writes) AS TotalWriteOperations
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS divfs
WHERE DB_NAME(database_id) LIKE @databaseName

Listing 6.19:	 The read:write ratio, by database, for number of read/write operations.

For the database that spanned the I:, F:, and K: drives, from the previous section, the
following results were returned:

RatioOfReads RatioOfWrites TotalReadOperations TotalWriteOperations

------------------ ---------------- -------------------- --------------------

0.669141428931… 0.330858571068… 49582510 24516190

So, for this database, reads account for about 67% of all operations, and about 90%
in terms of the actual amount of physical I/O performed. In my experience, this is
not "horrible," but there might seem to be scope to reduce the amount of data each
read is retrieving.

Number of reads and writes at the table level

Using the sys.dm_db_index_usage_stats DMV, covered in Chapter 5, we can get
another view of the read:write ratio, this time down to the table level. Note that counts
returned by this DMV will include logical operations, so the ratio obtained here is not

255

Chapter 6: Physical Disk Statistics and Utilization

necessarily directly comparable to the previous count-based ratio, obtained from sys_
dm_io_virtual_file_stats. These numbers, however, provide a better representa-
tion of the actual number of read and write operations, as they are counted at the object
level, whether or not the utilization is logical or physical. Note, too, that only objects that
have been used in a DML statement will be included, so after a reboot, you may get not
get any results for some objects.

The query shown in Listing 6.20 is based on one first suggested by Jamie Massie, in his
blog entry entitled Is 80/20 a 90's Estimate? For all objects in a given database, it sums
seeks, scans and lookups as read operations, and updates as changes to the data (the CASE
expressions prevent divide by zero errors when the table has never been used).

DECLARE @databaseName SYSNAME
SET @databaseName = 'BusyDatabase' --obviously not the real name
 --'%' gives all databases

SELECT CASE
 WHEN (SUM(user_updates + user_seeks + user_scans + user_lookups) = 0)
 THEN NULL
 ELSE (CAST(SUM(user_seeks + user_scans + user_lookups)
 AS DECIMAL)
 / CAST(SUM(user_updates + user_seeks + user_scans
 + user_lookups) AS DECIMAL))
 END AS RatioOfReads ,
 CASE
 WHEN (SUM(user_updates + user_seeks + user_scans + user_lookups) = 0)
 THEN NULL
 ELSE (CAST(SUM(user_updates) AS DECIMAL)
 / CAST(SUM(user_updates + user_seeks + user_scans
 + user_lookups) AS DECIMAL))
 END AS RatioOfWrites ,
 SUM(user_updates + user_seeks + user_scans + user_lookups)
 AS TotalReadOperations ,
 SUM(user_updates) AS TotalWriteOperations
FROM sys.dm_db_index_usage_stats AS ddius
WHERE DB_NAME(database_id) LIKE @databaseName

Listing 6.20:	 Read:write ratio for all objects in a given database.

256

Chapter 6: Physical Disk Statistics and Utilization

On the same busy server as used in the previous two sections, the following results were
obtained, which are within the same range as the previous results.

RatioOfReads RatioOfWrites TotalReadOperations TotalWriteOperations

------------------ ------------------ -------------------- --------------------

0.73322906464778… 0.26677093535221… 297209079 79286744

Listing 6.21 breaks down the ratio data to the object level, simply by grouping on
the object_id.

--only works in the context of the database due to sys.indexes usage
USE BusyDatabase
 --obviously not the real name

SELECT OBJECT_NAME(ddius.object_id) AS object_name ,
 CASE
 WHEN (SUM(user_updates + user_seeks + user_scans + user_lookups) = 0)
 THEN NULL
 ELSE (CAST(SUM(user_seeks + user_scans + user_lookups) AS DECIMAL)
 / CAST(SUM(user_updates + user_seeks + user_scans
 + user_lookups) AS DECIMAL))
 END AS RatioOfReads ,
 CASE
 WHEN (SUM(user_updates + user_seeks + user_scans + user_lookups) = 0)
 THEN NULL
 ELSE (CAST(SUM(user_updates) AS DECIMAL)
 / CAST(SUM(user_updates + user_seeks + user_scans
 + user_lookups) AS DECIMAL))
 END AS RatioOfWrites ,
 SUM(user_updates + user_seeks + user_scans + user_lookups)
 AS TotalReadOperations ,
 SUM(user_updates) AS TotalWriteOperations
FROM sys.dm_db_index_usage_stats AS ddius
 JOIN sys.indexes AS i ON ddius.object_id = i.object_id
 AND ddius.index_id = i.index_id

257

Chapter 6: Physical Disk Statistics and Utilization

WHERE i.type_desc IN ('CLUSTERED', 'HEAP') --only works in Current db
GROUP BY ddius.object_id
ORDER BY OBJECT_NAME(ddius.object_id)

Listing 6.21:	 Read:write ratio per object.

Getting Stats about tempdb Usage

In the earlier section, Diagnosing I/O Bottlenecks, we discussed how to investigate
activity levels at the file level. This will have included activity on files associated with
the tempdb database. However, in many respects, tempdb is a special case and merits
individual attention.

The tempdb database is a global resource that is used by all sessions connected to a
given SQL Server instance, and it holds many objects that you can't "see" in the system
tables. For example, it stores internal objects (work tables), created by SQL Server to hold
the intermediate results of sorts and spools, as well as user temporary objects such
temporary tables, table variables, cursors, and so on. It also holds row versioning
information when using snapshot isolation (see Chapter 4, for full details) as well as
triggers and online indexing.

As such, sizing and configuration of the tempdb database is crucially important to the
overall performance of SQL Server, especially if you are running transactions using
SNAPSHOT, or READ_COMMITTED_SNAPSHOT isolation. Thorough coverage of how to
set up tempdb is beyond the scope of this book, but a good place to start is the MSDN
article, tempdb Size and Placement Recommendations (http://msdn.microsoft.com/en-
us/library/ms175527.aspx), which recommends placing tempdb files on very fast disks,
independent of other databases, and broken up into multiple files (even if they are in one
filegroup), depending on the number of CPUs in your system. A common starting place,
as stated in the aforementioned article, is to have one file per CPU core.

258

Chapter 6: Physical Disk Statistics and Utilization

The sys.dm_db_file_space_usage DMV returns data that reflects the current state
of file usage, including the following columns:

•	 database_id – surrogate key of the database (relates to sys.databases)

•	 file_id – the file identifier (relates to sys.database_files)

•	 unallocated_extent_page_count – extents that are reserved in the file but not
currently allocated to objects

•	 version_store_reserved_page_count – number of pages that are reserved to
support snapshot isolation transactions

•	 user_object_reserved_page_count – number of pages reserved to user tables

•	 internal_object_reserved_page_count – number of pages reserved to internal
objects, such as work tables, that SQL Server creates to hold intermediate results, such
as for sorting data

•	 mixed_extent_page_count – number of extents that have pages of multiple types
– user objects, version store, or internal objects, Index Allocation Map (IAM) pages, etc.

Listing 6.22 demonstrates how to get an overview of tempdb utilization.

SELECT mf.physical_name ,
 mf.size AS entire_file_page_count ,
 dfsu.version_store_reserved_page_count ,
 dfsu.unallocated_extent_page_count ,
 dfsu.user_object_reserved_page_count ,
 dfsu.internal_object_reserved_page_count ,
 dfsu.mixed_extent_page_count
FROM sys.dm_db_file_space_usage dfsu
 JOIN sys.master_files AS mf ON mf.database_id = dfsu.database_id
 AND mf.file_id = dfsu.file_id

Listing 6.22:	 An overview of tempdb utilization.

259

Chapter 6: Physical Disk Statistics and Utilization

If you are using database snapshots, snapshot isolation level, or even triggers, the
version_store_reserved_page_count can be really interesting. The biggest worry
with snapshot isolation level is tempdb utilization. Using this query you can see how
much of the data being stored in the tempdb is for the version store. Version store usage
can be investigated in much more detail using the dedicated DMOs covered in Chapter 4.

One thing to also note is that, since the storage engine uses a proportional fill algorithm
to choose which files to put data in first, every file that is returned ought to have the same
value for entire_file_page_count, as we see in the following sample results:

physical_name entire_file_page_count version_store_reserv...

------------------------------- ---------------------- --------------------...

H:\MSSQL\DATA\tempdb.mdf 524288 208

H:\MSSQL\DATA\tempdev_2.ndf 524288 208

H:\MSSQL\DATA\tempdev_3.ndf 524288 200

H:\MSSQL\DATA\tempdev_4.ndf 524288 176

That looks like a well configured set of files (there were 16 files in total on the system from
which these results were taken). However, on a different server, a far less palatable result
was returned:

physical_name entire_file_page_count version_store_reserved...

------------------------------ ---------------------- ----------------------...

H:\MSSQL\DATA\tempdb.mdf 1024 0

H:\MSSQL\DATA\tempdata2.ndf 65536 64

The tempdata2 file will be used approximately 60 times more than the other, which is
apparent, not only in the version store column, but also in the others.

In addition, the query in Listing 6.23 provides an overview of the entire tempdb file size
and version store utilization, in pages.

260

Chapter 6: Physical Disk Statistics and Utilization

SELECT SUM(mf.size) AS entire_page_count ,
 SUM(dfsu.version_store_reserved_page_count) AS version_store_reserved_page_
count
FROM sys.dm_db_file_space_usage dfsu
 JOIN sys.master_files AS mf ON mf.database_id = dfsu.database_id
 AND mf.file_id = dfsu.file_id

Listing 6.23:	 tempdb file size and version store usage.

The sys.dm_db_file_space_usage DMV may not be a "marquee name" in DMVs but,
like so many of the DMVs, it is there to cover some facet of the system's internals that you
just can't get any other way.

Summary

In this chapter, we have looked at a lot of very useful queries and techniques that allow
us to understand the physical characteristics of our objects and their usage statistics.
We used the sys.dm_db_partition_stats DMV to return the size and structure
characteristics of our clustered tables and heaps (and their underlying partitions), and
then the sys.dm_db_index_physical_stats DMV to diagnose fragmentation in
these objects. If even the simplest process appears to be taking way more time than seems
reasonable, it may well be caused by page splits in your clustered tables and non-clustered
indexes, or by fragmentation, and the subsequent use of forwarding pointers, in heaps.

Next, we looked at how to get I/O statistics from the sys.dm_io_virtual_file_
stats DMF, which, at a file level, shows us how many reads and writes are issued to a
file as well as providing important information regarding how long processes have had to
wait for I/O operations to be completed (I/O stalls). This is an amazingly useful tool for
seeing where your I/O system is performing poorly, from SQL Server's perspective. Note
that if the data returned indicates a "disk I/O problem," it may not be SQL Server that is
causing this problem. The problem could easily lie elsewhere, especially if you are using

261

Chapter 6: Physical Disk Statistics and Utilization

a SAN with many other users, or someone is serving web pages from the same physical
drives as your database.

We also briefly discussed the use of the sys.dm_io_pending_io_requests DMV to
see currently pending I/O requests, i.e. to view how much data is currently in the I/O
pipeline to be processed by SQL Server but, for some reason, has not been consumed.

Next, we demonstrated two methods of finding the read:write ratio at the file, database,
or table level. This information is invaluable when determining, for example, the most
appropriate RAID configuration for a given disk (RAID 10 for frequently updated data,
RAID 5 for read-only data, and so on). We saw how the value for this ratio could vary
dramatically, depending on whether it was based on the amount of data being read or
written to disk, or on the number of individual read/write operations. If you see a value of
99:1 in terms of amount of data, but 40:60 in terms of the number of operations, it means
that your queries are reading way too much data, and you have some tuning work to do.

Finally, we covered the sys.dm_db_file_space_usage DMV, and used it to
investigate tempdb space usage, an understanding of which is critical since, in SQL
Server 2005 and 2008, tempdb is central to so much of the query activity on your server.

If you are a newbie to performance tuning from a disk I/O perspective, I know that you
are thinking, "Disk I/O tuning is hard!" and that is completely true. In all but the most
talented shops, it is a very common practice to guess high and buy too much hardware
for small applications, and guess way too low for very active applications. The goal of this
chapter and, in fact, the whole book is to help you understand the tools that are available
to help you to reach the "right" solution.

262

Chapter 7: OS and Hardware
Interaction

In this final chapter, we reach the lowest level of the SQL Server engine, namely the
SQL Server Operating System (SQLOS) layer. The SQLOS manages many functions and
services in the engine, but the two primary ones are the scheduling of task execution
(i.e. CPU time) and the allocation and management of memory across all SQL Server
data engine components.

Books Online lists 29 objects in the "sys.dm_os_" category, which collectively can
provide us with a vast amount of detailed data (sometimes too much) regarding the
nature of the interaction between SQL Server and the operating system. What we've
tried to do in this chapter is to select the ten DMOs in this category that are likely to be
the most immediately useful to DBAs in their normal tuning and system management
activities. We'll answer common questions, such as those below (relevant DMOs are
shown in brackets, minus the sys.dm_os_ prefix).

•	 What kinds of things have the SQL Server OS threads been waiting on? (wait_stats).

•	 What are the values of the SQL Server performance counters, and how are they
decoded? (performance_counters).

•	 What are the characteristics of the machine that SQL Server is running on?
(sys_info).

•	 Is there currently CPU pressure? (schedulers, ring_buffers).

•	 How is memory as a whole being utilized? (sys_memory, process_memory).

•	 How is the cache memory being utilized? (memory_clerks, cache_counters).

•	 How much resource locking (latches) has occurred? (latch_stats).

263

Chapter 7: OS and Hardware Interaction

With this information we can get a solid view of the SQL Server system and how it is
interacting with the hardware, and we can spot potential bottlenecks and pressure points.

A word of warning before we begin: perhaps more so than any other category of DMO,
the operating system-related objects provide enough "raw" data to make your head spin.
Much of this data needs to be gathered carefully, and tracked over time, in order to draw
firm conclusions regarding the nature of the SQL Server-OS interaction. The situation
is further complicated by the use of virtualization, where the values you get back from
the queries in this chapter may not represent reality, but rather what the virtualization
software tells the virtual machine on which your SQL Server is running.

This chapter assumes that you have a reasonable knowledge of the SQL Server
Architecture (SQL Server 2008 Internals, by Kalen Delaney, is a good book to have
open alongside this one) and, metaphorically, attempts to play the role of the flashlight
salesperson at the mouth of the cave, allowing you to shine a light on objects of interest.
In-depth analysis and interpretation is in the eyes of the spelunker.

Wait Statistics

Arguably the most significant DMV in the Operating System category is sys.dm_os_
wait_stats. Every time a session has to wait for some reason before the requested
work can continue, SQL Server records the length of time waited, and the resource that
is being waited on. The sys.dm_os_wait_stats DMV exposes these wait statistics,
aggregated across all session IDs, to provide a summary review of where the major waits
are on a given instance. This same DMV also exposes performance (PerfMon) counters,
which provide specific resource usage measurements (disk transfer rates, amount of CPU
time consumed and so on). By correlating wait statistics with resource measurements,
you can quickly locate the most contested resources on your system, and so highlight
potential bottlenecks.

264

Chapter 7: OS and Hardware Interaction

SQL Server 2005 waits and queues

The use of "waits and queues" as the basis for a performance tuning methodology is explained in an

excellent white paper by Tom Davidson, which is available at http://sqlcat.com/whitepapers/

archive/2007/11/19/sql-server-2005-waits-and-queues.aspx.

Essentially, each request to SQL Server will result in the initiation of a number of "worker
tasks." A SQL Server Scheduler assigns each task to a worker thread. Normally, there is
one SQLOS scheduler per CPU, and only one session per scheduler can be running at
any time. It's the scheduler's job to spread the workload evenly between available worker
threads. If a session's worker thread is running on the processor, the status of the parent
request will be "Running," as exposed by the Status column of the sys.dm_exec_
requests DMV. If a thread is "ready to go" (has been signaled) but the scheduler to
which it is assigned currently has another session running, it will be placed in the
"runnable" queue, which simply means it is in the queue to get on the processor. This
is referred to as a "signal wait." The signal wait time is exposed by the signal_wait_
time_ms column, and is solely CPU wait time. If a session's request is waiting for anoth-
er resource, such as a locked page, to become available in order to proceed, or if a running
session needs to perform I/O, then it is moved to the waiter list; this is a resource wait
and the waiting request's status will be recorded as "suspended." The reason for the wait is
recorded, and exposed in the wait_type column of the sys.dm_os_wait_stats DMV.
The total time spent waiting is exposed by the wait_time_ms column, so the resource
wait time can be calculated simply, as follows:

Resource waits = Total waits – Signal waits
 =(wait_time_ms) - (signal_wait_time_ms).

Signal waits are unavoidable in OLTP systems, comprising a large number of short
transactions. The key metric, with regard to potential CPU pressure, is the signal wait
as a percentage of the total waits. A high percentage signal is a sign of CPU pressure (see
Listing 7.5). The literature tends to quote "high" as more than about 25%, but it depends
on your system.

265

Chapter 7: OS and Hardware Interaction

Overall, the use of wait statistics represents a very effective means to diagnose response
times in your system. In very simple terms, you either work, or you wait:

Response time = service time + wait time

If response times are slow and you find no significant waits, or mainly signal waits, you
know you need to focus on the CPU. If, instead, you find the response time is mainly
comprised of time spent waiting for other resources (network, I/O, etc.) then, again, you
know exactly where to focus your tuning efforts.

Taking the guesswork out of performance profiling

Mario Broodbakker has written an excellent introductory series of articles on using wait events to

diagnose performance problems, which you can find at http://www.simple-talk.com/author/

mario-broodbakker/.

A brief overview of sys.dm_os_wait_stats

In the battle against a poorly performing system, the ability to investigate where, and for
how long, SQL Server OS threads have been waiting for some other action to complete
before proceeding, is one of the most potent weapons that the DBA has available, and
these wait times are exposed via the sys.dm_os_wait_stats DMV.

This DMV gives us a list of all the different types of wait that threads have encountered,
the number of times they have waited on a resource to be available, and the amount of
time waited. The values provided are running totals, accumulated across all sessions
since the server was last restarted or the statistics were manually reset using the DBCC
SQLPERF command shown in Listing 7.1.

266

Chapter 7: OS and Hardware Interaction

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);

Listing 7.1:	 Resetting the wait statistics.

If your SQL Server instance has been running for quite a while and you make a significant
change, such as adding an important new index, you might consider clearing the old wait
stats in order to prevent the old cumulative wait stats masking the impact of your change
on the wait times.

The following columns are available in the view (times are all in millisecond units):

•	 wait_type – the type of wait

•	 waiting_tasks_count – the cumulative total number of waits that have occurred
for the given wait_type

•	 wait_time_ms – total amount of time that tasks have waited on this given wait type;
this value includes the time in the signal_wait_time_ms column

•	 max_wait_time_ms – the maximum amount of time that a task has been delayed, for
a wait of this type

•	 signal_wait_time_ms – the total amount of time tasks took to start executing after
being signaled; this is time spent on the runnable queue, and is pure CPU wait.

There are many reasons why a certain task within SQL Server may need to wait before
proceeding, which means there are many possible values for the wait_type column.
Some are quite usual, such as the need to wait for a lock to be released before it can
access the required resource (e.g. a data page), and these are indicated by the "normal"
lock modes such as shared, intent, exclusive, and so on (see Chapter 4, Transactions,
for more detail). Other common causes of waits include latches, backups, external
operations like extended stored procedure execution, replication, resource semaphores
(used for memory access synchronization), and many more. There are too many to
cover them all in detail, though most of the wait types are at least listed, if not well
documented, in Books Online.

267

Chapter 7: OS and Hardware Interaction

Finding the most common waits

The script in Listing 7.2 was run on a particularly busy server that does mostly OLTP
transactions. We order the output based on the number of times a task has waited for
any wait_type except those caused when certain key internal processes, such as the lazy
writer, are briefly suspended.

SELECT TOP 3
 wait_type ,
 waiting_tasks_count ,
 wait_time_ms / 1000.0 AS wait_time_sec ,
 CASE WHEN waiting_tasks_count = 0 THEN NULL
 ELSE wait_time_ms / 1000.0 / waiting_tasks_count
 END AS avg_wait_time_sec ,
 max_wait_time_ms / 1000.0 AS max_wait_time_sec ,
 (wait_time_ms - signal_wait_time_ms) / 1000.0 AS resource_wait_time_sec
FROM sys.dm_os_wait_stats
WHERE wait_type NOT IN --tasks that are actually good or expected
 --to be waited on
('CLR_SEMAPHORE', 'LAZYWRITER_SLEEP', 'RESOURCE_QUEUE', 'SLEEP_TASK',
 'SLEEP_SYSTEMTASK', 'WAITFOR')
ORDER BY waiting_tasks_count DESC

wait_type waiting_tasks_count wait_time_sec avg_wait_time_sec ...

-------------------- -------------------- ---------------- ------------------...

OLEDB 2157499031 301112.781000 0.0001395656622197...

CXPACKET 239217887 1086440.015000 0.0045416336906278...

ASYNC_NETWORK_IO 93163538 89125.765000 0.0009566592994783...

Listing 7.2:	 The most common waits.

Analyzing the output, we see that the type of task causing the most waits is OLEDB. Books
Online defines this wait type as follows:

Occurs when SQL Server calls the SQL Server Native Client OLE DB Provider. This wait type is not used for

synchronization. Instead, it indicates the duration of calls to the OLE DB provider.

268

Chapter 7: OS and Hardware Interaction

In short, a SQL Server process has made a call to another server via an OLEDB and is
waiting on the response. On this particular server, there are several daemon-style
processes that make calls to a different server. We are using application tier services
that do row-by-row processing, which is one of the many possible reasons for these
waits. Others include linked server access, CLR functions that access data, and so on.

The average wait time is only about 0.00014 seconds, which is not high, but the fact that
the wait has occurred approximately 2.2 billion times is a little disturbing, as was the
maximum wait time (omitted from the output for space reasons) of just over 2 minutes.

Is this of sufficient concern that it might warrant an optimization effort? It's difficult
to judge using only this data. We'd need to clear the old stats out, gather and closely
monitor the fresh data over time, and use Profiler to try to capture what's happening
when the worst waits occur. This should tell us whether there really is an issue with the
OLTP code, or whether it's some nightly process that, while perhaps inefficient, won't
hurt OLTP performance directly.

The second of the most frequently occurring wait types is CXPACKET, which is described
by Books Online as follows:

Occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the

degree of parallelism if contention on this wait type becomes a problem.

Essentially, if the query optimizer believes that a certain long or complex query would
benefit from parallel execution (i.e. distributing execution across multiple threads
and CPUs), it uses exchange operators, indicated by the parallelism operators in your
execution plans, such as Distribute Streams, to manage data redistribution, flow
control and so on.

In general, parallelism tends to benefit OLAP-style workloads. In an OLTP system such
as this, it is certainly worrying to see 239 million waits that occurred while SQL Server
parallelized queries. It means there are a lot of queries that are longer, and more complex

269

Chapter 7: OS and Hardware Interaction

and CPU-intensive than we would hope. In this particular case, the max degree of
parallelism option is set to 2, in an attempt to maximize throughput but give those
poorly performing queries a bit of a performance boost. Ideally, of course, these queries
would be optimized, but they are the product of a third-party system that we can't touch,
and it has a habit of generating queries that are ten pages long.

CXPACKET waits and latch classes

CXPACKET waits are often associated with the occurrence of latches of the type ACCESS_METHODS_

SCAN_RANGE_GENERATOR. We'll discuss this further in a later section, Investigating Latching.

The third wait type on our list ASYNC_NETWORK_IO, is described in
Books Online as:

Occurs on network writes when the task is blocked behind the network. Verify that the client is processing

data from the server.

This wait type occurs when sending data back to the client over the network. Often,
these waits simply mean that the client is slowly fetching rows as it works on them,
rather than fetching all rows into cache and disconnecting (at least logically, using
connection pooling). It can also indicate a slow/unreliable network that needs to be
upgraded. Although this wait type caused an order of magnitude fewer waits than
CXPACKET, it will certainly merit further investigation.

Not included in our output here, but worth looking out for nevertheless, are
SOS_SCHEDULER_YIELD waits, described in Books Online as:

Occurs when a task voluntarily yields the scheduler for other tasks to execute. During this wait the task is

waiting for its quantum to be renewed.

270

Chapter 7: OS and Hardware Interaction

If you are experiencing CPU pressure (see Listing 7.5, for example) and observe that the
signal wait time is largely composed of SOS_SCHEDULER_YIELD waits, it indicates
that the scheduler is experiencing pressure, and regularly swapping out a running session
in order to allow another session to proceed, causing the original session to wait a
considerable time before getting back on the CPU. Such waits commonly occur when
several CPU-intensive queries get assigned to the same scheduler. Consistently increasing
signal wait times can also be a sign of scheduler pressure.

In such cases, you will need to further investigate the queries that are running, and to
look for opportunities to tune them to reduce expensive sort operations, and so on. You
would also want to find out how much plan recompilation is taking place on your system
(see Chapter 3), as this is a CPU-intensive operation. In addition, more or faster CPUs
might help, along with a better balancing of the load across CPUs, or simply better timing
of when CPU-heavy queries are run.

Scheduler activity can be investigated further using the sys.dm_os_schedulers DMV,
as we will discuss shortly.

Finding the longest cumulative waits

It is useful to dissect the wait_stats data in several different ways, such as by the
amount of waiting, or the average wait time, and look for "repeat offenders."

The script in Listing 7.3 will help determine on which resources SQL Server is spending
the most time waiting, as a percentage of the total amount of time spent waiting on any
wait_type that doesn't appear in the exclusion list.

-- Isolate top waits for server instance since last restart
-- or statistics clear
WITH Waits
 AS (SELECT wait_type ,
 wait_time_ms / 1000. AS wait_time_sec ,

271

Chapter 7: OS and Hardware Interaction

 100. * wait_time_ms / SUM(wait_time_ms) OVER () AS pct ,
 ROW_NUMBER() OVER (ORDER BY wait_time_ms DESC) AS rn
 FROM sys.dm_os_wait_stats
 WHERE wait_type NOT IN ('CLR_SEMAPHORE', 'LAZYWRITER_SLEEP',
 'RESOURCE_QUEUE', 'SLEEP_TASK',
 'SLEEP_SYSTEMTASK',
 'SQLTRACE_BUFFER_FLUSH', 'WAITFOR',
 'LOGMGR_QUEUE', 'CHECKPOINT_QUEUE')
)
 SELECT wait_type ,
 CAST(wait_time_sec AS DECIMAL(12, 2)) AS wait_time_sec ,
 CAST(pct AS DECIMAL(12, 2)) AS wait_time_percentage
 FROM Waits
 WHERE pct > 1
 ORDER BY wait_time_sec DESC

Listing 7.3:	 Report on top resource waits.

This script will help you locate the biggest bottleneck, at the instance level, allowing
you to focus your tuning efforts on a particular type of problem. For example, if the top
cumulative wait types are disk I/O related, then you would want to investigate this issue
further using DMVs such as sys.dm_io_pending_io_requests and sys.dm_io_
virtual_file_stats, both covered in Chapter 6.

Investigating locking waits

In some cases, it's useful to move in from the big picture, and focus on specific types
of wait. For example, if you feel that excessive locking may be the root cause of a
performance issue, the query shown in Listing 7.4 will return the cumulative waits for
I/O operations.

SELECT wait_type ,
 waiting_tasks_count ,
 wait_time_ms ,
 max_wait_time_ms
FROM sys.dm_os_wait_stats

272

Chapter 7: OS and Hardware Interaction

WHERE wait_type LIKE 'LCK%'
 AND Waiting_tasks_count > 0
ORDER BY waiting_tasks_count DESC

Listing 7.4:	 Seeking out locking waits.

On the same busy server as used in the previous example, which had been recently
rebooted, the following result was obtained (the signal_wait_time_ms column was
omitted for space reasons only):

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms

---------------- -------------------- ------------- ----------

LCK_M_U 79219 563343 29718

LCK_M_X 51842 495984 30515

LCK_M_SCH_S 1018 2841578 464031

LCK_M_SCH_M 434 27437 1859

LCK_M_IX 85 431015 137046

LCK_M_IS 59 1517906 111796

LCK_M_S 8 6578 2000

LCK_M_RX_X 5 41093 14812

In this case, this server has been waiting on a lot of update mode locks (LCK_M_U), issued
when a process is reading data that it might update, as well as exclusive locks. Together,
they indicate that the server is performing a lot of data modifications. The amount of
time waited on update locks is 563343 / 79219, or about 7.1 ms.

On the whole, not a terrible number, but what might be a bit more concerning are some
of the maximum wait times, especially the 29.7 seconds (not milliseconds) maximum
wait time on an update lock. However, without knowing when the maximum wait
times occurred, we don't know whether the waits were caused by OLTP queries that
were blocking one another, or by a set of long-running nightly processes that would be
expected to block other processes for their duration. On this particular server, we use the
READ_COMMITTED_SNAPSHOT setting on the very busy databases and blocking locks are
rare, as reflected in the number of shared lock (LCK_M_S) waits being very low. This is a
strong indication that the waits are originating from the nightly processes, and it is also

273

Chapter 7: OS and Hardware Interaction

a good reminder that, like almost every reading we get from the DMVs, these wait times
must be taken in the context of the server configuration. The next step would be to run
traces on operations that last 20 seconds or more during those times when the longest
waits were happening, and start to find out whether or not there really is a problem.

Session-by-session wait times

The difficulty in pulling the fine detail out of a vast set of cumulative statistics, across all sessions,

highlights how useful it would be to be able to track wait times on a session-by-session basis. In this way,

we'd be able to see exactly what waits were occurring during normal OLTP operation, and exactly what

was happening while sessions running the nightly processes were under way. Hopefully, the pioneering

work in this regard by the likes of Mario Broodbakker (http://www.simple-talk.com/author/mario-

broodbakker/) will eventually make its way into SQL Server.

Ideally, we need to clear the statistics using the aforementioned DBCC SQLPERF
command, take a baseline reading and then take periodic snapshots of the data so that
we can accurately compare the data over a time period.

Investigating CPU pressure

The simple query shown in Listing 7.5 calculates signal waits and resource waits as a
percentage of the overall wait time, in order to diagnose potential CPU pressure.

-- Total waits are wait_time_ms (high signal waits indicates CPU pressure)
SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM(wait_time_ms)
 AS NUMERIC(20,2)) AS [%signal (cpu) waits] ,
 CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms)
 / SUM(wait_time_ms) AS NUMERIC(20, 2)) AS [%resource waits]
FROM sys.dm_os_wait_stats ;

Listing 7.5:	 Is there any CPU pressure?

274

Chapter 7: OS and Hardware Interaction

This query is useful to help confirm CPU pressure. Since signal waits are time waiting for
a CPU to service a thread, if you record total signal waits above roughly 10–15%, this is a
pretty good indicator of CPU pressure. These wait stats are cumulative since SQL Server
was last restarted, so you need to know what your baseline value for signal waits is, and
watch the trend over time.

SQL Server Performance Counters

SQL Server provides a number of database-level and instance-level objects and
associated counters which can be used to monitor various aspects of SQL Server
performance. These counters are exposed by the sys.dm_os_performance_counters
DMV. These counters expose the "queues" in your system; the places where there is a lot
of demand for a given resource, and the reasons for the excessive demand, via specific
resource measurements such as disk writes/sec, processor queue lengths, available
memory, and so on.

Generally, these performance counters are investigated using Performance Monitor
(PerfMon), a Windows OS monitoring tool that provides a vast range of counters for
monitoring memory, disk, CPU, and network usage on a server (for example, see http://
technet.microsoft.com/en-us/library/cc768048.aspx), and also exposes the counters
maintained by SQL Server. Generally, the DBA or system administrator would set up
PerfMon to record statistics from various counters at regular intervals, storing the data in
a file and then importing it into Excel for analysis.

However if, like me, you prefer to save the statistics in a database table and interrogate
them using SQL, the sys.dm_os_performance_counters DMV is a very useful tool.
Just write the query to retrieve the data from the DMV, add INSERT INTO Counter-
TrendingTableName… and you have a rudimentary monitoring system! Also, it's not
always possible to get direct access to PerfMon, and accessing it from a different machine
can be pretty slow.

275

Chapter 7: OS and Hardware Interaction

Unfortunately, using this DMV is far from plain sailing, and querying it can be plain
annoying at times. As has been noted a few times throughout the book, the DMOs
are not built with end-user comfort in mind. The data in them is often exposed in a
form that's most convenient in terms of data collection efficiency, rather than in order
to make it easy for people to read and interpret that data. This is especially true of the
performance_counters DMV, where some of the code required to present the data in
a meaningful way in the queries is kludgy to the point of embarrassment.

With that warning in mind, let's take a look at the columns that the sys.dm_os_
performance_counters DMV provides.

•	 object_name – name of the object to which the counter refers. This is usually a two-
part name, starting with SQL Server:. For example, SQL Server:Databases or SQL
Server:Locks.

•	 counter_name – name of the counter. For example, the SQL Server:Databases
object exposes the Log Shrinks counter, to monitor transaction log shrink events.

•	 instance_name – specific instance of a counter, such as the database name
for SQLServer:Databases:LogShrinks or user errors for SQLServer:SQL
Errors:Errors/sec.

•	 cntr_value – most recent value of the counter.

•	 cntr_type – type of counter.

Note that only SQL Server counters are represented in the DMV, not any Windows or
other counters.

Most of these columns look innocuous enough, but don't be deceived – the cntr_value
and the cntr_type values, in particular, are a nest of vipers. The cntr_type column
exposes WMI Performance Counter Types and, for the most part, the values provided for
each type of counter in cntr_value will need to be decoded before we can use them. To
get the list of counter types, we can execute the query shown in Listing 7.6.

276

Chapter 7: OS and Hardware Interaction

SELECT DISTINCT
 cntr_type
FROM sys.dm_os_performance_counters
ORDER BY cntr_type

cntr_type

65792

272696576

537003264

1073874176

1073939712

Listing 7.6:	 Returning a list of PerfMon counter types.

The cntr_type values returned are not documented in Books Online, but my research
on MSDN and elsewhere revealed the following:

•	 65792 = PERF_COUNTER_LARGE_RAWCOUNT – provides the last observed value for
the counter; for this type of counter, the values in cntr_value can be used directly,
making this the most easily usable type

•	 272696576 = PERF_COUNTER_BULK_COUNT – provides the average number of
operations per second. Two readings of cntr_value will be required for this
counter type, in order to get the per second averages.

•	 537003264 = PERF_LARGE_RAW_FRACTION – used in conjunction with
PERF_LARGE_RAW_BASE to calculate ratio values, such as the cache hit ratio.

•	 1073874176 = PERF_AVERAGE_BULK – used to calculate an average number of
operations completed during a time interval; like PERF_LARGE_RAW_FRACTION, it
uses PERF_LARGE_RAW_BASE to do the calculation

•	 1073939712 = PERF_LARGE_RAW_BASE, used in the translation of PERF_LARGE_
RAW_FRACTION and PERF_AVERAGE_BULK values to readable output; should not be
displayed alone.

277

Chapter 7: OS and Hardware Interaction

Frankly, the performance_counters DMV is one of the least documented, and almost
every article I have read uses it in the simplest way possible, one counter at a time.

Based on all research and testing that we have been able to do, these are the only
types in use today with 2008 RTM, 2005 SP2, and 2005 SP2 Express, and each of these
types should work on all of the cited SQL Server editions and versions, although some
materials uncovered during our research suggested that the values were not always
LARGE (64-bit) values. Please check the errata and code downloads page for this book, at
www.simple-talk.com/community/forums/590/ShowForum.aspx where we'll report
any cases of malfunction on a user's system.

For the purpose of this discussion, we'll break these counter types down into four
subsections, as follows:

•	 directly usable values (PERF_COUNTER_LARGE_RAWCOUNT)

•	 ratios (PERF_LARGE_RAW_FRACTION)

•	 average number of operations per second (PERF_COUNTER_BULK_COUNT)

•	 average number of operations (PERF_AVERAGE_BULK).

Directly usable counter types

Let's start with the most easily usable counter types, which provide the current count for
a given metric, for example, the number of times a log file has grown or shrunk, or the
number of pages of data in a database, the number of entries in a given cache, the number
of active transactions, and so on. These values need no consideration of how long the
machine has been running, nor how often the values are captured.

The code in Listing 7.7 filters for performance counters of type
PERF_COUNTER_LARGE_RAWCOUNT.

278

Chapter 7: OS and Hardware Interaction

DECLARE @PERF_COUNTER_LARGE_RAWCOUNT INT
SELECT @PERF_COUNTER_LARGE_RAWCOUNT = 65792

SELECT object_name ,
 counter_name ,
 instance_name ,
 cntr_value
FROM sys.dm_os_performance_counters
WHERE cntr_type = @PERF_COUNTER_LARGE_RAWCOUNT
ORDER BY object_name ,
 counter_name ,
 instance_name

Listing 7.7:	 Returning the values of directly usable PerfMon counters.

This query will return the current value for counters such as page life expectancy, current
data and log file sizes for database on the instance, and so on.

Monitoring shrinkage and growth of the transaction log

Let's say that we want to closely monitor any auto-grow or auto-shrink events for the
transaction log on our most important server, as shown in Listing 7.8.

--the default instance reports as SQLServer, but other
--instances as MSSQL$InstanceName
DECLARE @object_name SYSNAME
SET @object_name = CASE WHEN @@servicename = 'MSSQLSERVER' THEN 'SQLServer'
 ELSE 'MSSQL$' + @@serviceName
 END + ':Databases'

DECLARE @PERF_COUNTER_LARGE_RAWCOUNT INT
SELECT @PERF_COUNTER_LARGE_RAWCOUNT = 65792

SELECT object_name ,
 counter_name ,
 instance_name ,
 cntr_value
FROM sys.dm_os_performance_counters

279

Chapter 7: OS and Hardware Interaction

WHERE cntr_type = @PERF_COUNTER_LARGE_RAWCOUNT
 AND object_name = @object_name
 AND counter_name IN ('Log Growths', 'Log Shrinks')
 AND cntr_value > 0
ORDER BY object_name ,
 counter_name ,
 instance_name

Listing 7.8:	 Monitoring changes in the size of the transaction log.

Log size adjustments aren't problematical in all cases but it is quite costly to have users on
a busy server waiting while space is being allocated to the log, and an excessive number
of small auto-grow events will fragment the log. Shrinking the log (i.e. removing any
unused space) is, as a general habit, a bad idea as it just means that you are likely to see a
log growth event very soon. The best practice is to have log space pre-allocated and not to
adjust it; free log space is not harmful to performance, but a full log is.

Deprecated feature use

In 2008, a new set of counters was added to show deprecated feature utilization. You can
get to them using a query of the form shown in Listing 7.9. In cases where you've recently
upgraded a system, it's useful to know what deprecated features are still being used, so
that you can plan on updating them, to avoid having them fail when you are upgrading
again in a few years.

DECLARE @object_name SYSNAME
SET @object_name = CASE WHEN @@servicename = 'MSSQLSERVER' THEN 'SQLServer'
 ELSE 'MSSQL$' + @@serviceName
 END + ':Deprecated Features'
DECLARE @PERF_COUNTER_LARGE_RAWCOUNT INT
SELECT @PERF_COUNTER_LARGE_RAWCOUNT = 65792

SELECT object_name ,
 counter_name ,
 instance_name ,
 cntr_value

280

Chapter 7: OS and Hardware Interaction

FROM sys.dm_os_performance_counters
WHERE cntr_type = @PERF_COUNTER_LARGE_RAWCOUNT
 AND object_name = @object_name
 AND cntr_value > 0

Listing 7.9:	 Which deprecated features are still in use?

You may be interested to discover that you are using some of these deprecated features.
Apparently, on my laptop, I am using Hindi, Korean Wansung Unicode, and other
collations that, to my knowledge, I've never touched, at least not directly.

However, it does note that I am using sp_dbcmptlevel and string literals as column
aliases, which is true to the extent that a script I downloaded when researching this
chapter used them.

Ratios

The second group of counters, PERF_LARGE_RAW_FRACTION, provides ratios, such as
cache hit ratios for log and data caches, as well as a few pertaining to the Resource
Governor and one for worktables from the cache.

These counters are trickier to use because, obviously, we need to retrieve two values in
order to calculate the ratio, and we need to marry the counter name from the PERF_
LARGE_RAW_BASE row to the PERF_LARGE_RAW_FRACTION row. This trivial-sounding
task is made more complex by the fact that the names don't exactly match. You have to
remove 'base' from the _BASE row. One of the counters, Worktables from Cache, is
an exception and has to be treated differently (see Listing 7.10).

Having worked through these issues, however, the code to get these ratio values is
pretty simple, and is shown in Listing 7.10. If the _BASE value is 0, we return NULL
rather than cause a divide-by-zero error. The cases where I have seen this have, generally,
corresponded to cases where a resource had not been used.

281

Chapter 7: OS and Hardware Interaction

DECLARE @PERF_LARGE_RAW_FRACTION INT ,
 @PERF_LARGE_RAW_BASE INT
SELECT @PERF_LARGE_RAW_FRACTION = 537003264 ,
 @PERF_LARGE_RAW_BASE = 1073939712

SELECT dopc_fraction.object_name ,
 dopc_fraction.instance_name ,
 dopc_fraction.counter_name ,
 --when divisor is 0, return I return NULL to indicate
 --divide by 0/no values captured
 CAST(dopc_fraction.cntr_value AS FLOAT)
 / CAST(CASE dopc_base.cntr_value
 WHEN 0 THEN NULL
 ELSE dopc_base.cntr_value
 END AS FLOAT) AS cntr_value
FROM sys.dm_os_performance_counters AS dopc_base
 JOIN sys.dm_os_performance_counters AS dopc_fraction
 ON dopc_base.cntr_type = @PERF_LARGE_RAW_BASE
 AND dopc_fraction.cntr_type = @PERF_LARGE_RAW_FRACTION
 AND dopc_base.object_name = dopc_fraction.object_name
 AND dopc_base.instance_name = dopc_fraction.instance_name
 AND (REPLACE(dopc_base.counter_name,
 'base', '') = dopc_fraction.counter_name
 --Worktables From Cache has "odd" name where
 --Ratio was left off
 OR REPLACE(dopc_base.counter_name,
 'base', '') = (REPLACE(dopc_fraction.counter_name,
 'ratio', ''))
)
ORDER BY dopc_fraction.object_name ,
 dopc_fraction.instance_name ,
 dopc_fraction.counter_name

Listing 7.10:	 Returning the values of ratio PerfMon counters.

Admittedly, manually calculating cache hit ratios in this manner does not seem like the
easiest way to go. Again, though, once you have the script you can maintain it in your
DMV script library in SSMS and it does provide a very quick means of getting the values.
Also, as noted earlier, you can easily modify the script to dump the data into a reporting
table, for trend analysis.

282

Chapter 7: OS and Hardware Interaction

As an example usage, the query in Listing 7.11 will return the cache hit ratio from the
buffer manager.

DECLARE @object_name SYSNAME
SET @object_name = CASE WHEN @@servicename = 'MSSQLSERVER' THEN 'SQLServer'
 ELSE 'MSSQL$' + @@serviceName
 END + ':Buffer Manager'
DECLARE
 @PERF_LARGE_RAW_FRACTION INT ,
 @PERF_LARGE_RAW_BASE INT
SELECT @PERF_LARGE_RAW_FRACTION = 537003264 ,
 @PERF_LARGE_RAW_BASE = 1073939712

SELECT dopc_fraction.object_name ,
 dopc_fraction.instance_name ,
 dopc_fraction.counter_name ,
 --when divisor is 0, return I return NULL to indicate
 --divide by 0/no values captured
 CAST(dopc_fraction.cntr_value AS FLOAT)
 / CAST(CASE dopc_base.cntr_value
 WHEN 0 THEN NULL
 ELSE dopc_base.cntr_value
 END AS FLOAT) AS cntr_value
FROM sys.dm_os_performance_counters AS dopc_base
 JOIN sys.dm_os_performance_counters AS dopc_fraction
 ON dopc_base.cntr_type = @PERF_LARGE_RAW_BASE
 AND dopc_fraction.cntr_type = @PERF_LARGE_RAW_FRACTION
 AND dopc_base.object_name = dopc_fraction.object_name
 AND dopc_base.instance_name = dopc_fraction.instance_name
 AND (REPLACE(dopc_base.counter_name,
 'base', '') = dopc_fraction.counter_name
 --Worktables From Cache has "odd" name where
 --Ratio was left off
 OR REPLACE(dopc_base.counter_name,
 'base', '') = (REPLACE(dopc_fraction.counter_name,
 'ratio', ''))
)
WHERE dopc_fraction.object_name = @object_name
 AND dopc_fraction.instance_name = ''
 AND dopc_fraction.counter_name = 'Buffer cache hit ratio'

283

Chapter 7: OS and Hardware Interaction

ORDER BY dopc_fraction.object_name ,
 dopc_fraction.instance_name ,
 dopc_fraction.counter_name

Listing 7.11:	 Returning the current value for the buffer cache hit ratio.

Per second averages

The next set of counters, PERF_COUNTER_BULK_COUNT, is used to get average actions
per second. Some interesting values to look out for in this category include:

•	 Server:Buffer Manager - Page lookups/sec
gives an indication of cache activity; higher numbers indicate a more active buffer pool
(the definition of "higher" is largely dependent on your hardware and usage)

•	 Server:Databases-<databaseName> - Log Bytes Flushed/sec
gives an indication of how much data has been written to the log for the database

•	 SQLServer:Locks-_Total - Lock Requests/sec
provides the number of locks being taken on a server per second, usually to compare to
other time periods, to see when the server is being inundated with queries that might
block other users.

As "point-in-time" values, these counters do not necessarily tell you very much but,
when tracked over time, they can help the DBA to quickly identify worrying events,
trends, or changes. For example, let's say that users start experiencing performance
problems at a given time of day, and that you notice that this coincides with spikes
in the number of lock requests per second which, in turn, coincides with the time that
Joe Doofus, the manager with more rights than brains, issues a major query in
SERIALIZABLE isolation level.

Nearly all of the counters in this group are named with a suffix of '/sec', but a few are
actually prefixed '(ms)'. However, the latter will be interpreted as "number of millisec-
onds waited per second." So, for example, Total Latch Wait Time (ms) is the average

284

Chapter 7: OS and Hardware Interaction

amount of time per second that a certain process had to wait to acquire a latch, over the
time the sample was taken. Basically, these counters are constantly incrementing values,
though if they ever hit the maximum value, they would reset to zero.

The way to deal with these counters is pretty much the same as with any accumulating
counter DMV. Take a baseline value, wait some number of seconds, then sample again;
the number of seconds to wait should be varied based on your needs. For ad hoc monitor-
ing of a given operation you would set the delay such that you could capture a suitable
number of samples over the period of time the operation is taking place.

The example in Listing 7.12 uses a simple WAITFOR statement to implement the delay,
in this case, 5 seconds. It uses a datetime column, with a default of getdate(), in
order to capture the exact time the values were sampled (since the delay may not be
exactly 5 seconds each time; for example, it might actually take 5020 milliseconds to
execute the query).

DECLARE @PERF_COUNTER_BULK_COUNT INT
SELECT @PERF_COUNTER_BULK_COUNT = 272696576

--Holds initial state
DECLARE @baseline TABLE
 (
 object_name NVARCHAR(256) ,
 counter_name NVARCHAR(256) ,
 instance_name NVARCHAR(256) ,
 cntr_value BIGINT ,
 cntr_type INT ,
 time DATETIME DEFAULT (GETDATE())
)

DECLARE @current TABLE
 (
 object_name NVARCHAR(256) ,
 counter_name NVARCHAR(256) ,
 instance_name NVARCHAR(256) ,
 cntr_value BIGINT ,
 cntr_type INT ,

285

Chapter 7: OS and Hardware Interaction

 time DATETIME DEFAULT (GETDATE())
)

--capture the initial state of bulk counters
INSERT INTO @baseline
 (object_name ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type
)
 SELECT object_name ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type
 FROM sys.dm_os_performance_counters AS dopc
 WHERE cntr_type = @PERF_COUNTER_BULK_COUNT

WAITFOR DELAY '00:00:05' --the code will work regardless of delay chosen

--get the followon state of the counters
INSERT INTO @current
 (object_name ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type
)
 SELECT object_name ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type
 FROM sys.dm_os_performance_counters AS dopc
 WHERE cntr_type = @PERF_COUNTER_BULK_COUNT

SELECT dopc.object_name ,
 dopc.instance_name ,
 dopc.counter_name ,
 --ms to second conversion factor
 1000 *
 --current value less the previous value
 ((dopc.cntr_value - prev_dopc.cntr_value)

286

Chapter 7: OS and Hardware Interaction

 --divided by the number of milliseconds that pass
 --casted as float to get fractional results. Float
 --lets really big or really small numbers to work
 / CAST(DATEDIFF(ms, prev_dopc.time, dopc.time) AS FLOAT))
 AS cntr_value
 --simply join on the names of the counters
FROM @current AS dopc
 JOIN @baseline AS prev_dopc ON prev_dopc.object_name = dopc.object_name
 AND prev_dopc.instance_name = dopc.instance_name
 AND prev_dopc.counter_name = dopc.counter_name
WHERE dopc.cntr_type = @PERF_COUNTER_BULK_COUNT
 AND 1000 * ((dopc.cntr_value - prev_dopc.cntr_value)
 / CAST(DATEDIFF(ms, prev_dopc.time, dopc.time) AS FLOAT))
/* default to only showing non-zero values */ <> 0
ORDER BY dopc.object_name ,
 dopc.instance_name ,
 dopc.counter_name

Listing 7.12:	 Returning the values of "per second average" PerfMon counters.

This code can be easily adapted to a specific counter type, such as one of those listed
previously but we won't show it here, as Listing 7.12 is pretty cumbersome. Notice that
we default to only showing non-zero values, since that is almost always what you will be
interested in when using this set of data.

Average number of operations

The final type of performance counter, PERF_AVERAGE_BULK, is used to calculate an
average number of operations completed during a time interval (SQL Server chooses the
sampling time). The most commonly-used counter of the PERF_AVERAGE_BULK type
belongs to the Locks object, and shows the average wait time for different types of locks,
such as database lock, application lock, page lock, key lock (which is essentially a row
lock), and so on.

The query to return these counter values, shown in Listing 7.13, is pretty much exactly the
same as the ratio query (Listing 7.10), but this time using the PERF_AVERAGE_BULK type.

287

Chapter 7: OS and Hardware Interaction

DECLARE @PERF_AVERAGE_BULK INT ,
 @PERF_LARGE_RAW_BASE INT

SELECT @PERF_AVERAGE_BULK = 1073874176 ,
 @PERF_LARGE_RAW_BASE = 1073939712

SELECT dopc_avgBulk.object_name ,
 dopc_avgBulk.instance_name ,
 dopc_avgBulk.counter_name ,
 CAST(dopc_avgBulk.cntr_value AS FLOAT)
 --when divisor is 0, return NULL to indicate
 --divide by 0
 / CAST(CASE dopc_base.cntr_value
 WHEN 0 THEN NULL
 ELSE dopc_base.cntr_value
 END AS FLOAT) AS cntr_value
FROM sys.dm_os_performance_counters dopc_base
 JOIN sys.dm_os_performance_counters dopc_avgBulk
 ON dopc_base.cntr_type = @PERF_LARGE_RAW_BASE
 AND dopc_avgBulk.cntr_type = @PERF_AVERAGE_BULK
 AND dopc_base.object_name = dopc_avgBulk.object_name
 AND dopc_base.instance_name = dopc_avgBulk.instance_name
 --Average Wait Time has (ms) in name,
 --so it has handled "special"
 AND (REPLACE(dopc_base.counter_name,
 'base', '') = dopc_avgBulk.counter_name
 OR REPLACE(dopc_base.counter_name,
 'base', '') = REPLACE(dopc_avgBulk.counter_name,
 '(ms)', '')
)
ORDER BY dopc_avgBulk.object_name ,
 dopc_avgBulk.instance_name ,
 dopc_avgBulk.counter_name

Listing 7.13:	 Returning the values for the "average number of operations" PerfMon counters.

288

Chapter 7: OS and Hardware Interaction

Returned will be values such as the following:

object_name instance_name counter_name cntr_value

-------------------------------- -------------- ------------------------------ --------------

--

SQLServer:Latches Average Latch Wait Time (ms) 3.84907340420574

SQLServer:Locks _Total Average Wait Time (ms) 188.428878069211

SQLServer:Locks AllocUnit Average Wait Time (ms) NULL

SQLServer:Locks Application Average Wait Time (ms) 263.055555555556

SQLServer:Locks Database Average Wait Time (ms) NULL

SQLServer:Locks Extent Average Wait Time (ms) NULL

SQLServer:Locks File Average Wait Time (ms) 471.392592592593

SQLServer:Locks HoBT Average Wait Time (ms) NULL

SQLServer:Locks Key Average Wait Time (ms) 150.459888113501

SQLServer:Locks Metadata Average Wait Time (ms) 95.7042253521127

SQLServer:Locks Object Average Wait Time (ms) 610.405089408528

SQLServer:Locks Page Average Wait Time (ms) 399.793103448276

SQLServer:Locks RID Average Wait Time (ms) 1860

From this output, we can see that we've no waiting on Database, Extent, and HoBT
(heap or B-tree) objects, but have spent an average of 263 milliseconds on Application
locks (which are used on this particular system to implement single-threaded reads from
a queue), 150 milliseconds on Key locks, and 399 on Page locks, amongst others.

Monitoring Machine Characteristics

A common task for DBAs is to monitor the configurations and characteristics of their
servers, as well as to track changes to these settings over time. The sys.dm_os_sys_
info DMV contains a host of values that will give you a basic understanding of how
the interface between the OS and SQL Server is configured. It returns a single row,
summarizing the characteristics of a given machine, in terms of static configuration, such
as the number of processors, as well as how long a server has been running. Columns
represented in the view include those listed below.

289

Chapter 7: OS and Hardware Interaction

•	 cpu_count – number of logical processors on the computer.

•	 hyperthread_ratio – ratio of logical to physical processors (cores). For example,
on a dual-core processor with hyper-threading turned off, this value would be 2. If
hyper-threading were enabled, the value would be 4. Note that this ratio value does not
discern between hyper-threading and multi-core (e.g. a quad-core processor with no
hyper-threading would also return a value of 4).

•	 physical_memory_in_bytes – total amount of physical RAM installed on the
computer or, at least, the amount of RAM that the OS believes it has available (a
distinction that is particularly relevant when dealing with virtual environments).

•	 virtual_memory_in_bytes – amount of virtual RAM available to the process in
user mode. This can differ depending on the OS. On a 32-bit OS, variations can be
based on the 3-GB switch or, in Vista and later, the IncreaseUserVa switch (set using
the bcdedit utility).

•	 max_workers_count – maximum number of workers that can be created. Workers
do the work for SQL Server and are generally equivalent to threads, unless running in
"lightweight pooling" server configuration, in which case it corresponds to a fiber
(for a deeper understanding, go to http://msdn.microsoft.com/en-us/library/
ms189267.aspx).

•	 scheduler_total_count – total number of schedulers configured, including the
system schedulers, such as the one that handles Dedicated Administrator Connection
(DAC) connections (corresponds to the result of: select count(*) from sys.
dm_os_schedulers).

•	 scheduler_count – current number of schedulers that are visible to user processes
(corresponds to the result of select count(*) from sys.dm_os_schedulers
where status = 'VISIBLE ONLINE').

•	 os_priority_class – Windows scheduling priority for the SQL Server process.
Essentially, a high value will allow SQL Server to use a higher than normal allocation
of OS resources. Domain: 64 (low), 16384 (below normal), 32 (normal), 32768 (above
normal), 256 (real-time), 128 (high). The default is "normal," unless the priority boost

290

Chapter 7: OS and Hardware Interaction

option is enabled, which isn't to be advised unless you have a server dedicated to SQL
Server and specific needs.

•	 sql_server_start_time – date and time SQL Server was started (new for SQL
Server 2008).

•	 bpool_committed – number of 8-K pages in the buffer pool that are in use.

•	 bpool_commit_target – number of 8-K pages that SQL Server needs. If this value is
greater than the committed value, SQL Server may try to acquire more memory.

•	 bpool_visible – number of 8-K pages in the buffer pool that are directly accessible
in RAM. The number of pages that are visible is limited by the memory structure and
OS. On a 32-bit system using AWE, memory is accessed in "windows" and the visible
amount of memory can be less than the committed amount of memory.

•	 cpu_ticks_in_ms – the number of CPU ticks per millisecond. Can be used as a con-
version factor in calculations, for example, with the cpu_ticks column that is also
presented in the results of this DMV.

•	 ms_ticks – number of milliseconds since server was started.

Other columns include: deadlock_monitor_serial_number, os_quantum,
os_error_mode, sqlserver_start_time_ms_ticks (new for SQL Server 2008),
cpu_ticks, stack_size_in_bytes, and os_quantum, which I mention for
completeness, but won't cover.

I capture the values in most of these columns periodically, and hope to find that they
remain unchanged over time. This DMV is also quite useful for getting a feel for an
unfamiliar server that you need to troubleshoot. A simple query such as that shown in
Listing 7.14 will provide basic CPU configuration details.

291

Chapter 7: OS and Hardware Interaction

-- Hardware information from SQL Server 2008
-- (Cannot distinguish between HT and multi-core)
SELECT cpu_count AS [Logical CPU Count] ,
 hyperthread_ratio AS [Hyperthread Ratio] ,
 cpu_count / hyperthread_ratio AS [Physical CPU Count] ,
 physical_memory_in_bytes / 1048576 AS [Physical Memory (MB)] ,
 sqlserver_start_time
FROM sys.dm_os_sys_info ;

Listing 7.14:	 CPU configuration details.

The script in Listing 7.15 is useful when interrogating memory configuration.

--Determine if this is a 32- or 64-bit SQL Server edition
DECLARE @ServerAddressing AS TINYINT
SELECT @serverAddressing = CASE WHEN CHARINDEX('64',
 CAST(SERVERPROPERTY('Edition')
 AS VARCHAR(100))) > 0
 THEN 64
 ELSE 32
 END ;

SELECT cpu_count / hyperthread_ratio AS SocketCount ,
 physical_memory_in_bytes / 1024 / 1024 AS physical_memory_mb ,
 virtual_memory_in_bytes / 1024 / 1024 AS sql_max_virtual_memory_mb ,
 -- same with other bpool columns as they are page oriented.
 -- Multiplying by 8 takes it to 8K, then / 1024 to convert to mb
 bpool_committed * 8 / 1024 AS buffer_pool_committed_mb ,
 --64 bit OS does not have limitations with addressing as 32 did
 CASE WHEN @serverAddressing = 32
 THEN CASE WHEN virtual_memory_in_bytes / 1024 /
 (2048 * 1024) < 1
 THEN 'off'
 ELSE 'on'
 END
 ELSE 'N/A on 64 bit'
 END AS [/3GB switch]
FROM sys.dm_os_sys_info

Listing 7.15:	 Interrogating memory configuration.

292

Chapter 7: OS and Hardware Interaction

On the Vista Pro laptop that I am using to write this book, this query returned the
following:

SocketCount physical_memory_mb sql_max_virtual_memory_mb

-------------- --------------------- -------------------------

1 3571 2047

buffer_pool_committed_mb /3GB switch

--------------------------- -----------

228 off

I have a single dual-core processor, hence one socket; the physical memory matched
the memory shown in task manager on the performance tab, and I do not have the
IncreaseUserVa turned on, so my virtual memory is limited to less than 2 GB.
Thankfully, 32-bit processors are on the way out these days, and we can stop worrying
about the limitations of 32-bit addressing.

Investigating CPU Usage

In terms of complexity, SQL Server is almost an operating system in its own right and its
resource utilization patterns are, likewise, pretty complex. When a request is submitted to
SQL Server, it is assigned to a worker thread. Each of these threads is assigned to a CPU
by what is known as the SQL Server OS scheduler. For each CPU, there is only one
scheduler available for use by SQL Server, to execute user code, and only one request
(SPID or session_id) per scheduler can be running at any time.

Threads waiting for CPU time will be placed in the runnable queue; the longer the queue,
the higher the CPU pressure (see Listing 7.5). Threads whose associated request is waiting
for a resource to become free, or that have to perform I/O, will be moved to the waiter
list. If there are simply no available worker threads, a process will be blocked until one
becomes available, and moved to the work queue.

293

Chapter 7: OS and Hardware Interaction

The max worker threads option.

It is best to let SQL Server automatically configure the number of worker threads at startup, but this

number can be adjusted for extremely busy systems, using max worker threads option.

In order to identify or rule out CPU pressure as a potential cause of slow execution
times, we can use sys.dm_os_schedulers to investigate the kind of load being applied
to our CPUs. It provides information on the current activity of the schedulers that are
being used to apportion work to CPUs, along with a few cumulative counters that reveal
how often certain events, such as context switches, have occurred since the computer was
last started.

The root cause of CPU pressure is, unfortunately, not always easy to nail down. The CPU
is used for many operations, not just doing computations. It is used to move data in and
out of memory, for disk access, and pretty much everything that is done on the server.
Hence, when CPUs are taxed, the server will experience massive slowdowns. We will look
at ways to monitor CPU usage and investigate CPU pressure, by finding out such things
as how many threads are waiting in the runnable queue, and whether or not a substantial
amount of context switching is occurring, meaning that SQL Server is jumping around
working on many different tasks at once, and not completing tasks in a reasonable
amount of time.

An overview of sys.dm_os_schedulers

Each row returned by the sys.dm_os_schedulers DMV represents a scheduler that is
being used to assign tasks to an individual CPU. Rows with a scheduler_id of less than
255 represent schedulers for CPU activity, and are used to schedule user queries. Row 255
is the DAC, which provides access when the server is hung, and higher values are used for
other system objects, such as Non-Uniform Memory Access (NUMA) modules. We will
only concern ourselves with the CPU schedulers between 0 and 255.

294

Chapter 7: OS and Hardware Interaction

The columns returned by this view fall into three broad categories, as shown below.
(I have omitted columns for internal use only and those that provide addresses to a
memory location.)

•	 Identification columns identify the scheduler and, in some conditions, the CPU
being used.

•	 scheduler_id – the ID of the scheduler. Schedulers with an ID of 255 or less
execute user queries; others execute system processes.

•	 cpu_id – if the affinity mask is set, this is the CPU on which the query is scheduled
to run.

•	 Status columns reveal the current activity of the scheduler.

•	 status – status of the scheduler. ONLINE schedulers are available to process
requests, OFFLINE ones aren't, and would be set as OFFLINE via the affinity
mask. HIDDEN schedulers run external requests, and VISIBLE schedulers run
user requests. Possible domain values for status are: HIDDEN ONLINE, HIDDEN
OFFLINE, VISIBLE ONLINE, VISIBLE OFFLINE, VISIBLE ONLINE DAC.

•	 is_online – indicates whether a scheduler is (1) or isn't (0) available to
process requests.

•	 is_idle – indicates whether or not the scheduler is actually being used to process
queries or batches. A value of 1 indicates that no workers are running and the
scheduler is idle.

•	 current_tasks_count – number of tasks that the scheduler is managing at this
point in time.

•	 runnable_tasks_count – number of workers with tasks waiting to be assigned
to the runnable queue; high, sustained values for this column are an indication of
CPU pressure.

•	 current_workers_count – current number of workers assigned to this queue.

•	 active_workers_count – number of workers actively processing.

295

Chapter 7: OS and Hardware Interaction

•	 work_queue_count – number of tasks waiting on a worker.

•	 pending_disk_io_count – total number of disk I/O operations upon which the
scheduler is waiting, before the worker thread to which this I/O is assigned can be
added to the runnable tasks queue.

•	 load_factor – strictly speaking, this is an "internal use only" column, and is
used by SQL Server to assess the load on an individual CPU and so decide which
scheduler should be assigned the next task. Ideally, the load_factor value should
be roughly the same across all active schedulers.

•	 History columns are the cumulative counters storing information regarding the
number of times an activity has occurred since the computer has been restarted.

•	 preemptive_switches_count – number of times this scheduler has switched to
pre-emptive mode in order to execute code external to SQL Server, such as external
stored procedures and distributed queries.

•	 context_switches_count – number of times the scheduler has switched from
one task to another because the worker relinquished control of the scheduler.

•	 idle_switches_count – number of times the scheduler has been idle, waiting for
work to do.

•	 failed_to_create_worker – number of times an attempt to create a worker
failed. Although no definite cause is indicated, this event generally occurs because of
memory constraints, and the existence of any failed_to_create_worker rows
is a cause for concern, especially if you already have any memory issues on
the server.

CPU waits

The query in Listing 7.16 calculates the average number of tasks being managed, and tasks
waiting in the runnable queue, across all available schedulers.

296

Chapter 7: OS and Hardware Interaction

-- Get Avg task count and Avg runnable task count
SELECT AVG(current_tasks_count) AS [Avg Task Count] ,
 AVG(runnable_tasks_count) AS [Avg Runnable Task Count]
FROM sys.dm_os_schedulers
WHERE scheduler_id < 255
 AND [status] = 'VISIBLE ONLINE' ;

Listing 7.16:	 Investigating scheduler activity.

High, sustained values for the current_tasks_count column usually indicate a
blocking issue, and you can investigate this further using the DMOs described in
Chapter 4, Transactions. It can also be a secondary indicator of I/O pressure. High,
sustained values for the runnable_tasks_count column are usually a very good
indicator of CPU pressure, since this means that many tasks are waiting for CPU time.
The longer the queue, and the greater the number of schedulers with requests waiting,
the more stressed is the CPU subsystem. For most systems, a sustained runnable task
queue length of more than about 10–20 is a cause for concern.

For individual schedulers, we can employ the query shown in Listing 7.17, which uses
various status columns to investigate potential CPU pressure or, by a simple variation
of the WHERE clause, to indicate whether or not I/O pressure is the root cause of the
system slowdown.

SELECT scheduler_id ,
 cpu_id ,
 Status ,
 is_online ,
 is_idle ,
 current_tasks_count ,
 runnable_tasks_count ,
 current_workers_count ,
 active_workers_count ,
 work_queue_count ,
 pending_disk_io_count ,
 load_factor
FROM sys.dm_os_schedulers

297

Chapter 7: OS and Hardware Interaction

WHERE scheduler_id < 255
 AND runnable_tasks_count > 0
 -- AND pending_disk_io_count > 0

Listing 7.17:	 Investigating potential disk I/O or CPU pressure.

Insufficient threads

If the system isn't experiencing CPU pressure, is not I/O bound, and there aren't
too many other types of waits on the system, then you may need to investigate
the possibility that there are simply too few threads available to the server. The
query in Listing 7.18 comes courtesy of Slava Oks (http://blogs.msdn.com/slavao/
archive/2006/09/28/776437.aspx) and investigates the possible need to adjust the server
threads system configuration, by checking the average value of work_queue_count.
In the absence of CPU pressure, values of more than one for the average of the work_
queue_count column can mean that you need to increase the number of threads
allowable to the server.

SELECT AVG(work_queue_count)
FROM sys.dm_os_schedulers
WHERE status = 'VISIBLE ONLINE'

Listing 7.18:	 Are there sufficient worker threads for the workload?

Context switching

Context switching occurs when a process fails to complete in a reasonable time, and
the process has to give up control of the scheduler (again, representing a CPU) to let
another process complete. SQL Server generally operates in a non-preemptive mode,
where threads voluntarily give up access to the CPU at the appropriate moment. Some
operations, however, such as calling an extended stored procedure, distributed query,
and so on, cause the scheduler to preempt a context switch. A high number of context

298

Chapter 7: OS and Hardware Interaction

switches, indicating that many SQL Server tasks are giving up control before completing,
is not ideal as it increases load on the CPU simply to allow more users to feel as if they are
being served.

With the values from the query in Listing 7.19 we can get the counts of the various
operations related to context switching that have occurred since the last reboot.

SELECT scheduler_id ,
 preemptive_switches_count ,
 context_switches_count ,
 idle_switches_count ,
 failed_to_create_worker
FROM sys.dm_os_schedulers
WHERE scheduler_id < 255

Listing 7.19:	 Investigating context switching.

One-off queries of this sort, using the "History" columns, are not necessarily very useful.
A large number of context switches, accumulated over a long period, may simply reflect
the activity of scheduled nightly processes, where such context switching does not affect
the users. In order to detect excessive context switching during normal OLTP operations
caused, for example, by abnormally high user loads, we need to take a baseline measure-
ment and then track and compare the results over time.

As noted during the earlier discussion on common wait types, hyper-threading
(parallel execution) in OTLP systems can lead to context switching, and to CXPACKET
and SOS_SCHEDULER_YIELD waits. Furthermore, certain hyper-threading
implementations in older processors do not "play nicely" with the SQL Server engine
 and can exacerbate the issue. According to Zach Nichter, in his Technet Magazine
article, Optimizing SQL Server CPU performance, at http://technet.microsoft.com/
en-us/magazine/2007.10.sqlcpu.aspx, if hyper-threading is enabled and you are seeing
more than 5000 * (Number of Processors) context switches per second, it suggests that
the scheduler is context switching between the same processor, yet thinking it is
swapping to a different one, and you should consider turning hyper-threading off and

299

Chapter 7: OS and Hardware Interaction

retesting performance. However, new hyper-threading implementations on Intel's
Nehalem processors work much more smoothly with SQL Server. For further details,
see Joe Chang's blog, Hyper-Threading from NetBurst to Nehalem, at http://sqlblog.com/
blogs/joe_chang/archive/2010/03/23/hyper-threading-comments.aspx.

A large number of idle switches, indicating periods when the processor was idle with
no requests to process, can indicate a poor distribution of workload across available
processors. A low value on one scheduler, coupled with very high utilization on another
one, might indicate that large operations that really could benefit from using parallel
operations are not doing so. For example, if you have MAXDOP set to 1 on a server with 8
CPUs, then your CPU-intensive nightly reports will run on only one of the CPUs, while all
the others sit idle.

Is NUMA enabled?

A final useful query against the sys.dm_os_schedulers DMV is one that indicates
whether or not NUMA (Non-Uniform Memory Access) is enabled on a given SQL Server
instance, as shown in Listing 7.20.

-- Is NUMA enabled
SELECT CASE COUNT(DISTINCT parent_node_id)
 WHEN 1 THEN 'NUMA disabled'
 ELSE 'NUMA enabled'
 END
FROM sys.dm_os_schedulers
WHERE parent_node_id <> 32 ;

Listing 7.20:	 Is NUMA enabled?

AMD-based servers have supported hardware-based NUMA for several years, while
Intel-based Xeon servers have added hardware-based NUMA with the Xeon 5500, 5600,
and 7500 series.

300

Chapter 7: OS and Hardware Interaction

CPU utilization history

This script uses the sys.dm_os_ring_buffers DMV which, according to
Books Online, is:

Identified for informational purposes only. Not supported. Future compatibility is not guaranteed.

Ooh, that sounds scary! Well, despite the warning and lack of documentation in Books
Online, there are multiple blog posts from Microsoft employees that show examples of
using this DMV. The one shown in Listing 7.21 returns the CPU utilization history over
the last 30 minutes, both in terms of CPU usage by the SQL Server process and total
CPU usage by all other processes on your database server. This query only works on
SQL Server 2008 and SQL Server 2008 R2.

-- Get CPU Utilization History for last 30 minutes (in one minute intervals)
-- This version works with SQL Server 2008 and SQL Server 2008 R2 only
DECLARE @ts_now BIGINT = (SELECT cpu_ticks / (cpu_ticks / ms_ticks)
 FROM sys.dm_os_sys_info
) ;

SELECT TOP (30)
 SQLProcessUtilization AS [SQL Server Process CPU Utilization] ,
 SystemIdle AS [System Idle Process] ,
 100 - SystemIdle – SQLProcessUtilization
 AS [Other Process CPU Utilization] ,
 DATEADD(ms, -1 * (@ts_now - [timestamp]), GETDATE())
 AS [Event Time]
FROM (SELECT record.value('(./Record/@id)[1]', 'int') AS record_id ,
 record.value('(./Record/SchedulerMonitorEvent/
 SystemHealth/SystemIdle)[1]', 'int')
 AS [SystemIdle] ,
 record.value('(./Record/SchedulerMonitorEvent/
 SystemHealth/ProcessUtilization)[1]',
 'int')
 AS [SQLProcessUtilization] ,
 [timestamp]
 FROM (SELECT [timestamp] ,

301

Chapter 7: OS and Hardware Interaction

 CONVERT(XML, record) AS [record]
 FROM sys.dm_os_ring_buffers
 WHERE ring_buffer_type =
 N'RING_BUFFER_SCHEDULER_MONITOR'
 AND record LIKE N'%<SystemHealth>%'
) AS x
) AS y
ORDER BY record_id DESC ;

Listing 7.21:	 Recent CPU utilization.

The query subtracts the SystemIdle value and the SQL Server Process value from
100 to arrive at the value for all other processes on the server. The results provide a handy
way to see your recent CPU utilization history for the server as a whole, for SQL Server,
and for other processes that are running on your database server (such as management
software). Even though the granularity is only one minute, it's very useful to be able to
see this from T-SQL rather than having to look at PerfMon or use WMI to get CPU
utilization information. In our experimentation, it's only been possible to retrieve 256
minutes-worth of data from this query.

Investigating Memory Usage

In this section, we'll discuss the DMVs that allow us to investigate how SQL Server is
using memory, and provide useful indicators of possible memory pressure.

Memory pressure in SQL Server is often a little harder to spot and diagnose than CPU
pressure. High CPU usage will immediately make itself known via that fact that one or
more of the CPUs will be pegged at 90+ percent for long periods of time. However, in
basic terms, SQL Server will use as much memory as you give it. SQL Server uses a central
memory broker mechanism to efficiently distribute memory across all components that
need it. Any memory that is not currently required by another component remains in the
buffer pool (in the form of 8-KB pages), and is used to cache pages read from disk.

302

Chapter 7: OS and Hardware Interaction

So efficient is SQL Server at using any memory that is available to it that we often have
to limit the amount of memory that SQL Server has access to (using the max server
memory server configuration.) In fact, about the only way to give SQL Server more
memory than it needs is to have more RAM than data, a condition that is pretty rare
unless planned that way.

The first evidence of memory pressure usually comes from PerfMon counters relating
to memory paging (such as Memory: Pages/sec and Memory: Page Faults/sec),
or to disk utilization resulting from memory paging (since all data is accessed through
memory after it is read from disk), as well as SQL Server counters such as the SQL
Server: Memory Manager and SQL Server: Buffer Manager sets of counters.
In the Memory Manager set of counters, it's useful to check that the value for the Total
Server Memory (KB) counter, which is the amount of memory in the buffer pool that
is currently in use, is generally well below the value for the Target Server Memory
(KB) counter, which indicates the maximum amount of memory that the SQL Server
process can use. Other interesting counters in this set include those relating to memory
grants, where a long queue of processes waiting for a workspace memory grant could
be indicative of memory pressure (this issue can be investigated further using the sys.
dm_exec_query_memory_grants DMV).

In the Buffer Manager set of counters, the Page Life Expectancy counter is
especially useful for detecting memory pressure. This value should generally be 300 or
greater, indicating that pages stay in RAM for an average of 300 seconds, or 5 minutes. If
it is significantly lower for sustained periods, it indicates that SQL Server is being forced
to flush the cache to free up memory.

If you do detect possible memory issues, you can investigate further using the DMVs
covered in this section, and find out exactly where and why the issue is occurring, rather
than just reporting to your system administrator that a problem exists.

303

Chapter 7: OS and Hardware Interaction

System-wide memory use

There are a few ways to get a picture of the memory use in SQL Server using the
DMVs but, new to SQL Server 2008, there is an excellent DMV called sys.dm_os_sys_
memory that provides a summarization of the memory condition of the system. It shows
the current levels of memory in the system, the cache, and so on. Amongst the columns
this view returns are:

•	 total_physical_memory_kb – the total amount of non-virtual memory available
to the OS in kilobytes

•	 available_physical_memory_kb – the amount of non-virtual memory currently
available to the OS

•	 total_page_file_kb – the current size of the OS's virtual memory/page file

•	 available_page_file_kb – the amount of virtual memory currently available to
the OS

•	 system_memory_state_desc – calculated value based on two other columns
(system_high_memory_signal_state and system_low_memory_signal_
state) that indicates if available memory is high, low, steady, or transitioning from
one state to another.

•	 The final column in this list, system_memory_state_desc, requires a little more
explanation. When you start the server, this value will likely be "Available physical
memory is high," while a value of "Available physical memory is low" is an indicator of
external memory pressure, since it means that the OS has little available memory and so
may require SQL Server to reduce its memory usage. This will result in SQL Server
reducing the size of all of its memory caches, and means that plans will get flushed from
the plan cache, and so on.

304

Chapter 7: OS and Hardware Interaction

When memory utilization is just right, the value will be "Physical memory state is steady."
For short periods, you may very occasionally see a third value of "Physical memory state
is transitioning," indicating that the memory state is changing from high to low, or
vice versa.

Using these five columns, as shown in Listing 7.22, we can get an overview of how much
RAM is available to the operating system in total, and how much of it is currently not in
use. The first and second values correspond to the Task Manager Physical Memory (MB)
values for total and available memory.

SELECT total_physical_memory_kb / 1024 AS total_physical_memory_mb ,
 available_physical_memory_kb / 1024 AS available_physical_memory_mb ,
 total_page_file_kb / 1024 AS total_page_file_mb ,
 available_page_file_kb / 1024 AS available_page_file_mb ,
 system_memory_state_desc
FROM sys.dm_os_sys_memory

Listing 7.22:	 System memory usage.

The following results were taken from my writing laptop with just under 2 GB of RAM
(some allocated to video RAM).

total_physical_memory_mb available_physical_memory_mb total_page_file_kb

------------------------ ---------------------------- --------------------

1912 912 3825

available_page_file_kb system_memory_state_desc

---------------------- ---------------------------------

2265 Available physical memory is high

305

Chapter 7: OS and Hardware Interaction

This DMV also provides additional columns to get information about the memory
assigned to the system cache and the kernel if, for some reason, you need to determine
these individual values.

Process memory use

Also, for SQL Server 2008, there is another DMV pertaining to memory, sys.dm_os_
process_memory, which returns a single row summarizing memory usage from the
point of view of the SQL Server process. This DMV has the following columns (and more),
all of which give you the current status of memory on the server:

•	 physical_memory_in_use_kb – all physical memory in use on the server by the
SQL Server processes, in kilobytes

•	 virtual_address_space_committed_kb – amount of virtual address space
committed to the SQL Server process

•	 virtual_address_space_available_kb – amount of virtual address space that is
committed but not currently in use

•	 page_fault_count – number of times data needed was not found in process
memory, causing a physical read to disk

•	 process_physical_memory_low – when the SQL Server process is needing more
RAM than is physically available, this value is set to 1

•	 process_virtual_memory_low – when the SQL Server process is needing more
virtual RAM than is currently available, this value is set to 1.

306

Chapter 7: OS and Hardware Interaction

The query in Listing 7.23 is about as simple as it gets, but nevertheless summarizes some
useful memory data for your SQL Server instance.

SELECT physical_memory_in_use_kb ,
 virtual_address_space_committed_kb ,
 virtual_address_space_available_kb ,
 page_fault_count ,
 process_physical_memory_low ,
 process_virtual_memory_low
FROM sys.dm_os_process_memory

Listing 7.23:	 Memory usage by the SQL Server process.

Using these values, along with those from sys.dm_os_sys_memory (plus a few of
the counters, such as Buffer Manager:Page Life Expectancy from the
performance counters) you can get a good feeling for how your SQL Server 2008 server
is using memory.

Particularly useful are the two columns, process_physical_memory_low and
process_virtual_memory_low. If these values return 1, you will know that you
have a good indication of a memory problem, even if you are not an expert in SQL
Server memory.

Memory use in the buffer pool

When a data page is read from disk, the page is copied into the SQL Server buffer pool
and cached for reuse. Each cached data page has one buffer descriptor. Buffer descriptors
uniquely identify each data page that is currently cached in an instance of SQL Server.
The sys.dm_os_buffer_descriptors DMV returns cached pages for all user and
system databases, including pages that are associated with the Resource database.

307

Chapter 7: OS and Hardware Interaction

As stated by Books Online:

Returns information about all the data pages that are currently in the SQL Server buffer pool. The output of

this view can be used to determine the distribution of database pages in the buffer pool according to database,

object, or type.

Listing 7.24 shows that this DMV can tell how your buffer pool memory is being used, i.e.
which databases and which indexes are using the most memory in the buffer pool.

-- Get total buffer usage by database
SELECT DB_NAME(database_id) AS [Database Name] ,
 COUNT(*) * 8 / 1024.0 AS [Cached Size (MB)]
FROM sys.dm_os_buffer_descriptors
WHERE database_id > 4 -- exclude system databases
 AND database_id <> 32767 -- exclude ResourceDB
GROUP BY DB_NAME(database_id)
ORDER BY [Cached Size (MB)] DESC ;

-- Breaks down buffers by object (table, index) in the buffer pool
SELECT OBJECT_NAME(p.[object_id]) AS [ObjectName] ,
 p.index_id ,
 COUNT(*) / 128 AS [Buffer size(MB)] ,
 COUNT(*) AS [Buffer_count]
FROM sys.allocation_units AS a
 INNER JOIN sys.dm_os_buffer_descriptors
 AS b ON a.allocation_unit_id = b.allocation_unit_id
 INNER JOIN sys.partitions AS p ON a.container_id = p.hobt_id
WHERE b.database_id = DB_ID()
 AND p.[object_id] > 100 -- exclude system objects
GROUP BY p.[object_id] ,
 p.index_id
ORDER BY buffer_count DESC ;

Listing 7.24:	 Memory allocation in the buffer pool.

308

Chapter 7: OS and Hardware Interaction

The first query rolls up buffer pool usage by database. It allows you to determine how
much memory each database is using in the buffer pool. It could help you to decide how
to deploy databases in a consolidation or scale-out effort.

The second query tells you which objects are using the most memory in your buffer pool,
and is filtered by the current database. It shows the table or indexed view name, the index
ID (which will be zero for a heap table), and the amount of memory used in the buffer
pool for that object. It is also a good way to see the effectiveness of data compression in
SQL Server 2008 Enterprise Edition and SQL Server 2008 R2 Enterprise Edition.

Memory clerks and memory grants

Each of the various components in SQL Server has its own memory clerk, responsible for
allocating memory for that component. This DMV provides a high level, point-in-time
picture of the memory clerk processes that manage SQL Server memory. We won't cover
this DMV in detail but, as an example, Listing 7.25 will provide a useful, quick overview of
buffer pool usage for a given instance.

-- Buffer Pool Usage for instance
SELECT TOP(20) [type], SUM(single_pages_kb) AS [SPA Mem, Kb]
FROM sys.dm_os_memory_clerks
GROUP BY [type]
ORDER BY SUM(single_pages_kb) DESC;

Listing 7.25:	 Buffer pool usage.

Typically, you'll see most memory usage associated such memory clerk types as
CACHESTORE_SQLCP (the cached query plan store for ad hoc SQL) or CACHESTORE_
OBJCP (the store for objects such as triggers, stored procedures, functions, and so on).

309

Chapter 7: OS and Hardware Interaction

Some of the more obscure memory clerks are not well documented, but an
important one to watch out for when investigating memory issues is MEMORYCLERK_
SQLQERESERVATIONS, which indicates that there may be insufficient memory in the
buffer pool for certain queries to execute.

Such issues should be investigated further using an execution-related DMV, namely
sys.dm_exec_query_memory_grants, which:

Returns information about the queries that have acquired a memory grant or that still require a memory

grant to execute. Queries that do not have to wait on a memory grant will not appear in this view.

This DMV allows you to check for queries that are waiting (or have recently had to wait)
for a memory grant, as demonstrated in Listing 7.26. Although not used in this query,
note that SQL Server 2008 added some new columns to this DMV.

-- Shows the memory required by both running (non-null grant_time)
-- and waiting queries (null grant_time)
-- SQL Server 2008 version
SELECT DB_NAME(st.dbid) AS [DatabaseName] ,
 mg.requested_memory_kb ,
 mg.ideal_memory_kb ,
 mg.request_time ,
 mg.grant_time ,
 mg.query_cost ,
 mg.dop ,
 st.[text]
FROM sys.dm_exec_query_memory_grants AS mg
 CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
WHERE mg.request_time < COALESCE(grant_time, '99991231')
ORDER BY mg.requested_memory_kb DESC ;

-- Shows the memory required by both running (non-null grant_time)
-- and waiting queries (null grant_time)
-- SQL Server 2005 version
SELECT DB_NAME(st.dbid) AS [DatabaseName] ,
 mg.requested_memory_kb ,
 mg.request_time ,

310

Chapter 7: OS and Hardware Interaction

 mg.grant_time ,
 mg.query_cost ,
 mg.dop ,
 st.[text]
FROM sys.dm_exec_query_memory_grants AS mg
 CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS st
WHERE mg.request_time < COALESCE(grant_time, '99991231')
ORDER BY mg.requested_memory_kb DESC ;

Listing 7.26:	 Which queries have requested, or have had to wait for, large memory grants?

You should periodically run this query multiple times in succession; ideally, you would
want to see few, if any, rows returned each time. If you do see a lot of rows returned each
time, this could be an indication of internal memory pressure.

This query would also help you identify queries that are requesting relatively large
memory grants, perhaps because they are poorly written or because there are missing
indexes that make the query more expensive.

Investigate memory using cache counters

In the previous section, we took a brief look at how memory is allocated to our system
via memory clerks. To get a bit deeper into the cache entries, we are going to look at
sys.dm_os_memory_cache_counters which will give some more detailed statistics
about how cache memory is currently being used by SQL Server across its various caches.

Essentially, this DMV provides a snapshot of cache-usage values, based on current reality.
The column single_pages_kb is the amount of memory allocated via the single-page
allocator. This refers to the 8-KB pages that are taken directly from the buffer pool, for the
cache in question. The column multi_pages_kb is the amount of memory allocated by
using the multiple-page allocator of the memory node. This memory is allocated outside
the buffer pool and takes advantage of the virtual allocator of the memory nodes.

311

Chapter 7: OS and Hardware Interaction

•	 name – the descriptive name given to the cache.

•	 type – the type of cache being reported on, such as the CACHESTORE_SQLCP
plan for SQL cached plans. Type is more generic than name. For example, for type
CACHESTORE_BROKERREADONLY, there are at least three different names listed:
"Service broker routing cache," "Service broker configuration," and "Service broker
dialog cache."

•	 single_pages_kb – the amount of memory allocated to the cache by the single-
page allocator. Memory allocation will be in multiples of 8-KB pages, taken from the
buffer pool.

•	 multi_pages_kb – the amount of memory allocated to the cache by the multipage
allocator. This memory is allocated outside of the buffer pool using the virtual
memory allocator.

•	 single_pages_in_use_kb – the number of the single pages allocated that are
currently in use (not tracked for UserStore type entries).

•	 multi_pages_in_use_kb – the number of the multipages allocated that are
currently in use (not tracked for UserStore type entries).

•	 entries_count – the number of distinct entries in the cache, regardless of whether
they are single or multi pages.

•	 entries_in_use_count – number of entries that are actively being used by
SQL Server.

A large number of multi_pages_kb for either of these cache types can lead to
decreased performance on builds previous to SQL Server 2005 SP2 (Build 3042). Since
SQL Server 2005 SP2 is no longer a supported service pack, this is yet another reason
to get SQL Server 2005 SP3 (Build 4035) and, hopefully, SQL Server 2005 SP3 CU9
(Build 4294) applied.

312

Chapter 7: OS and Hardware Interaction

To see all the cache counters, you can execute a simple query of the form shown in
Listing 7.27.

SELECT type ,
 name ,
 single_pages_kb ,
 multi_pages_kb ,
 single_pages_in_use_kb ,
 multi_pages_in_use_kb ,
 entries_count ,
 entries_in_use_count
FROM sys.dm_os_memory_cache_counters
ORDER BY type,name;

Listing 7.27:	 Returning the cache counters.

This will return quite a few different types, including:

•	 CACHESTORE_SQLCP – cached query plan store for ad hoc SQL

•	 CACHESTORE_OBJCP – cached query plan store for objects such as triggers, stored
procedures, functions, and so on

•	 CACHESTORE_PHDR – cache query trees for objects that do not maintain query plans,
such as views and constraints

•	 CACHESTORE_TEMPTABLES – temporary tables

•	 USERSTORE_TOKENPERM – cache security information

•	 USERSTORE_DBMETADATA – caches the metadata for databases; each database has its
own entry denoted in the name column.

Using these and other types of cache counter, you can get a good idea of how much cache
memory is being used, plus you can see how much of the memory is currently being used
(and hence held in memory) by SQL Server processes. As an example usage, to see how

313

Chapter 7: OS and Hardware Interaction

active your cache is for SQL plans, we can filter on type, either CACHESTORE_SQLCP or
CACHESTORE_OBJCP, as shown in Listing 7.28.

SELECT name ,
 type ,
 entries_count ,
 entries_in_use_count
FROM sys.dm_os_memory_cache_counters
WHERE type IN ('CACHESTORE_SQLCP', 'CACHESTORE_OBJCP')
 --ad hoc plans and object plans
ORDER BY name ,
 type

Listing 7.28:	 Investigating the use of the plan cache.

On my test laptop, this returns the following output:

name type entries_count entries_in_use_count

-------------- ------------------ -------------------- --------------------

Object Plans CACHESTORE_OBJCP 22 0

SQL Plans CACHESTORE_SQLCP 44 2

We can run some ad hoc SQL, such as select *from sys.objects, and then rerun
Listing 7.18, in order to see a new entry added to the SQL Plans cache:

name type entries_count entries_in_use_count

-------------- -------------------- -------------------- --------------------

Object Plans CACHESTORE_OBJCP 22 0

SQL Plans CACHESTORE_SQLCP 46 7

Notice that the entries_count for SQL Plans has increased by two, one for the
counters query, and one for the ad hoc SQL (it might increase more due to other back-
ground processes) but the use count was not incremented. This, of course, is because the

314

Chapter 7: OS and Hardware Interaction

query will have finished prior to us rechecking the cache. Note, too, that if we run the ad
hoc statement again, exactly as before, the entries count will not change. However, if we
add even a single space, it will increase. To see this in action, we can create a procedure
that will take some time to execute, using the handy WAITFOR command, as shown in
Listing 7.29.

--in a different connection, execute this all at once:
USE tempdb
go
CREATE PROCEDURE test
AS
 WAITFOR DELAY '00:00:30'
 SELECT *
 FROM sys.sysobjects
go
EXECUTE test

Listing 7.29:	 Investigating plan reuse counts.

Then, while it is executing, you will see that at least one new entry has been created, and
it is in use.

name type entries_count entries_in_use_count

-------------- -------------------- -------------------- --------------------

Object Plans CACHESTORE_OBJCP 23 0

SQL Plans CACHESTORE_SQLCP 46 7

Once it has finished, you will see the cache entry is no longer in use. Clearly, this is a
micro-example of what is rarely such a small amount of memory. You will have far more
queries in cache in your busy system, and the same goes for all of the many other types of
cache memory that are available.

315

Chapter 7: OS and Hardware Interaction

Note that, while the sys.dm_os_memory_cache_counters DMV provides detailed
information about cache memory, it's still fairly high level and it's possible to drill even
deeper using, for example, the following DMVs:

•	 sys.dm_os_memory_cache_entries to investigate individual cache entries and
trace them back to their associated objects

•	 sys.dm_os_memory_cache_hash_tables to find out about the actual hash tables
where the cache entries are placed

•	 sys.dm_os_memory_cache_clock_hands to find out about internal and external
memory pressure at the cache level.

Keep in mind, though, that curiosity killed the cat, mostly because he spent so much time
digging around looking at all the data that he forgot to eat.

Investigating Latching

As discussed in Chapter 4, locking is an integral and normal part of the operation of an
RDBMS when mediating concurrent access to shared database resources. Generally
speaking, this refers to the shared, exclusive, and update locks acquired on specific
database rows, in order to avoid interference between transactions that are reading or
writing that data simultaneously. However, in addition to these locks, SQL Server has to
acquire further "lightweight locks," known as latches, in order to coordinate access
to other resources implicitly required to execute the query, such as a page/extent in
memory, a file handle, a worktable in tempdb, or any such thing that the engine may
need to access, which is not specifically and directly specified in the request that is issued.

In essence, latches are to locks what fields are to columns. In relational theory, a
column is a logical representation of the data, managed completely by the SQL Server
engine. A column doesn't have a physical location. A field, on the other hand, is a physical
location in a record, where you can find the actual set of bits and bytes. So, whereas a lock

316

Chapter 7: OS and Hardware Interaction

is represented by a row of data in a system table and is used to lock access to a resource
that a user wants, a latch is used by the query processor to lock physical memory or some
internal structure, to ensure consistency.

As noted, latches are lightweight devices, designed to be held for very short periods of
time and, as such, are supposed to be of minimal cost. Also, it's true that their acquisition
is, to some extent, beyond the SQL programmer's control. Nevertheless, as discussed in
Chapter 2, poorly designed SQL can and will cause more latches to be acquired than is
necessary, thus limiting the overall scalability of the system.

The sys.dm_os_latch_stats DMV provides our window onto the world of latch
statistics in SQL Server for the different types of latches that it provides, such as the
BUFFER latch type that is acquired before reading or changing a database page. The
sys.dm_os_latch_stats view can be used to see if any types of latches are being
waited on excessively. For example, if you were getting 844 errors (buffer latch timeouts),
particularly frequent ones, you can use this DMV to check to see if the BUFFER latch is
constantly being waited on, possibly indicating a need to improve the I/O system,
whether the memory and/or hard disk subsystems. Of course, it can simply mean that
you have queries that need tuning but, in either case, your I/O system cannot handle the
current load.

This view is based on a set of counters that are added to or set periodically (as in the
max wait time for a given class). The data is reset at a reboot or it can be cleared with the
command:

DBCC SQLPERF ('sys.dm_os_latch_stats', CLEAR);

Listing 7.30:	 Resetting the latch statistics.

The following columns are available:

•	 latch_class – the type of latch; a full list can be located in the Books Online topic
for the sys.dm_os_latch_stats

317

Chapter 7: OS and Hardware Interaction

•	 waiting_requests_count – a cumulative count of the number of times that a
process has needed to wait on any latch of the latch type

•	 wait_time_ms – cumulative amount of time processes have spent waiting on any
latch of the latch type

•	 max_wait_time_ms – the maximum amount of time a process has waited for a latch
in this class.

As an example, try executing the query shown in Listing 7.31 on a busy system.

SELECT latch_class ,
 waiting_requests_count AS waitCount ,
 wait_time_ms AS waitTime ,
 max_wait_time_ms AS maxWait
FROM sys.dm_os_latch_stats
ORDER BY wait_time_ms DESC

Listing 7.31:	 Seeking out latch waits.

On my server, a very busy SQL Server that was rebooted just a few days previously, the
results returned were as follows:

latch_class waitCount waitTime maxWait

------------------------------------- ---------- ----------- -------

BUFFER 8222456 31717841 5172

ACCESS_METHODS_SCAN_RANGE_GENERATOR 3436520 4106876 484

DBCC_MULTIOBJECT_SCANNER 1759162 526480 187

ACCESS_METHODS_DATASET_PARENT 122981 241125 938

DBCC_OBJECT_METADATA 1394243 219441 31

DBCC_FILE_CHECK_OBJECT 629937 172415 16

DBCC_PFS_STATUS 381815 66465 16

DBCC_CHECK_AGGREGATE 112423 29574 16

NESTING_TRANSACTION_READONLY 147186 28869 47

318

Chapter 7: OS and Hardware Interaction

Note that most of the latch waits have been for buffer latches, used to synchronize
any access to the SQL Server pages. The average wait time for a buffer latch is 3.85 ms
(31717841 / 8222456), but the maximum wait time of over 5 seconds is a bit worrisome.
However, we can't really tell too much from this stat other than that you may need to
do some more digging using sys.dm_os_wait_stats, which was covered earlier and
includes values that differentiate between latches used for input and output.

The second largest wait type is ACCESS_METHODS_SCAN_RANGE_GENERATOR,
which, according to Books Online is used to synchronize access to a range generator during
parallel scans. This can indicate poor indexing for certain types of loads, particularly
transaction processing loads that should be based on short-and-sweet queries. When a
query is executed using parallelism, it indicates some form of large scan or hash/merge
join that is fine for reports, but not for dealing with small sets of data that an OLTP
system should be executing on. When you see this form of latch, you will likely see
CXPACKET wait types showing up as well (see Listing 7.2). The ACCESS_METHODS_
DATASET_PARENT is another latch class that pertains to parallel operations.

You will note that many of the latch types are documented as internal use only, which can
be cold comfort at times. However, like the DBCC_ classes, you can get generally get an
idea of their purpose; in this case, many of them are used by the consistency checkers
internally to hold access to certain objects as needed, as is the case for the NESTING_
TRANSACTION_ classes.

While you may not be able to get a tremendous amount of decipherable information from
these latch classes as a first stop, there is still a good bit of low-level information that can
be mined from the data, particularly when certain latch wait times are really large and
represent an obvious problem.

319

Chapter 7: OS and Hardware Interaction

Summary

The topic of OS DMVs is deep and wide; an entire book of material could be compiled
just from the DMOs prefixed with sys.dm_os_.

All the DMOs provide data that is fairly "raw" in nature, often using measurements in
units that are not that common to the average DBA. How often, for example, do you
measure time in CPU ticks? ("Honey, American Idol is on in 1.4 trillion CPU ticks. Are
you coming?")

Probably the most difficult part about a chapter like this is that the topic is so wide
that we could not even begin to cover everything. For the sys.dm_os_wait_stats
DMV alone, for example, there are 231 different wait types documented in Books Online.
We covered a few very common ones, but still left 200+ untouched. In the end, we
whittled the list down to higher-level objects that we feel DBAs will find most useful
in investigating pressure points in their SQL Server systems and, hopefully, the chapter
has at least managed to shine a light on some useful diagnostic data, such as:

•	 sys.dm_os_wait_stats – information about what types of things your SQL Server
has been waiting on

•	 sys.dm_os_performance_counters – information from the SQL Server
performance counters, with some formatting that is not widely documented

•	 sys.dm_os_sys_info – information about the overall configuration of your system

•	 sys.dm_os_schedulers – information on schedulers that handle spreading work
out to the CPUs

•	 sys.dm_os_sys_memory – new DMV for 2008 that gives you an overview of how
the server is managing memory

•	 sys.dm_os_process_memory – new DMV for 2008 that gives you an overview of
how the SQL Server process is doing for memory

320

Chapter 7: OS and Hardware Interaction

•	 sys.dm_os_memory_cache_counters – stats on how the cache memory is being
utilized, including how much memory is actively being used

•	 sys.dm_os_latch_stats – stats on the low-level resource locks that SQL Server
uses to lock physical pages in memory, and more.

And now, it is really up to you, as the reader, to take the information provided and expand
upon it, based on the potential problems and bottlenecks that you are experiencing on
your systems.

321

A
ACID test 116

Activity and workload columns 56–57

Activity Monitor 29, 120

Ad hoc query. See Queries

Ad hoc single-use plans

examining 97–98

B
Blocking and locking columns 55–56

C
Cache

cached plan analysis 74–76

cached query plan statistics 87–98

expensive cached stored procedures 109–110

flushing 78–79

view text of cached queries and query plans

79–87

Clustered table 224

Concurrent usage levels. See Performance testing

Connections, sessions, requests 33–71

Connections and sessions 37–52

Who is connected? 42–44

Who is connected by SSMS? 44–45

Context switching 48. See also CPU usage

Counters. See Performance counters

CPU pressure 276

CPU usage 295–304

context switching 300–302

CPU utilization history 303–304

CPU waits 298–300

insufficient threads 300

schedulers 296–298

NUMA (Non-Uniform Memory Access 302

Cumulative data 25–27

D
database scoped objects 20

DBCC commands 30

DBCC OPENTRAN 139

Disk

diagnosing I/O bottlenecks 241–251

investigating fragmentation 232–242

in clustered tables 234–237

in heaps 238–241

minimizing I/O 220–222

physical I/O and I/O stalls 245

read/write ratio. See Read/write ratio

statistics 219–263

on tables and indexes 224–241

tuning the disk I/O subsystem 223–224

utilization 219

Viewing pending I/O requests 249–251

DMF. See Dynamic Management Object (DMO)

DMV. See Dynamic Management Object (DMO)

Dynamic Management Object (DMO)

Dynamic Management Function (DMF) 15

Dynamic Management View (DMV) 15

navigation 23–24

performance tuning with 21–30

security and permissions 20

use with other performance tools 28–30

using DMOs 15–31

Index

322

Index

F
Fragmentation. See Disk

Frequently used plans. See Plan reuse

examining 95–97

H
Heap structure 224

I
Identification columns. See sys.dm_exec_requests

Idle sessions 51

Inactive sessions 48

Indexing strategy and maintenance 173–217

find missing indexes 200–208

limitations of missing index DMOs 205–206

missing index columns 203

missing index details 203

missing index groups 204

missing index group statistics 204–205

most beneficial missing index 206–208

indexing system catalog views 174–178

index maintenance 208–215

detect & fix fragmentation 213–215

fragmentation statistics 211–213

index fragmentation 209–210

index strategy 179–208

arrow indexes 182–183

clustered indexes and PKs 181

covering indexes 181

high selectivity 182

number of indexes 182

investigating index usage 183–190

indexes maintained but not used 187–189

indexes never accessed 186–187

inefficient indexes 190

usage patterns of current indexes 191–200

indexes & lock contention 199–200

indexes not used for user reads 193–194

latch waits 197–198

lock escalations 198–199

locking & blocking at row level 195–196

using the indexing DMOs 179

Insufficient threads. See CPU usage

L
Latches 318–321

Locking and blocking. See Transactions

Logins

with more than one session 47

M
Memory usage 304–318

in the buffer pool 309–311

memory clerks and memory grants 311–313

process memory use 308–309

system-wide memory usage 306–308

using cache counters 313–318

Metadata 73–114. See also Query plan metadata

Monitoring machine characteristics 291–295

N
NUMA (Non-Uniform Memory Access) 302

O
OS and hardware interaction 265–323

323

Index

P
Performance counters 277–291

average number of operations completed

289–291

deprecated feature use 282–283

directly usable counter types 280–283

monitor auto-grow/auto-shrink events

281–282

PERF_AVERAGE_BULK 289

PERF_COUNTER_BULK_COUNT 286

PERF_COUNTER_LARGE_RAWCOUNT 280

PERF_LARGE_RAW_FRACTION 283

per second averages 286–289

providing ratios 283–286

Performance Monitor (PerfMon) 29

Performance tuning with DMOs. See Dynamic

Management Object (DMO)

Physical I/O. See Disk

Plan handles 54

return plan using sys.dm_exec_text_query_plan

86–87

Plan reuse 91–98

plan reuse distribution curve 92–95

Point-in-time data 25–27

Profiler 28

Q
Queries

ad hoc query

returning SQL text of 58–61

aggregate query optimization Statistics 111–114

query execution statistics 101–108

Query plan attributes 98–101

Query plan metadata 73–114

overview of DMOs for, 76–78

R
READ_COMMITTED_SNAPSHOT mode 150

Read/write ratio 251–259

data read versus written 253–255

number of read and write operations 255–256

number of reads and writes at the table level

256–259

Requests 52–70

investigating work done by 64–66

Rows

number of rows in a table 228

number of rows per partition 228–231

S
scheduler. See CPU usage

server scoped objects 20

Sessions

identify inactive sessions 48–50

idle sessions with orphaned transactions 51–52

session-level settings 45–46

with context switching 48

Single-use plans

examining 97–114

Snapshot isolation. See Transactions

SNAPSHOT mode 150

sp_who, sp_who2 30, 67–70, 120

SQL and plan handles 54

plan handle 84

SQL handle 84

324

Index

isolating the executing statement within

61–64

SQL Server performance counters. See Perform-

ance counters

SQL text

dissecting 84–86

SSMS 44

Statistics. See Query plan metadata

sys.dm_db_file_space_usage 220, 260

sys.dm_db_index_operational_stats 191–200

sys.dm_db_index_physical_stats 184, 208–215,

211–213, 220

sys.dm_db_index_usage_stats 175, 183–190, 256

sys.dm_db_missing_index_columns 200, 203

sys.dm_db_missing_index_details 200, 203

sys.dm_db_missing_index_groups 201, 204

sys.dm_db_missing_index_group_stats 200,

204–205

sys.dm_db_partition_stats 219, 225

sys.dm_db_tran_active_transactions 143

sys.dm_exec_cached_plans 24, 77, 88–91

sys.dm_exec_connections 34, 38–39

sys.dm_exec_plan_attributes 77

sys.dm_exec_procedure_stats 77, 109–110

sys.dm_exec_query_memory_grants 305, 312

sys.dm_exec_query_optimizer_info 77, 111–114

sys.dm_exec_query_plan 34, 64–66, 77, 80

returning the plan using, 81–83

sys.dm_exec_query_stats 24, 76, 102

overview 102–104

using 104–108

sys.dm_exec_requests 24, 34

activity and workload columns 56–57

blocking and locking columns 55–56

identification columns 54–55

overview 53–57

SQL and plan handles 54

sys.dm_exec_sessions 34, 40–42

sys.dm_exec_sql_text 24, 34, 81

overview 57–58

sys.dm_exec_text_query_plan 77, 80, 86

sys.dm_io_pending_io_requests 220, 249

sys_dm_io_virtual_file_stats 257

sys.dm_io_virtual_file_stats 26, 220

overview 242–243

using 243–245

sys.dm_os_buffer_descriptors 309

sys.dm_os_latch_stats 319

sys.dm_os_memory_cache_clock_hands 318

sys.dm_os_memory_cache_counters 313

sys.dm_os_memory_cache_entries 318

sys.dm_os_memory_cache_hash_tables 318

sys.dm_os_memory_clerks 311

sys.dm_os_performance_counters 277

sys.dm_os_process_memory 308

sys.dm_os_ring_buffers 303

sys.dm_os_schedulers 296–298

sys.dm_os_sys_info 291

sys.dm_os_sys_memory 306

sys.dm_os_waiting_tasks 123, 132, 134

sys.dm_os_wait_stats 25, 199, 266, 268–269

sys.dm_tran_active_snapshot_database_transac-

tions 153, 153–155

sys.dm_tran_active_transactions 139, 141–144

sys.dm_tran_current_snapshot 155

sys.dm_tran_currrent_snapshot 153

325

Index

sys.dm_tran_database_transactions 139, 144–146

sys.dm_tran_locks 121–127, 132

sys.dm_tran_session_transactions 139

sys.dm_tran_top_version_generators 165

sys.dm_tran_transactions_snapshot 153, 155–156

sys.dm_tran_version_store 165

sysprocesses

versus DMOs 35–37

sys.sysprocesses 35

System views 16–19

catalog views 16–19

compatibility views 16–19

T
tempdb

usage statistics 259–262

Transaction log

auto-grow, auto-shrink 281–282

Transactions 115–172

blocking analysis 132–139

defined 116–118

DMOs, Activity Monitor, sp_who2 120–121

investigating locking 127–132

locking and blocking 118–138

lock modes 125–127

lock types 124–125

monitoring active transactions 139–149

snapshot isolation 149–171

current snapshot activity 157–164

DMOs for current snapshot activity 153–156

investigating 152–172

version store usage 165–171

sys.dm_tran_top_version_generators 170–171

sys.dm_tran_version_store 166–169

sys.dm_tran_session_transactions 140

tempdb Version Store 149–171

U
User activity 66–71

Who Is Active script 70

W
Wait statistics 266–277

and CPU pressure 276–277

locking waits 274

longest cumulative waits 273–274

most common waits 270–273

Watcher effect 28

About Redgate

www.redgate.com

Compliant
Database DevOps

Redgate is the leading provider of software
solutions for Compliant Database DevOps.
We’ve specialized in database software for
over 20 years.

Now, our products help 800,000 people in every type of
organization around the world, from small businesses
to 91% of the Fortune 100.

Our solutions make life easier for development teams,
operations teams, and IT leaders by solving the
database challenges in delivering software at speed.

Whether they use industry leading products such as
Redgate Deploy and SQL Monitor, or our open-source
framework Flyway, teams benefit from faster
development, Database DevOps, and a safe, compliant
approach to deployments.

	Introduction
	Code Examples

	Chapter 1: Using Dynamic Management Objects
	Compatibility Views, Catalog Views, and DMOs
	DMO Security and Permissions
	Performance Tuning with DMOs
	Navigating through the DMOs
	Point-in-time versus cumulative data
	Beware of the watcher effect
	Using DMOs with other performance tools

	Summary

	Chapter 2: Connections, Sessions
and Requests
	Sysprocesses versus DMOs
	Connections and Sessions
	sys.dm_exec_connections
	sys.dm_exec_sessions
	Who is connected?
	Who is connected by SSMS?
	Session-level settings
	Logins with more than one session
	Identify sessions with context switching
	Identify inactive sessions
	Identify idle sessions with orphaned transactions

	Requests
	Overview of sys.dm_exec_requests
	Overview of sys.dm_exec_sql_text
	Returning the SQL text of ad hoc queries
	Isolating the executing statement within a
SQL handle
	Investigating work done by requests
	Dissecting user activity

	Summary

	Chapter 3: Query Plan Metadata
	Why Cached Plan Analysis with DMOs?
	An Overview of DMOs for Query Plan Metadata
	Flushing the Cache?
	Viewing the Text of Cached Queries
and Query Plans
	Returning the plan using sys.dm_exec_query_plan
	Dissecting the SQL text
	Returning the plan using
sys.dm_exec_text_query_plan

	Cached Query Plan Statistics
	The sys.dm_exec_cached_plans DMV
	Investigating plan reuse

	Query Plan Attributes
	Gathering Query Execution Statistics
	Overview of sys.dm_exec_query_stats
	Putting sys.dm_exec_query_stats to work

	Investigating Expensive Cached
Stored Procedures
	Getting Aggregate Query Optimization Statistics for All Optimizations
	Summary

	Chapter 4: Transactions
	What is a transaction, anyway?
	Investigating Locking and Blocking
	DMOs, Activity Monitor and sp_who2
	An overview of the sys.dm_tran_locks DMV
	Investigating locking
	Blocking analysis using sys.dm_tran_locks
and sys.dm_os_waiting_tasks

	Analyzing Transactional Activity
	Transactional DMOs vs. DBCC OPENTRAN
	sys.dm_tran_session_transactions
	sys.dm_tran_active_transactions
	sys.dm_tran_database_transactions
	Assessing transaction log impact

	Snapshot Isolation and the tempdb Version Store
	SNAPSHOT and READ_COMMITTED_SNAPSHOT modes
	Investigating snapshot isolation

	Summary

	Chapter 5: Indexing Strategy and Maintenance
	The Indexing System Catalog Views
	Using the Indexing DMOs
	Index Strategy
	Investigating index usage (index_usage_stats)
	Determine usage patterns of current indexes (index_operational_stats)
	Find missing indexes

	Index Maintenance (index_physical_stats)
	A brief overview of index fragmentation
	Fragmentation statistics (index_physical_stats)
	Detecting and fixing fragmentation

	Summary

	Chapter 6: Physical Disk Statistics
and Utilization
	Minimizing I/O
	Tuning the Disk I/O Subsystem
	Getting Physical Statistics on your Tables
and Indexes
	Size and structure
	Investigating fragmentation

	Diagnosing I/O Bottlenecks
	An overview of sys.dm_io_virtual_file_stats
	Using sys.dm_io_virtual_file_stats
	Investigating physical I/O and I/O stalls
	Viewing pending I/O requests

	Finding the Read:Write Ratio
	Amount of data read versus written
	Number of read and write operations
	Number of reads and writes at the table level

	Getting Stats about tempdb Usage
	Summary

	Chapter 7: OS and Hardware Interaction
	Wait Statistics
	A brief overview of sys.dm_os_wait_stats
	Finding the most common waits
	Finding the longest cumulative waits
	Investigating locking waits
	Investigating CPU pressure

	SQL Server Performance Counters
	Directly usable counter types
	Ratios
	Per second averages
	Average number of operations

	Monitoring Machine Characteristics
	Investigating CPU Usage
	An overview of sys.dm_os_schedulers
	CPU waits
	Insufficient threads
	Context switching
	Is NUMA enabled?
	CPU utilization history

	Investigating Memory Usage
	System-wide memory use
	Process memory use
	Memory use in the buffer pool
	Memory clerks and memory grants
	Investigate memory using cache counters

	Investigating Latching
	Summary

